Supplementary Information (SI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Synthesis of biobased and versatile monomers from itaconic acid and homocysteine thiolactone and their applications in step-growth and radical polymerization approaches.

Fato Niang,^a Adèle Brunou-Bouard,^a Gérard Cruz,^a Nadège Pantoustier,^b Fanny Coumes,^{a,*} Nicolas Illy^{a,*}

fanny.coumes@sorbonne-universite.fr

nicolas.illy@sorbonne-universite.fr

^a Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 place Jussieu, F-75005 Paris, France.

^b Sciences et Ingénierie de La Matière Molle, ESPCI Paris, CNRS, Sorbonne Université, PSL University, Paris, France.

Table of contents

	Title	Page			
Table S1.	Reaction conditions for the synthesis of monomer M3.				
Table S2.	Table S2. Maximum amount of M1 that can be dissolved in 1.0 mL of a selected solvent	4			
Figure S1.	¹ H NMR spectrum of monofunctional monomer M1 in DMSO-d ₆ at 25°C.				
Figure S2.	¹³ C NMR spectrum of monofunctional monomer M1 in DMSO-d ₆ at 25°C.				
Figure S3.	COSY NMR spectrum of monofunctional monomer M1 in DMSO-d ₆ at 25°C.				
Figure S4.	¹ H- ¹³ C HSQC NMR spectrum of monofunctional monomer M1 in DMSO-d ₆ at 25°C.				
Figure S5.	ESI mass spectrometry analysis of M1.	7			
Figure S6.	¹ H NMR spectrum of esterified monofunctional monomer M2 in DMSO-d ₆ at 25°C.				
Figure S7.	2 S7. ${}^{13}C$ NMR spectrum of esterified monofunctional monomer M2 in DMSO-d ₆ at 25°C.				
Figure S8.	COSY NMR spectrum of monofunctional monomer M2 in DMSO-d ₆ at 25°C.				
Figure S9.	1 H- 13 C HSQC NMR spectrum of monofunctional monomer M2 in DMSO-d ₆ at 25°C.	9			
Figure S10.	ESI mass spectrometry analysis of M2.	10			
Scheme S1.	Possible side-reactions during the monomer syntheses.	10			
Figure S11.	¹ H NMR spectrum in DMSO-d ₆ of the polymer obtained for reaction 1 Table S1 without coupling agent.				
Figure S12.	¹ H NMR spectra in DMSO-d ₆ of the reaction mixtures of M3 synthesis under various conditions.	12			
Figure S13.	¹ H NMR spectrum of difunctional monomer M3 in DMSO-d ₆ at 25°C.	13			
Figure S14.	13 C NMR spectrum of bifunctional monomer M3 in DMSO-d ₆ at 25°C.	13			
Figure S15.	COSY NMR spectrum of bifunctional monomer M3 in DMSO-d ₆ at 25°C.	14			
Figure S16.	1 H- 13 C HSQC NMR spectrum of bifunctional monomer M3 in DMSO-d ₆ at 25°C.	14			
Figure S17.	¹ H NMR spectra in DMSO-d ₆ of M1 monomer and of a poly(amide-thioether) obtained in Table 1, run 1.	15			
Figure S18.					
Figure S19.	¹ H- ¹ H COSY NMR spectrum in DMSO-d ₆ at 25°C of a poly(amide- thioether) synthesized by the reaction of M1 with <i>n</i> -hexylamine (Table 1, run1).	16			
Figure S20.	¹ H- ¹³ C HSQC NMR spectrum in DMSO-d ₆ at 25°C of a poly(amide- thioether) synthesized by the reaction of M1 with <i>n</i> -hexylamine (Table 1, run1).	17			
Figure S21.	13 C NMR spectrum in DMSO-d ₆ at 25°C of a poly(amide-thioether)	18			

	synthesized by the reaction of M1 with <i>n</i> -hexylamine (Table 1, run1).				
Figure S22.	¹ H NMR spectrum in D ₂ O at 25°C of a poly(amide-thioether)				
	synthesized by the reaction of M1 with ethanolamine (Table 1, run 6).				
Figure S23.	¹ H- ¹ H COSY NMR spectrum in D ₂ O at 25°C of a poly(amide-thioether)	20			
	synthesized by the reaction of M1 with ethanolamine (Table 1, run 6).				
Figure S24.	¹ H NMR spectrum in DMSO-d ₆ at 25°C of a poly(amide-thioether)	21			
	synthesized by the reaction of M1 with glycine (Table 1, run 8).				
Figure S25.	¹ H NMR spectrum in D_2O at 25°C of a poly(amide-thioether)	21			
	synthesized by the reaction of M1 with L-lysine methylester (Table 1,				
	run 9).				
Figure S26.	¹ H NMR spectrum in DMSO-d6 at 25°C of a poly(amide-thioether)	22			
	synthesized by the reaction of M1 with L-lysine methylester (Table 1,				
	run 9).				
Figure S27.	TGA profile for M1 monomer.	23			
Figure S28.	(A) TGA and (B) DSC thermograms for PR1, 2 nd heating.				
Figure S29.	¹ H NMR overlay of aliquots from CPR1 reaction mixture (top) and	24			
	individual plot of conversion over time (bottom).				
Figure S30.	¹ H NMR spectrum in DMSO-d ₆ at 25°C of the copolymer obtained by	25			
	the copolymerization of M1 with MMA in Table 3, CPR1.				
Figure S31.	¹ H NMR spectrum in DMSO-d ₆ at 25°C of the copolymer obtained by	25			
	the copolymerization of M1 with MMA in Table 3, CPR2.				
Figure S32.	¹ H NMR spectrum in DMSO-d ₆ of the copolymer obtained by the	26			
	copolymerization of M1 with MMA in Table 3, CPR3.				
Figure S33.	¹ H NMR spectrum in DMSO-d ₆ of the copolymer obtained by the	26			
	copolymerization of M1 with MMA in Table 3, CPR4.				
Figure S34.	¹ H NMR spectrum in DMSO-d ₆ of the copolymer obtained by the	27			
	copolymerization of M1 with MMA in Table 3, CPR5.				
Figure S35.	¹ H NMR spectrum in DMSO-d ₆ of the copolymer obtained by the	27			
	copolymerization of M1 with MAA in Table 3, CPR6.				
Figure S36.	¹ H NMR spectrum in DMSO-d ₆ of the copolymer obtained by the	28			
	copolymerization of M1 with MAA in Table 3, CPR7.				
Figure S37.	¹ H NMR spectrum in DMSO-d ₆ of the copolymer obtained by the	28			
	copolymerization of M1 with MAA in Table 3, CPR8.				

