Supporting information for

Hexacyclotetradecenes as polycyclic fused *exo*-norbornene monomers:

Synthesis of cyclic olefin copolymers via Ti-catalyzed controlled

polymerization

Eri Funahashi, Yusuke Iwata, Shin-ichi Matsuoka*

Department of Life Science and Applied Chemistry, Graduate School of Engineering,

Nagoya Institute of Technology

Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan

Corresponding Author: Shin-ichi Matsuoka

http://orcid.org/0000-0001-7488-9971

E-mail: matsuoka.shinichi@nitech.ac.jp

Tel: +81-52-735-7254

CONTENTS

Table S1. Attempted ROMP of 1. 3
Figure S1. ¹ H NMR spectrum of Binor-S 4
Figure S2. ¹³ C NMR spectrum of Binor-S
Figure S3. DEPT90 and DEPT135 NMR spectra of Binor-S
Figure S4. ¹ H- ¹ H COSY NMR spectrum of Binor-S
Figure S5. HMQC NMR spectrum of Binor-S
Figure S6. ¹³ C INADEQUATE NMR spectrum of Binor-S
Figure S7. GC chromatogram of 1a and 1b 7
Figure S8. ¹ H NMR spectrum of 1a and 1b
Figure S9. ¹³ C NMR spectrum of 1a and 1b
Figure S10. DEPT135 NMR spectrum of 1a and 1b
Figure S11. ¹ H- ¹ H COSY NMR spectrum of 1a and 1b (correlation of 1a)
Figure S12. ¹ H- ¹ H COSY NMR spectrum of 1a and 1b (correlation of 1b)
Figure S13. HMQC NMR spectrum of 1a and 1b 10
Figure S14. ¹³ C INADEQUATE NMR spectrum of 1a and 1b 10
Figure S15. NOESY NMR spectrum of 1a and 1b (correlation of 1a)11
Figure S16. NOESY NMR spectrum of 1a and 1b (correlation of 1b)11
Figure S17. ¹ H NMR spectra of poly1 and poly(1-co-1-octene)
Figure S18. SEC chromatograms of poly(1-co-1-octene) (entries 4, 5, 7, and 8) and
poly(1-octene) (entry 6)
Figure S19. SEC chromatograms and molecular weight data of poly(1-co-1-octene)
(Figure 2C)
Figure S20. ¹³ C NMR spectrum of poly(1-co-1-octene) (entry 8, Table 1) 14
Figure S21. ¹³ C, DEPT90, and DEPT135 NMR spectrum of poly(1-co-1-octene) (entry 7,
Table 1)
Figure S22. DSC profile of poly1 (entry 1, Table 1)
Figure S23. DSC profile of poly(1-co-1-octene) (entry 4, Table 1) 16
Figure S24. DSC profile of poly(1-co-1-octene) (entry 5, Table 1) 17
Figure S25. DSC profile of poly(1-co-1-octene) (entry 8, Table 1) 17
Figure S26. UV-vis spectrum of poly(1-co-1-octene) (thickness of 86 µm) (entry 4, Table
1)

entry	catalyst		a alvant ^a	temp.	time	yield ^b
	type	mol%	- solvent	°C	h	%
1	G1	1	DCM	25	18	0
2	G1	1	toluene	25	18	0
3	G2	1	toluene	25	18	0
4	G2	1	bulk	-20	18	0
5	G2	10	toluene	25	72	0
6	G3	1	toluene	25	18	0
7	G3	1	bulk	25	18	0
8	G3	1	bulk	-20	18	0
9	G3	10	toluene	25	72	0
10	HG2	1	DCM	25	18	0
11	HG2	2	toluene	40	18	0

Table S1. Attempted ROMP of **1**.

a[1] = 0.25 M (in toluene and in DCM). b after reprecipitation into MeOH

Figure S1. ¹H NMR spectrum of Binor-S

Figure S2. ¹³C NMR spectrum of Binor-S

Figure S3. DEPT90 and DEPT135 NMR spectra of Binor-S

Figure S4. ¹H-¹H COSY NMR spectrum of Binor-S

Figure S5. HMQC NMR spectrum of Binor-S

Figure S6. ¹³C INADEQUATE NMR spectrum of Binor-S

Figure S7. GC chromatogram of **1a** and **1b**.

Figure S8. ¹H NMR spectrum of **1a** and **1b**

Figure S9. ¹³C NMR spectrum of **1a** and **1b**

Figure S10. DEPT135 NMR spectrum of 1a and 1b

Figure S11. ¹H-¹H COSY NMR spectrum of **1a** and **1b** (correlation of **1a**)

Figure S12. ¹H-¹H COSY NMR spectrum of **1a** and **1b** (correlation of **1b**)

Figure S13. HMQC NMR spectrum of 1a and 1b

Figure S14. ¹³C INADEQUATE NMR spectrum of **1a** and **1b**

Figure S15. NOESY NMR spectrum of 1a and 1b (correlation of 1a)

Figure S16. NOESY NMR spectrum of 1a and 1b (correlation of 1b)

Figure S17. ¹H NMR spectra of poly1 and poly(1-co-1-octene)

Figure S18. SEC chromatograms of poly(1-co-1-octene) (entries 4, 5, 7, and 8) and poly(1-octene) (entry 6).

Figure S19. SEC chromatograms and molecular weight data of poly(1-co-1-octene) (Figure 2C).

Figure S20. ¹³C NMR spectrum of poly(1-co-1-octene) (entry 8, Table 1)

Figure S21. ¹³C, DEPT90, and DEPT135 NMR spectrum of poly(1-*co*-1-octene) (entry 7, Table 1)

Figure S22. DSC profile of poly1 (entry 1, Table 1).

Figure S23. DSC profile of poly(1-co-1-octene) (entry 4, Table 1).

Figure S24. DSC profile of poly(1-*co*-1-octene) (entry 5, Table 1).

Figure S25. DSC profile of poly(1-co-1-octene) (entry 8, Table 1).

Figure S26. UV-vis spectrum of poly(**1**-*co*-1-octene) (thickness of 86 μm) (entry 4, Table 1)