Electronic Supplementary Information Water-Based Polymer Colloids with a Branched Chain Architecture as Low-Gel Pressure-Sensitive Adhesives

Emily M. Brogden, Stefan A. F. Bon.*

The University of Warwick, Coventry CV4 7AL, UK.

Web: https://bonlab.info, *S.Bon@warwick.ac.uk

List of Figures

S 1	Kinetics and particle size evolution for B_Xn_C4 where $n = 4 \bullet, 7 \blacktriangle$ and $16 \blacktriangledown$.	4
S2	Kinetics and particle size evolution for F_Xn_C4 where $n = 0 \bullet, 8 \blacktriangle, 11 \lor, 13 \times and 18 \blacksquare, \dots$	5
S 3	Kinetics and particle size evolution for F_Xn_C2 where $n = 0 \bullet, 8 \blacktriangle, 11 \lor, 13 \times and 18 \blacksquare, \dots$	6
S 4	Kinetics and particle size evolution for F X13 Cn where $n = 0.5 \bullet, 1 \blacktriangle, 2 \lor$, and $4 \times \ldots$	7
S5	DSC thermograms for B Xn C4	8
S 6	DSC thermograms for F Xn C4	9
S 7	DSC thermograms for F Xn C2	10
S 8	DSC thermograms for F X13 Cn.	10
S 9	The molecular weight distributions from conventional SEC analysis for B Xn C4 from 10 min	
57	to the final sample at 330 min	12
S10	The molecular weight distributions from conventional SEC analysis for F Xn C4 from 10 min	
510	to the final sample at 330 min	13
S 11	The molecular weight distributions from conventional SEC analysis for F Xn C2 from 10 min	15
511	to the final sample at 330 min	14
\$12	The molecular weight distributions from conventional SEC analysis for E X13. On from 10 min	14
512	to the final sample at 330 min	15
\$13	The contact angles of water droplets on the PET substrate after chemical modification for various	15
515	times at 30 (a) and 60 (b) $^{\circ}$ C. The contact angle with no modification is shown at 0 h	15
S 14	Cylindrical rollar bar attachment on an Elegenetar 4340 Automatic Film Applicator, which analled	15
514	a second sheet of DET to be adhered to the cost films with minimal hubbles. The green arrows show	
	a second sheet of FET to be adhered to the cast mins with minimal bubbles. The green arrows show	16
S15	A Shimedry EZ I V universal testing mechine with a 500 N tensile ing in the upper position and	10
315	A shinhadzu EZ-LA universal testing machine with a 500 W tensile jig in the upper position and	
	a peer forming jug in the lower position which can hold a custom-made metal holder used for peer adhesion tests. The group arrows show the direction of movement	16
S16	additional tests. The green arrows show the direction of movement. $\dots \dots \dots$	10
310	reel autesion force, r_{peel} as a function of peel distance, shoke for r_Aii_C4 where $ii = 0$, 8 ,	17
S17	Deal adhesion force F_{1} as a function of neal distance stroke for F_{1} V_{2} where $n = 0$	17
317	reel autosion force, r_{peel} as a function of peel distance, shoke for r_An_C2 where $n = 0$, 8 ,	17
S 18	Deal adhesion force E_{1} , as a function of neal distance stroke for E_{1} V13 Cn where $n = 0.5 = 1$	17
510	a and 4	19
S 10	\downarrow , $2 \downarrow$ and $4 \downarrow$	10
319	A Shiniadzu EZ-LA universal testing machine with 500 V tensite jigs in the upper and lower posi-	
	within the images to demonstrate the len joint where the DET is represented the grou outlined shapes	
	and the adhesive is light hlue. The green arrows show the direction of movement	10
620	and the adhesive is light blue. The green arrows show the direction of movement. \dots	10
520	subsection of the strength shear strength, w_{shear} , as the area under the curves for F_Ah_C4	10
621	where $n = 0$, 8, 11, 13, 13 and 18.	19
521	Stress-strain curves to obtain shear strength, w_{shear} , as the area under the curves for F_Xh_C2	10
600	where $n = 0$, 8, 11, 13, 13 and 18.	19
522	Stress-strain curves to obtain snear strength, W_{shear} , as the area under the curves for F_X13_Ch	10
600	where $n = 0.5$, 1 , 2 and 4	19
525	Stress-strain curves to obtain tack adnesion energy, W_{adh} , as the area under the curves for B_Xn_C4	20
0.2.4	where $n = 4$, $/$, 10	20
324	Stress-strain curves to obtain tack adnesion energy, W_{adh} , as the area under the curves for F_Xn_C4	0.1
	where $n = 0 = 0, 8 = 0, 11 = 0, 13 = 0, 13 = 0, 13 = 0, 13 = 0, 13 = 0, 14 =$	21