Entry	Coupling agent	[IA]:[HTL]:[CA]	Solvent	рН	Т° (°С)	Time	Product M3	Yield (%)
1	None	1:2:0	H ₂ O	8	25	24	No	-
2	PyBOP	1:2:2.1	DMSO	-	25	144	No	-
3	, EDC	1:2.5:1.2	H_2O	8	25	24	No	-
4	EDC	1:2.5:1.2	H ₂ O	8	60	24	No	-
5	EDC	1:2.5:2.5	H ₂ O	4.5	25	24	No	-
6	EDC + DMAP	1:2.1:2.1	H ₂ O	6	25	24	No	-
7	EDC + DMAP	1:2.1:2.1	H ₂ O	8	25	24	No	-
8	EDC + HOBT	1:2.1:2.1	H_2O	4.5	25	21	No	-
9	EDC + HOBT	1:2.1:2.1	H ₂ O	7	25	4.5	Yes + side product	-
10	EDC + HOBT	1:2.1:2.1	H ₂ O	6	25	3.5	Yes	5
11	EDC + HOBT	1:2.1:2.1	H ₂ O	6	25	23	Yes	3
12	DMTMM	1:2.1:2.1	H ₂ O	8	25	4	Yes + side product	-
13	DMTMM	1:2.1:2.1	H ₂ O	6	25	4	Yes	12-20

Table S1. Reaction conditions for the synthesis of monomer M3.

Table S2. Maximum amount of M1 that can be dissolved in 1.0 mL of a selected solvent (visual determination).

Solvent	Mass
	(mg)
Deionized Water	5
Methanol	10
DMSO	500
DMF	100
DMAC	200
Ethanol	10
Acetone	-
Ethyl acetate	-
THF	10
CHCl₃	-
Toluene	-
Anisole	-

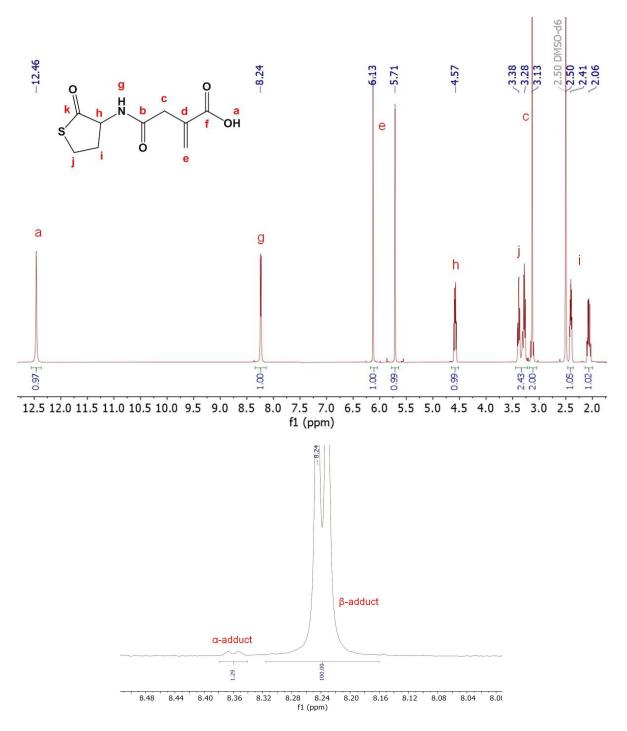


Figure S1. ¹H NMR spectrum of monofunctional monomer M1 in DMSO-d₆ at 25°C.

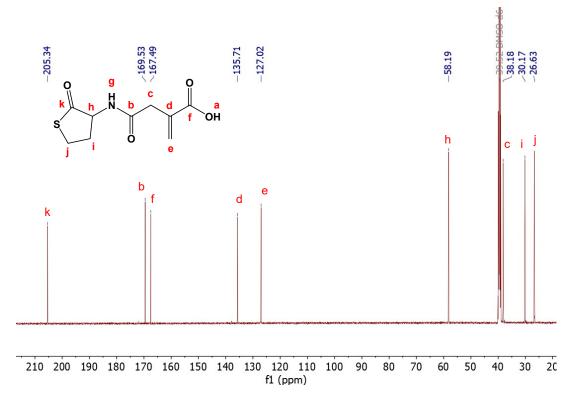


Figure S2. ¹³C NMR spectrum of monofunctional monomer M1 in DMSO-d₆ at 25°C.

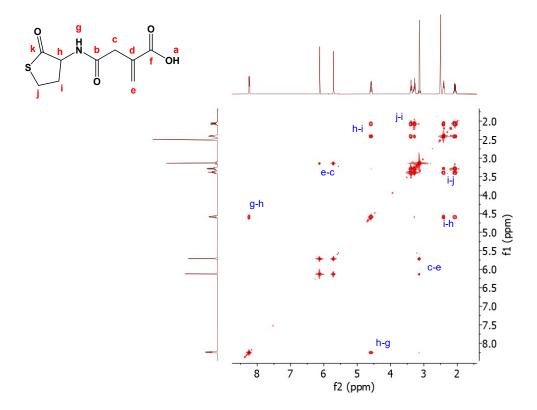
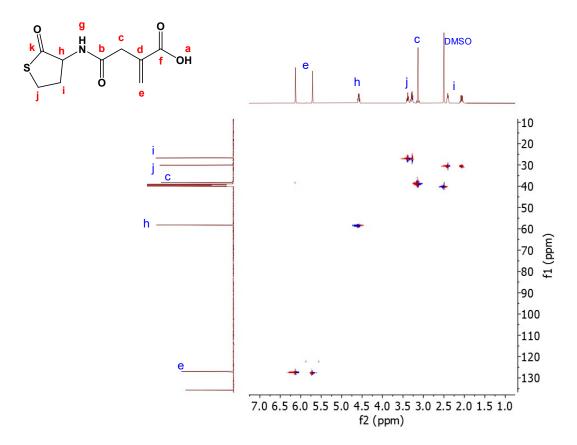



Figure S3. COSY NMR spectrum of monofunctional monomer M1 in DMSO-d₆ at 25°C.

Figure S4. ¹H-¹³C HSQC NMR spectrum of monofunctional monomer M1 in DMSO-d₆ at 25°C.

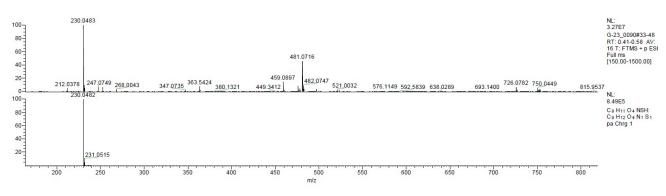
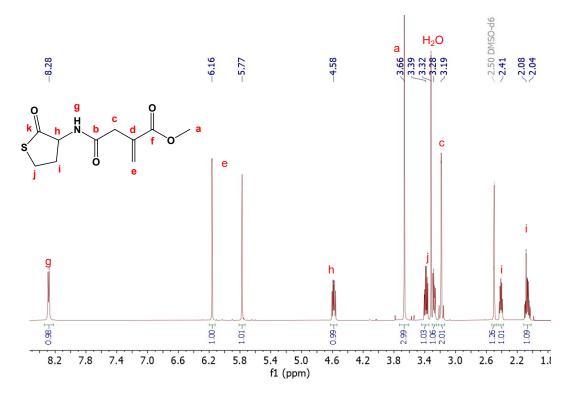



Figure S5. ESI mass spectrometry analysis of M1.

Figure S6. ¹H NMR spectrum of esterified monofunctional monomer M2 in DMSO-d₆ at 25°C.

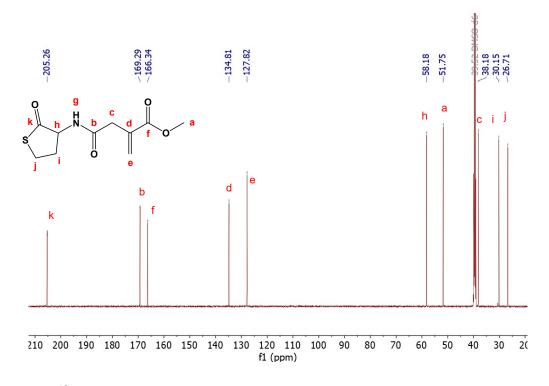


Figure S7. ¹³C NMR spectrum of esterified monofunctional monomer M2 in DMSO-d₆ at 25° C.

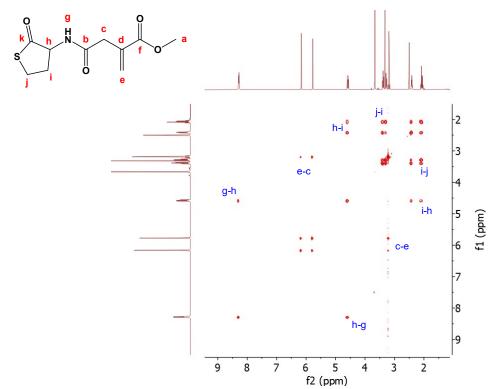
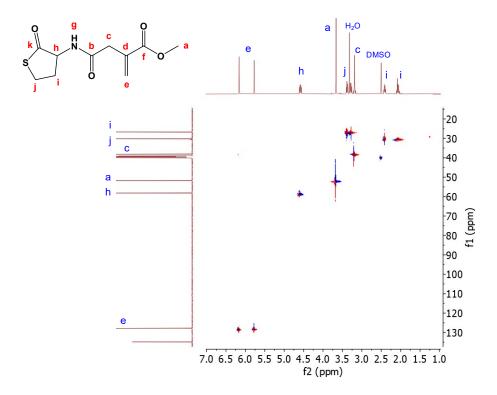
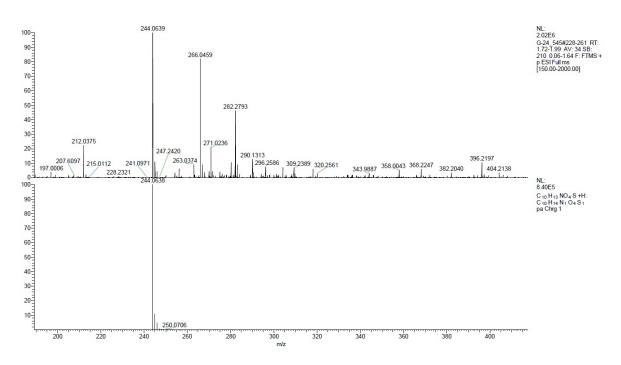
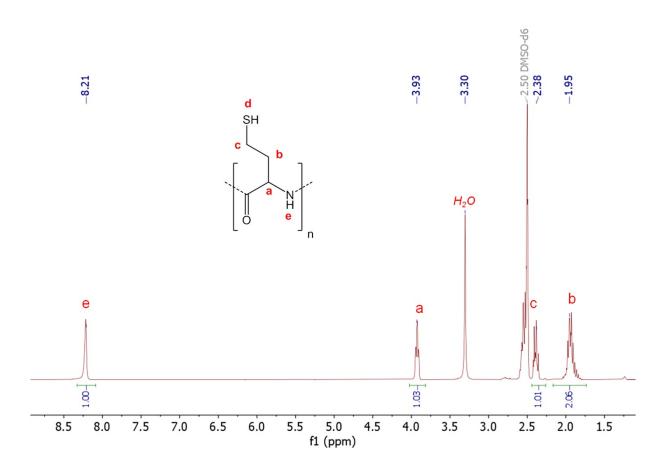
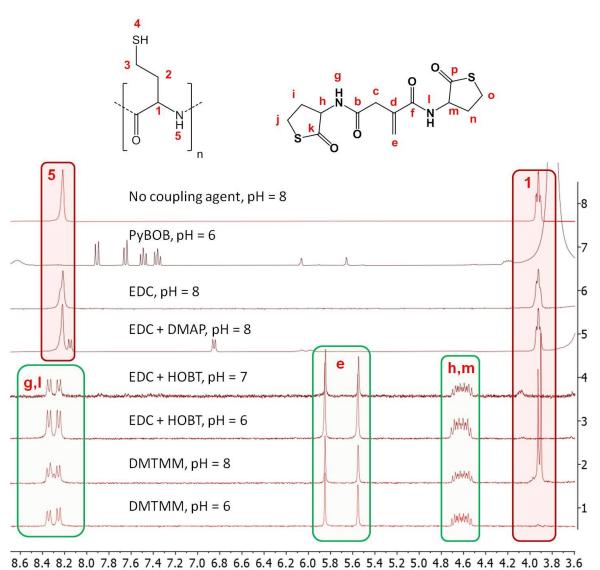