Stress-strain curves to obtain tack adhesion energy, W_{adh} , as the area under the curves for F_Xn_C2	
where $n = 0$, 8 , 11 , 13 and 18	21
Stress-strain curves to obtain tack adhesion energy, W_{adh} , as the area under the curves for F_X13_Cn	
where $n = 0.5 \equiv 1 \equiv 12$ and $4 \equiv 1200$.	21
Amplitude sweeps with the storage modulus, $G' \blacksquare$, and loss modulus, $G'' \blacksquare$, for F_Xn_C4 where	
$n=0 \bullet, 8 \blacktriangle, 11 \lor, 13 \times and 18 \blacksquare$. The verticle black line shows the displacement used in the	
frequency sweeps to remain in the linear viscoelastic regime.	22
Amplitude sweeps with the storage modulus, $G' \blacksquare$, and loss modulus, $G'' \blacksquare$, for F_Xn_C2 where	
$n=0 \bullet, 8 \blacktriangle, 11 \lor, 13 \times and 18 \blacksquare$. The verticle black line shows the displacement used in the	
frequency sweeps to remain in the linear viscoelastic regime.	22
Amplitude sweeps with the storage modulus, $G' \blacksquare$, and loss modulus, $G'' \blacksquare$, for F_X13_Cn where	
$n=0.5 \bullet, 1 \blacktriangle, 2 \lor$, and $4 \times$. The verticle black line shows the displacement used in the frequency	
sweeps to remain in the linear viscoelastic regime	22
Rheological frequency sweeps of F_Xn_C4 where $n = 0 \circ, 8 \land, 11 \lor, 13 \times and 18 \blacksquare$.	23
Rheological frequency sweeps of F_Xn_C2 where $n = 0 \bullet, 8 \blacktriangle, 11 \lor, 13 \times and 18 \blacksquare$.	24
Rheological frequency sweeps of F_X13_Cn where $n = 0.5 \bullet, 1 \blacktriangle, 2 \lor$, and $4 \times \ldots$	25
The final molecular weight distributions from conventional SEC analysis for F_Xn_C4, where n=	
0 , 8 , 11 , 13 and 18 where the surfactant molecular weight distributions for Brij L23 (-	
) and Lakeland PAE 136 () are also shown.	26
	Stress-strain curves to obtain tack adhesion energy, W_{adh} , as the area under the curves for F_Xn_C2 where n = 0 , 8 , 11 , 13 and 18

List of Tables

S 1	Monomer compositions for each latex synthesized. The mole percentage quoted relates to the num-	
	ber of molecules and not the number of vinyl groups.	2
S2	Recipes for each latex synthesized.	3
S 3	Glass transition temperature, T_g , analyses for all latexes synthesized	11
S4	Average film heights during tack testing (average of 5 repeats) and rheological amplitude and fre-	
	quency sweeps (average during the measurement)	20

Table S1: Monomer compositions for each latex synthesized	1. The mole percentage quoted relates to the number of
molecules and not the number of vinyl groups.	

C	2-0A/	IBoMA/	AA/	EGDMA/	2-EHTG/
Sample	mol%	mol%	mol%	mol%	mol%
B_X04_C4	83.38	3.73	5.46	3.72	3.71
B_X07_C4	80.34	3.57	5.34	7.18	3.57
B_X16_C4	72.53	3.22	4.89	16.13	3.23
F_X00_C4	86.15	3.84	5.73	0	4.27
F_X08_C4	81.52	4.39	2.11	7.93	4.04
F_X11_C4	78.90	4.23	2.06	10.92	3.88
F_X13_C4	77.12	4.14	2.03	12.92	3.80
F_X18_C4	73.02	3.95	1.91	17.50	3.62
F_X00_C2	88.03	3.93	5.86	0	2.18
F_X08_C2	83.20	4.49	2.17	8.07	2.07
F_X11_C2	80.45	4.33	2.09	11.14	1.98
F_X13_C2	78.86	4.15	2.03	13.05	1.91
F_X18_C2	74.36	3.99	1.94	17.86	1.86
F_X13_C1	78.39	4.20	2.05	14.25	1.11
F_X13_C0.5	78.97	4.24	2.07	14.16	0.57