Figure S8. COSY NMR spectrum of monofunctional monomer M2 in DMSO-d₆ at 25°C.

Figure S9. ¹H-¹³C HSQC NMR spectrum of monofunctional monomer M2 in DMSO-d₆ at 25°C.


Figure S10. ESI mass spectrometry analysis of M2.

Scheme S1. Possible side-reactions during the monomer syntheses.

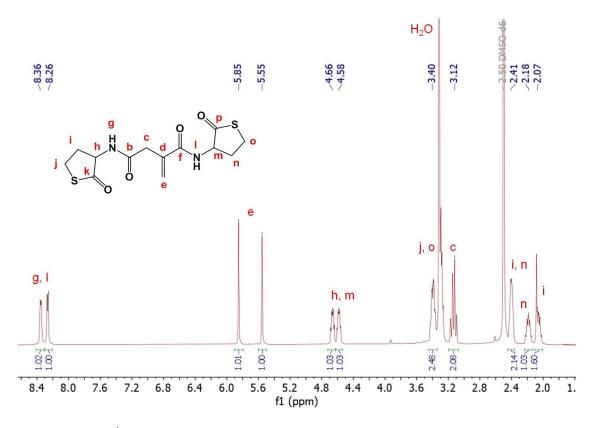


Figure S11. ¹H NMR spectrum in DMSO-d₆ of the polymer obtained for reaction 1 Table S1 without coupling agent.

f1 (ppm)

Figure S12. ¹H NMR spectra in DMSO-d₆ of the reaction mixtures of M3 synthesis under various conditions.