synthesized.
latex
each
for
Recipes
S2:
Table

	H_2O	/g	9.7165	9.6254	9.6721	9.7326	9.5297	9.7089	9.6981	9.6774	9.7938	9.6983	9.6901	9.5300	9.4958	9.7056	9.5544	
d 2	NaHCO ₃	/g	0.5630	0.5575	0.5602	0.5631	0.5508	0.5630	0.5624	0.5593	0.5666	0.5613	0.5622	0.5529	0.5496	0.5620	0.5533	
Fee	Lakeland	rae 120 / g	0.2443	0.2447	0.2459	0.2445	0.2393	0.2447	0.2444	0.2430	0.2460	0.2470	0.2447	0.2406	0.2419	0.2442	0.2404	
	Brij 1 72	ය ල	2.0433	2.0258	2.0357	2.0453	1.9968	2.0430	2.0407	2.0277	2.0581	2.0392	2.0374	2.0037	1.9966	2.0415	2.0097	
	2-EHTG	/ g	2.9169	2.8437	2.5716	3.3669	3.0002	2.9528	2.8855	2.7593	1.6931	1.5718	1.5125	1.4492	1.3972	0.8460	0.4334	
	EGDMA	/ g	2.8358	5.5487	12.4615	0	5.8843	8.3122	9.8058	13.3408	0	6.1248	8.4964	9.8773	13.4350	10.8235	10.7551	
Feed 1	AA	/ g	1.5136	1.5011	1.3735	1.5922	1.5662	1.5711	1.5393	1.4592	1.6085	1.6428	1.5964	1.5330	1.4613	1.5566	1.5708	
	IBoMA	/ g	3.1875	3.0953	2.7936	3.2910	2.9313	2.8876	2.8082	2.6706	3.3271	3.0557	2.9553	2.8135	2.6573	2.8448	2.8726	
	2-OA	/ g	59.9031	57.7494	52.0877	61.1951	54.3508	53.7040	52.2114	49.2538	61.7542	56.5808	54.8600	53.3074	49.3668	52.9906	53.4100	
	Lakeland	rae 130 / g	0.3478	0.3515	0.3492	0.3459	0.3466	0.3481	0.3485	0.3478	0.3471	0.3463	0.3512	0.3468	0.3488	0.3490	0.3483	
	H_2O	/ g	121.6246	121.8350	121.6950	121.6449	121.6546	121.6249	121.6449	121.9146	0.3471	121.8385	121.7453	121.6953	121.5685	121.6750	121.6850	
	APS	/ g	0.1969	0.1965	0.1965	0.1966	0.1969	0.1966	0.1966	0.1969	121.8449	0.1930	0.1962	0.1962	0.1930	0.1965	0.1965	
harge	2-EHTG	/ g	0.2996	0.2889	0.2632	0.3443	0.3118	0.3092	0.3098	0.3115	0.1966	0.1597	0.1582	0.1560	0.1602	0.0920	0.0470	
0	EGDMA	/ g	0.2913	0.5637	1.2756	0	0	0	0	0	0	0	0	0	0	0	0	
	$\mathbf{A}\mathbf{A}$	/ g	0.1555	0.1525	0.1406	0.1628	0.1627	0.1645	0.1653	0.1647	0.1667	0.1669	0.1669	0.1650	0.1675	0.1692	0.1704	
	IBoMA	/ g	0.3274	0.3144	0.2860	0.3365	0.3385	0.3374	0.3373	0.3395	0.3448	0.3458	0.3448	0.3382	0.3439	0.3464	0.3491	
	2-OA	/ g	6.0697	5.8665	5.3319	6.2578	6.2854	6.2872	6.2861	6.2831	6.3993	6.4124	6.4146	6.4241	6.4131	6.4709	6.5081	
Latev	Laiva		B_X04_C4	B_X07_C4	B_X16_C4	F_X00_C4	F_X08_C4	F_X11_C4	F_X13_C4	F_X18_C4	F_X00_C2	F_X08_C2	F_X11_C2	F_X13_C2	F_X18_C2	F_X13_C1	F_X13_C0.5	

(a) Instantaneous monomer conversion, $\rho_{M,inst}$, over time.

(b) Cumulative monomer conversion, $\rho_{M,cum}$, over time.

time.

(c) Average hydrodynamic diameter, d_z , over (d) Average particle dispersity index, *PDI*, over time.

(e) Average number of particles, N_p , over time.

Figure S1: Kinetics and particle size evolution for B_Xn_C4 where $n=4 \bullet, 7 \blacktriangle$ and $16 \checkmark$.

(c) Average hydrodynamic diameter, d_z , over (d) Average particle dispersity index, *PDI*, over time.

(e) Average number of particles, N_p , over time.

Figure S2: Kinetics and particle size evolution for F_Xn_C4 where $n=0 \bullet, 8 \blacktriangle, 11 \lor, 13 \times and 18 \blacksquare$.

(c) Average hydrodynamic diameter, d_z , over (d) Average particle dispersity index, *PDI*, over time.

(e) Average number of particles, N_p , over time.

Figure S3: Kinetics and particle size evolution for F_Xn_C2 where $n=0 \bullet, 8 \blacktriangle, 11 \lor, 13 \times and 18 \blacksquare$.

(c) Average hydrodynamic diameter, d_z , over (d) Average particle dispersity index, *PDI*, over time.

(e) Average number of particles, N_p , over time.

Figure S4: Kinetics and particle size evolution for F_X13_Cn where $n = 0.5 \bullet$, 1 \blacktriangle , 2 \checkmark , and 4 \times .

Figure S5: DSC thermograms for B_Xn_C4.

Figure S6: DSC thermograms for F_Xn_C4.

Figure S7: DSC thermograms for F_Xn_C2.

Figure S8: DSC thermograms for F_X13_Cn.

synthesized.
ull latexes
for a
analyses
۲,
temperature
ss transition temperature
Glass transition temperature

nset/ °C	б	37 -66.38	30 -58.46	55 -49.29	23 -69.37	16 -57.28	75 -55.36	51 -53.09	56 50.34	52 -64.20	16 -54.42)1 -54.72	12 -35.41	12 -48.60	50 -52.38	15 21 08
eating O	7	1 -64.3	5 -61.3) -53.6	9 -66.2	5 -58.4	3 -58.7	4 -52.6	9 -45.6	9 -62.5	0 -55.4	9 -52.9	7 -44.4	1 -49.1	3 -56.6	67 2
H	1	-64.1]	-56.20	-58.3(-62.49	-57.25	-57.18	-61.42	-52.59	-62.99	-49.9(-52.69	-53.37	-46.6]	-53.68	$-48 A^{-}$
int/ °C	б	-58.45	-42.74	-30.72	-56.72	-46.02	-42.53	-37.88	-33.05	-54.67	-42.81	-38.67	-29.41	-26.80	-31.73	-25 14
ng Midpo	0	-58.26	-44.01	-33.27	-56.85	-44.88	-42.28	-37.67	-28.64	-53.93	-32.30	-34.75	-30.14	-25.89	-37.47	-2263
Heatir	1	-56.84	-41.30	-28.38	-55.72	-44.88	-40.75	-44.77	-34.29	-55.68	-40.99	-36.44	-35.22	-25.44	-37.37	-30.03
J° \1	б	-49.69	-39.78	-13.58	-60.40	-40.29	-27.45	-21.88	-14.55	-47.84	-29.63	-31.82	-24.91	-1.47	-14.44	-6 80
ling Onse	0	-48.23	-38.75	-16.24	-62.60	-40.10	-24.34	-20.55	-16.61	-44.77	ı	-23.99	-28.45	-7.28	-11.62	-3 99
Cool	1	-49.48	-38.65	-9.89	-52.15	-40.11	-26.29	-22.71	-14.32	-46.04	-29.25	-27.18	-27.33	-6.96	-13.46	-6.72
int/ °C	б	-60.28	-51.41	-38.36	-67.18	-59.57	-44.91	-42.46	-41.59	-60.40	-47.98	-39.46	-35.90	-18.67	-36.46	-26.47
ig Midpoi	7	-59.13	-56.29	-37.09	-68.44	-42.99	-46.85	-43.30	-39.97	-59.57	ı	-31.93	-39.49	-24.67	-36.28	-26.43
Coolin	1	-61.28	-49.07	-35.97	-61.91	-59.70	-46.61	-42.76	-36.62	-60.10	-49.38	-41.90	-31.59	-29.46	-38.11	-41.90
I otor	Lalex	B_X04_C4	B_X07_C4	B_X16_C4	F_X00_C4	F_X08_C4	F_X11_C4	F_X13_C4	F_X18_C4	F_X00_C2	F_X08_C2	F_X11_C2	F_X13_C2	F_X18_C2	F_X13_C1	F X13 C0.5