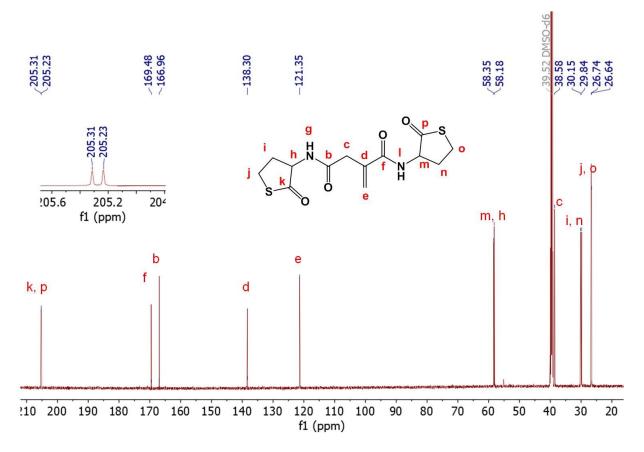
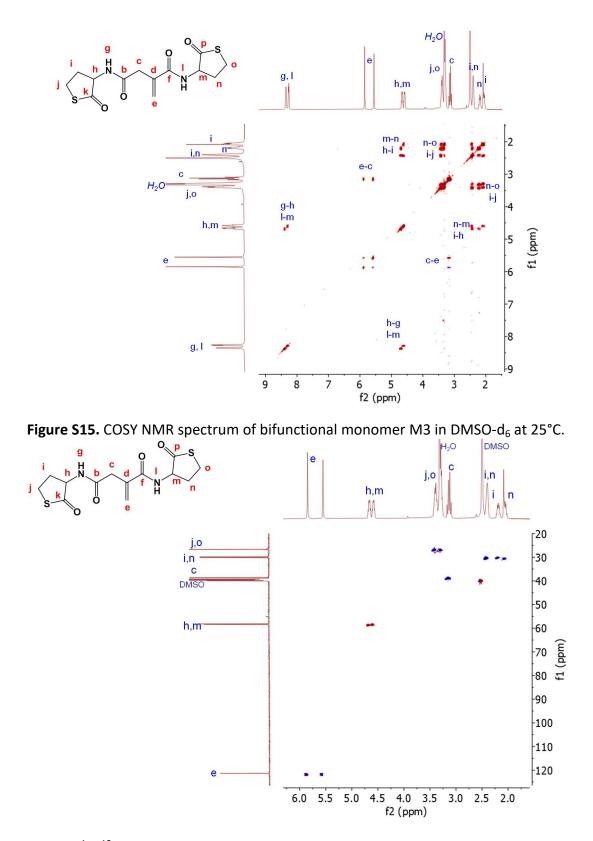
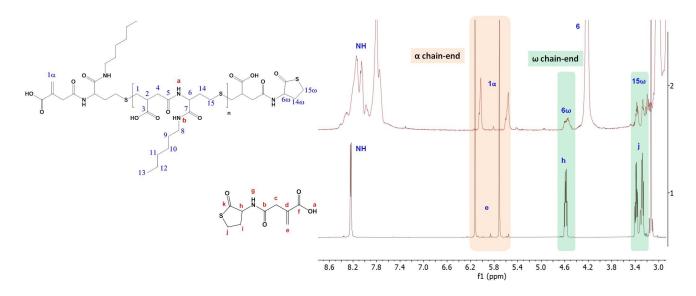
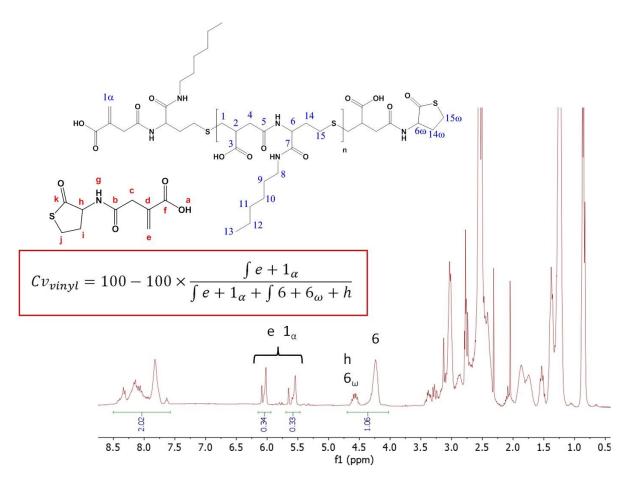
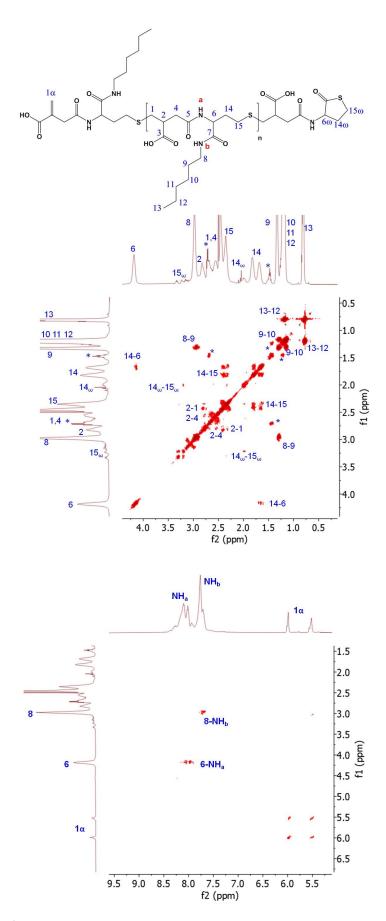
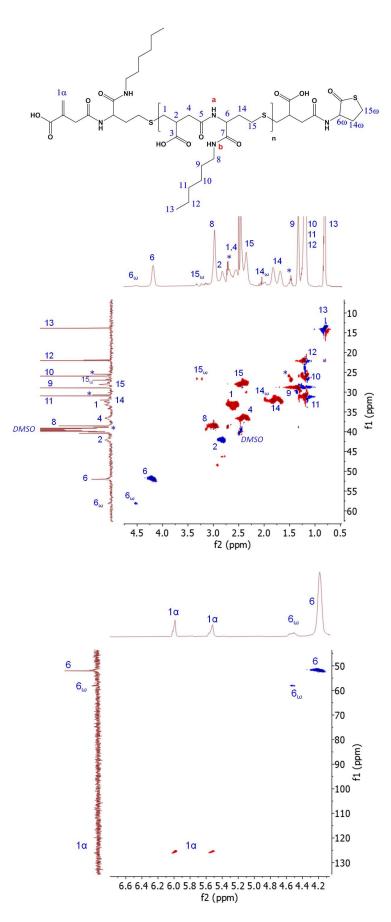


Figure S14. ¹³C NMR spectrum of bifunctional monomer M3 in DMSO-d₆ at 25°C.


Figure S16. ^{1}H - ^{13}C HSQC NMR spectrum of bifunctional monomer M3 in DMSO-d₆ at 25°C.


Figure S17. ¹H NMR spectra in DMSO-d₆ of M1 monomer and of a poly(amide-thioether) obtained in Table 1, run 1.