Figure S9: The molecular weight distributions from conventional SEC analysis for B_Xn_C4 from 10 *min* \blacksquare to the final sample at 330 *min* \blacksquare .

Figure S10: The molecular weight distributions from conventional SEC analysis for F_Xn_C4 from 10 *min* \blacksquare to the final sample at 330 *min* \blacksquare .

Figure S11: The molecular weight distributions from conventional SEC analysis for F_Xn_C2 from 10 *min* \blacksquare to the final sample at 330 *min* \blacksquare .

Figure S12: The molecular weight distributions from conventional SEC analysis for F_X13_Cn from 10 $min \equiv$ to the final sample at 330 $min \equiv$.

Figure S13: The contact angles of water droplets on the PET substrate after chemical modification for various times at 30 (\bullet) and 60 (\blacktriangle) °C. The contact angle with no modification is shown at 0 *h*.

Figure S14: Cylindrical roller bar attachment on an Elcometer 4340 Automatic Film Applicator, which enabled a second sheet of PET to be adhered to the cast films with minimal bubbles. The green arrows show the direction of movement.

Figure S15: A Shimadzu EZ-LX universal testing machine with a 500 N tensile jig in the upper position and a peel rolling jig in the lower position which can hold a custom-made metal holder used for peel adhesion tests. The green arrows show the direction of movement.

(b) Zoom in on raw data with low F_{peel} .

Figure S16: Peel adhesion force, F_{peel} as a function of peel distance, stroke for F_Xn_C4 where n = 0 \blacksquare , 8 \blacksquare , 11 \blacksquare , 13 \blacksquare and 18 \blacksquare .

Figure S17: Peel adhesion force, F_{peel} as a function of peel distance, stroke for F_Xn_C2 where n = 0 \blacksquare , 8 \blacksquare , 11 \blacksquare , 13 \blacksquare and 18 \blacksquare .

Figure S18: Peel adhesion force, F_{peel} as a function of peel distance, stroke for F_X13_Cn where n= 0.5 \blacksquare , 1 \blacksquare , 2 \blacksquare and 4 \blacksquare .

Figure S19: A Shimadzu EZ-LX universal testing machine with 500 N tensile jigs in the upper and lower positions, which held strips of tape connected by a lap joint for shear strength tests.Diagrams are shown within the images to demonstrate the lap joint where the PET is represented the grey outlined shapes and the adhesive is light blue. The green arrows show the direction of movement.

Figure S20: Stress-strain curves to obtain shear strength, W_{shear} , as the area under the curves for F_Xn_C4 where n = 0, 8, 11, 13, 13 and 18.

Figure S21: Stress-strain curves to obtain shear strength, W_{shear} , as the area under the curves for F_Xn_C2 where n = 0, 8, 11, 13, 13 and 18.

Figure S22: Stress-strain curves to obtain shear strength, W_{shear} , as the area under the curves for F_X13_Cn where n= 0.5 \blacksquare , 1 \blacksquare , 2 \blacksquare and 4 \blacksquare .

Figure S23: Stress-strain curves to obtain tack adhesion energy, W_{adh} , as the area under the curves for B_Xn_C4 where n = 4 \blacksquare , 7 \blacksquare , 16 \blacksquare .

Table S4: Average film heights during tack testing (average of 5 repeats) and rheological amplitude and frequency sweeps (average during the measurement).

Latex	Film height (W_{adh})/ μm	Film height (amp sweep)/ µm	Film height (freq sweep)/ μm
B_X04_C4	301 ± 29	203.49 ± 0.06	138.30 ± 0.02
B_X07_C4	414 ± 27	213.71 ± 0.06	220.63 ± 0.02
B_X16_C4	716 ± 163	646.07 ± 0.04	675.39 ± 0.02
F_X00_C4	153 ± 28	79.43 ± 0.05	239.55 ± 0.04
F_X08_C4	222 ± 63	193.46 ± 0.04	340.48 ± 0.02
F_X11_C4	391 ± 20	427.46 ± 0.04	359.48 ± 0.02
F_X13_C4	527 ± 37	475.79 ± 0.06	610.29 ± 0.07
F_X18_C4	642 ± 61	112.74 ± 0.05	353.71 ± 0.02
F_X00_C2	285 ± 38	127.95 ± 0.05	154.86 ± 0.02
F_X08_C2	432 ± 37	349.79 ± 0.06	382.94 ± 0.02
F_X11_C2	616 ± 11	553.74 ± 0.05	833.77 ± 0.03
F_X13_C2	722 ± 134	736.07 ± 0.05	672.03 ± 0.02
F_X18_C2	762 ± 75	684.79 ± 0.05	521.38 ± 0.02
F_X13_C1	940 ± 62	844.93 ± 0.04	643.97 ± 0.02
F_X13_C0.5	976 ± 22	829.69 ± 0.06	792.25 ± 0.02

Figure S24: Stress-strain curves to obtain tack adhesion energy, W_{adh} , as the area under the curves for F_Xn_C4 where n = 0 \blacksquare , 8 \blacksquare , 11 \blacksquare , 13 \blacksquare and 18 \blacksquare .

Figure S25: Stress-strain curves to obtain tack adhesion energy, W_{adh} , as the area under the curves for F_Xn_C2 where n = 0 \blacksquare , 8 \blacksquare , 11 \blacksquare , 13 \blacksquare and 18 \blacksquare .

Figure S26: Stress-strain curves to obtain tack adhesion energy, W_{adh} , as the area under the curves for F_X13_Cn where n= 0.5 \blacksquare , 1 \blacksquare , 2 \blacksquare and 4 \blacksquare .

Figure S27: Amplitude sweeps with the storage modulus, $G' \blacksquare$, and loss modulus, $G'' \blacksquare$, for F_Xn_C4 where n= 0 •, 8 \blacktriangle , 11 \checkmark , 13 \times and 18 \blacksquare . The verticle black line shows the displacement used in the frequency sweeps to remain in the linear viscoelastic regime.

Figure S28: Amplitude sweeps with the storage modulus, $G' \blacksquare$, and loss modulus, $G'' \blacksquare$, for F_Xn_C2 where n= 0 •, 8 \blacktriangle , 11 \checkmark , 13 \times and 18 \blacksquare . The verticle black line shows the displacement used in the frequency sweeps to remain in the linear viscoelastic regime.

Figure S29: Amplitude sweeps with the storage modulus, $G' \blacksquare$, and loss modulus, $G'' \blacksquare$, for F_X13_Cn where n= 0.5 •, 1 \blacktriangle , 2 \checkmark , and 4 ×. The verticle black line shows the displacement used in the frequency sweeps to remain in the linear viscoelastic regime.

Figure S30: Rheological frequency sweeps of F_Xn_C4 where $n=0 \bullet$, 8 \blacktriangle , 11 \checkmark , 13 \times and 18 \blacksquare .

(c)

Figure S31: Rheological frequency sweeps of F_Xn_C2 where $n=0 \bullet$, 8 \blacktriangle , 11 \checkmark , 13 \times and 18 \blacksquare .

(c)

Figure S32: Rheological frequency sweeps of F_X13_Cn where $n = 0.5 \bullet$, 1 \blacktriangle , 2 \checkmark , and 4 \times .

Figure S33: The final molecular weight distributions from conventional SEC analysis for F_Xn_C4 , where n = 0 \blacksquare , 8 \blacksquare , 11 \blacksquare , 13 \blacksquare and 18 \blacksquare where the surfactant molecular weight distributions for Brij L23 (- -) and Lakeland PAE 136 (- -) are also shown.