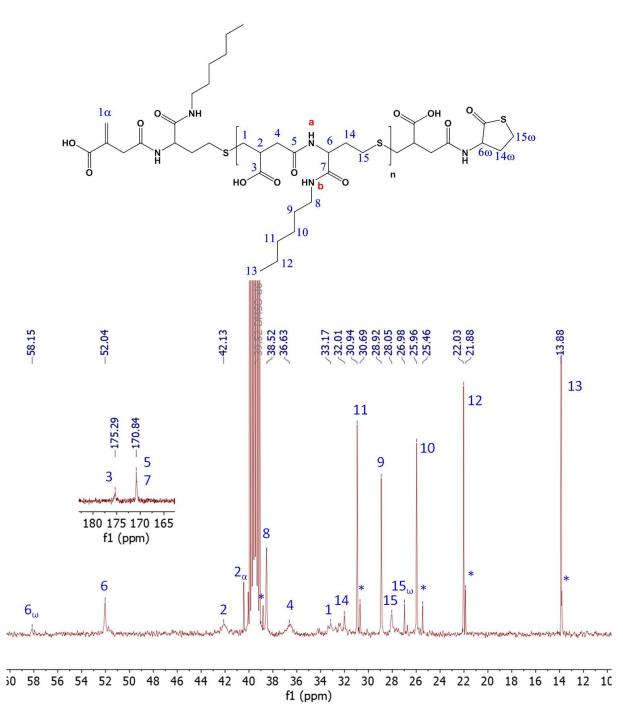
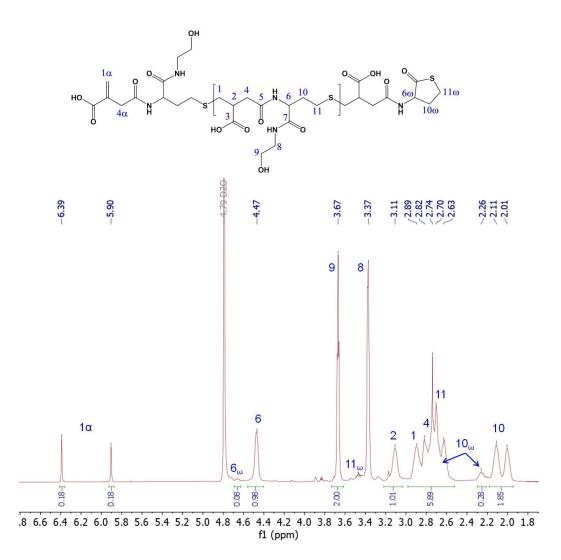
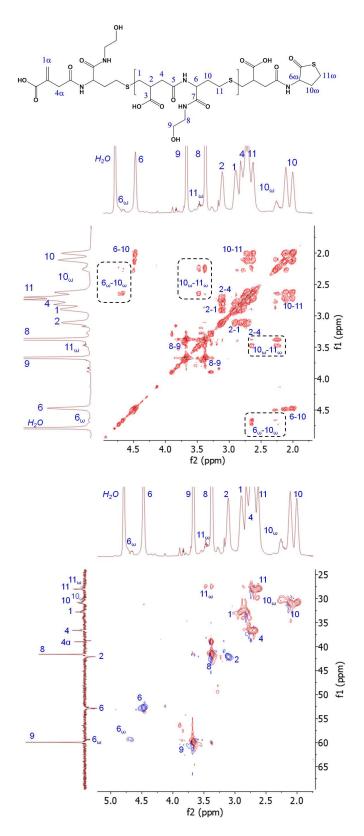
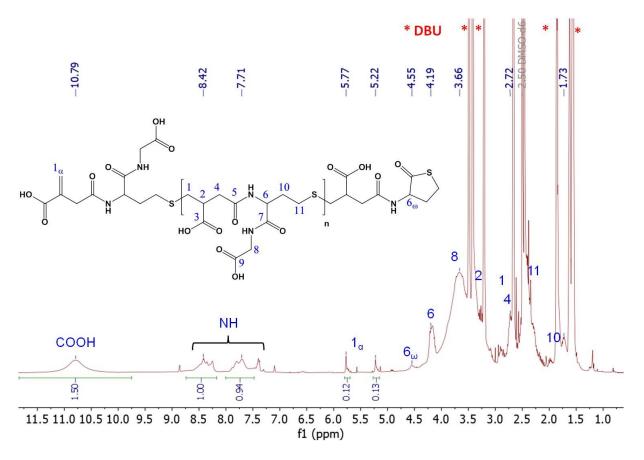
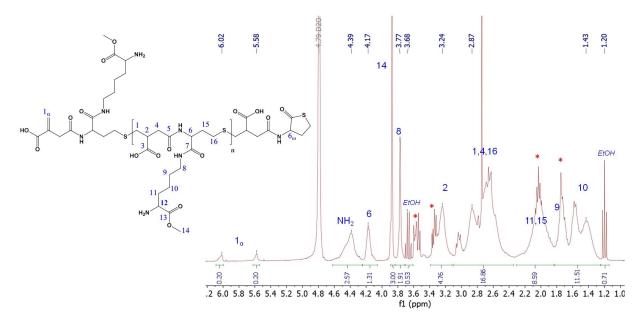

Figure S18. ¹H NMR spectrum in DMSO-d₆ at 25°C of the reaction mixture after 6 h of the synthesis of a poly(amide-thioether) by the reaction of M1 with *n*-hexylamine (Table 1, run1).

Figure S19. 1 H- 1 H COSY NMR spectrum in DMSO-d₆ at 25°C of a poly(amide-thioether) synthesized by the reaction of M1 with *n*-hexylamine (Table 1, run1).

Figure S20. ¹H-¹³C HSQC NMR spectrum in DMSO-d₆ at 25°C of a poly(amide-thioether) synthesized by the reaction of M1 with *n*-hexylamine (Table 1, run1).

Figure S21. ¹³C NMR spectrum in DMSO-d₆ at 25°C of a poly(amide-thioether) synthesized by the reaction of M1 with *n*-hexylamine (Table 1, run1).


Figure S22. ¹H NMR spectrum in D_2O at 25°C of a poly(amide-thioether) synthesized by the reaction of M1 with ethanolamine (Table 1, run 6).

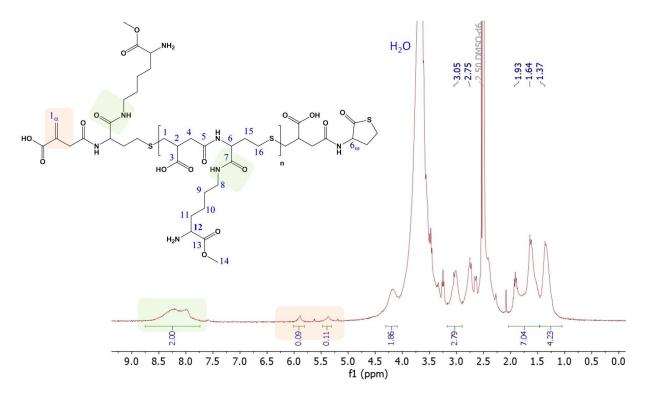

Figure S23. ¹H-¹H COSY NMR spectrum in D₂O at 25°C of a poly(amide-thioether) synthesized by the reaction of M1 with ethanolamine (Table 1, run 6).

Figure S24. ¹H NMR spectrum in DMSO-d₆ at 25°C of a poly(amide-thioether) synthesized by the reaction of M1 with glycine (Table 1, run 8).

Figure S25. ¹H NMR spectrum in D₂O at 25°C of a poly(amide-thioether) synthesized by the reaction of M1 with L-lysine methylester (Table 1, run 9).

Figure S26. ¹H NMR spectrum in DMSO-d6 at 25°C of a poly(amide-thioether) synthesized by the reaction of M1 with L-lysine methylester (Table 1, run 9).

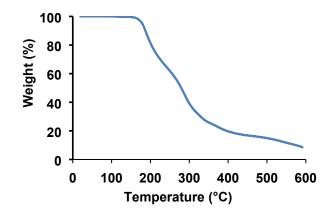
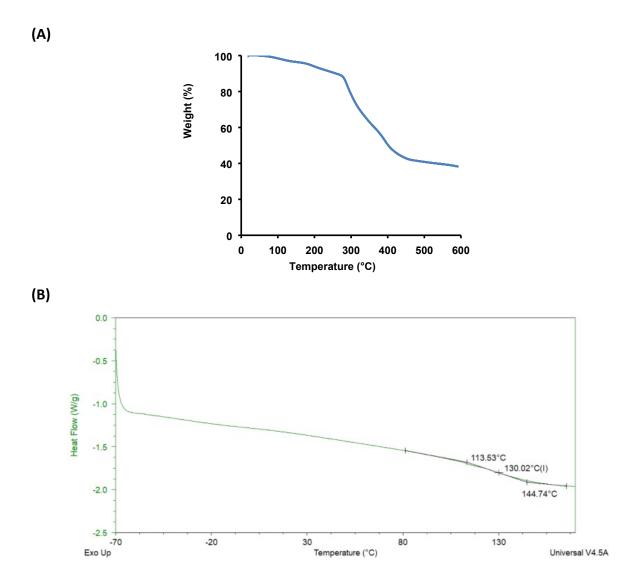
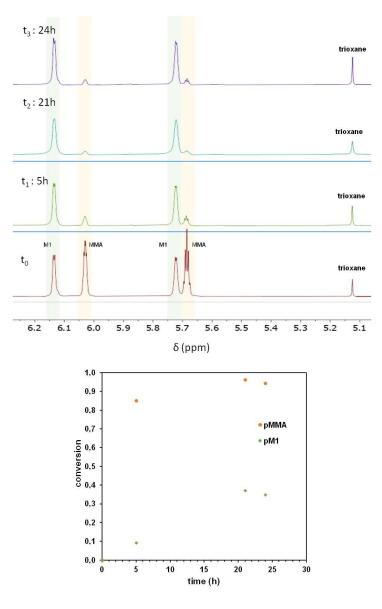
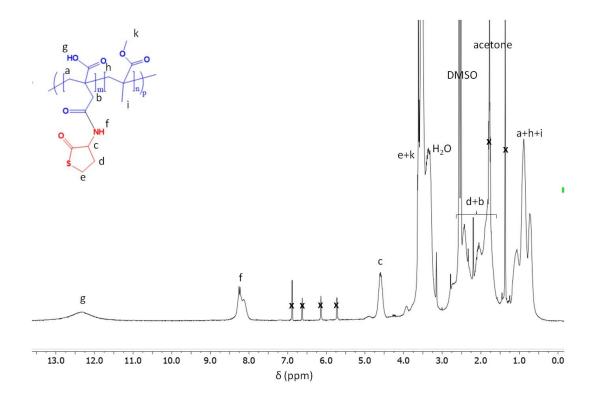
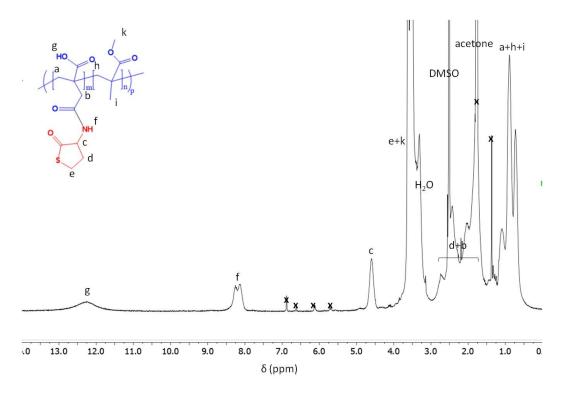
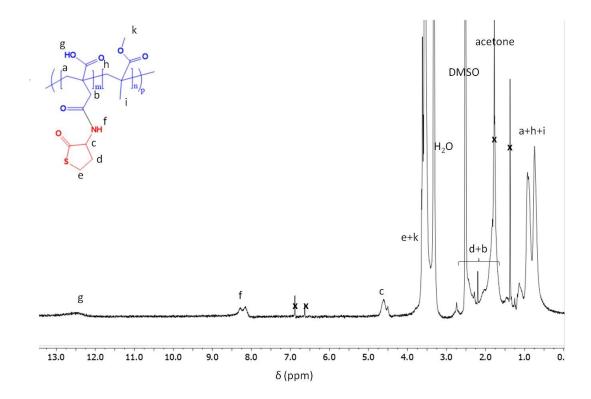
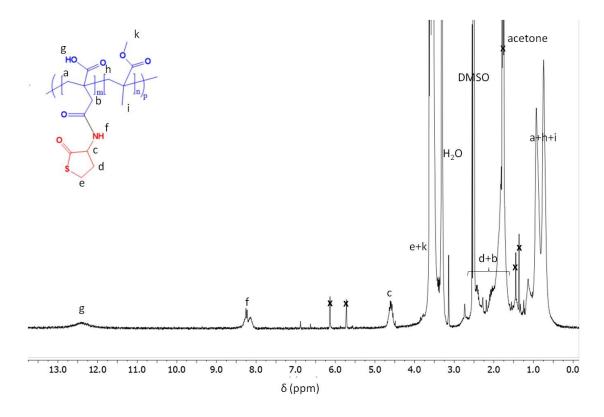


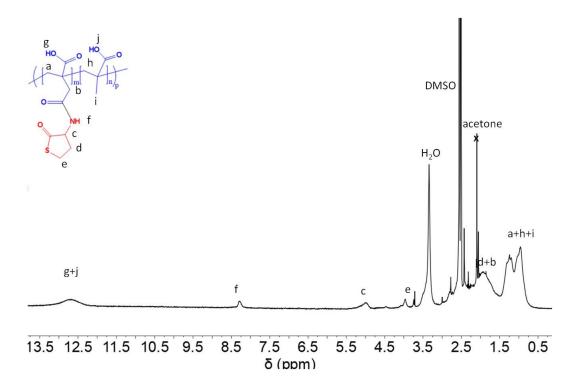
Figure S27. TGA profile for M1 monomer.

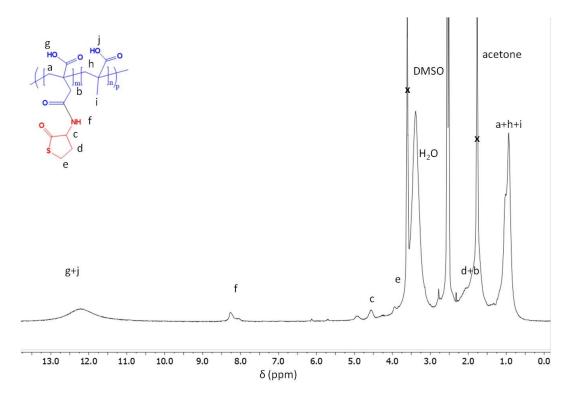




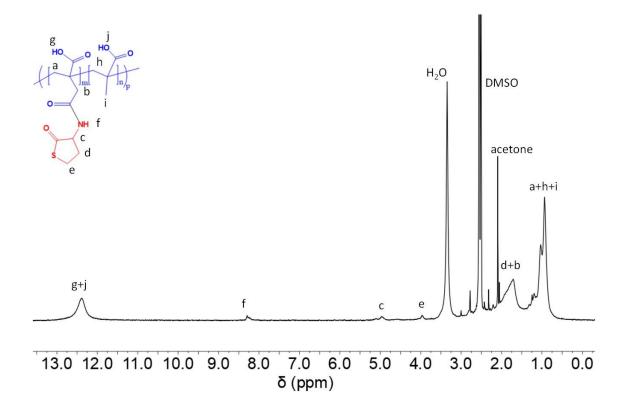

Figure S28. (A) TGA and (B) DSC thermograms for PR1, 2nd heating.


Figure S29. ¹H NMR overlay of aliquots from CPR1 reaction mixture (top) and individual plot of conversion over time (bottom).


Figure S30. ¹H NMR spectrum in DMSO-d₆ at 25°C of the copolymer obtained by the copolymerization of M1 with MMA in Table 3, CPR1.


Figure S31. ¹H NMR spectrum in DMSO- d_6 at 25°C of the copolymer obtained by the copolymerization of M1 with MMA in Table 3, CPR2.


Figure S32. ¹H NMR spectrum in DMSO-d₆ of the copolymer obtained by the copolymerization of M1 with MMA in Table 3, CPR3.


Figure S33. ¹H NMR spectrum in DMSO- d_6 of the copolymer obtained by the copolymerization of M1 with MMA in Table 3, CPR4.

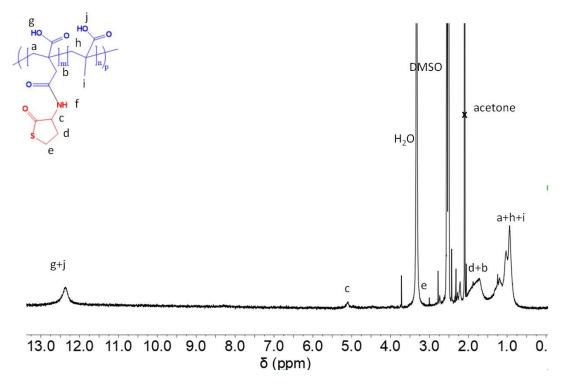

Figure S34. ¹H NMR spectrum in DMSO-d₆ of the copolymer obtained by the copolymerization of M1 with MMA in Table 3, CPR5.

Figure S35. ¹H NMR spectrum in DMSO-d₆ of the copolymer obtained by the copolymerization of M1 with MAA in Table 3, CPR6.

Figure S36. ¹H NMR spectrum in DMSO- d_6 of the copolymer obtained by the copolymerization of M1 with MAA in Table 3, CPR7.

Figure S37. ¹H NMR spectrum in DMSO-d₆ of the copolymer obtained by the copolymerization of M1 with MAA in Table 3, CPR8.