Supporting Information

Bio-photo-Fenton-like RAFT polymerization under blue light

James L. Grace,^a Greg Qiao*^a

^aPolymer Science Group, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, VIC 3010, Australia Email address: gregghq@unimelb.edu.au

Method

General procedure for studying effect of hydrogen peroxide concentration on polymerization rate.

DMA (300 mg, 3.026 mmol, 460 eq.), bis-TTC (1.86 mg, 6.579 μ mol, 1 eq.), riboflavin (0.3147 mg, 0.6579 μ mol, 0.1 eq.), and water (3 mL) were charged to a glass vial with a magnetic stir bar. Varying equivalences of hydrogen peroxide (0.5, 1, 2, 2.6 and 5 eq) were added to the vials and sealed with a rubber septum. The reaction mixture was degassed via argon sparging for 25 minutes. The vial was irradiated by a blue light LED at room temperature for 6 hours, after samples were taken for ¹H NMR spectroscopy.

The sample for ¹H NMR analysis was diluted with D₂O.

Quantification of generated hydrogen peroxide (H₂O₂).

For the determination of the yield of H_2O_2 , the spectroscopic method described by Hochanadel¹ was used. In this method, I⁻ is oxidised to I³⁻ by hydrogen peroxide in a ratio 1:1, under the catalytic activity of ammonium molybdite. In details, 1 ml of each of the two solutions, A (0.4 M KI, 0.1 M NaOH, and 0.02 mM (NH₄)₆Mo₇O₂₄) and B (0.1 M C₈H₅KO₄), were mixed with 1 mL of a freshly irradiated sample that contained glucose/glucose oxidase, riboflavin and water, and analysed via UV/Vis spectroscopy. A molar extinction coefficient for I³⁻ of 26400 M⁻¹ cm⁻¹ at 353 nm at room temperature was used.

Results

Table SI 1 Effect of H_2O_2 molar ratio on polymerization conversion as determined by ¹H NMR spectroscopy.

H_2O_2 Molar ratio (eq.)	Conv. (%) ^a		
0.5	41		
1	39		
2	68		
2.6	92		
5	74		

^aMonomer conversion was determined by ¹H NMR spectroscopy

Figure SI 1 Evolution of number average molar mass (M_n) and dispersity (D) as a function of conversion for ON/OFF experiment. M_n values (blue points) and D values (orange points) were calculated from GPC.

Time (min)	Conv.(%)ª	M _{n,th} (g/mol) ^b	M _n (g/mol)⁰	Т
0	0	-	-	-
60	40	18522 17804		1.37
120	40	40 18522 1		1.35
180	65	29922	34667	1.24
240	68	31290 35069		1.24
300	75	34482	43356	1.20
360	75	34482	43632	1.20

Table SI 2 Characterization of the ON/OFF experiment via ¹H NMR spectroscopy and GPC analysis.

^aConversion values were calculated from ¹H NMR analysis.; ^b Theoretical molecular weights were calculated according to the formula: $M_{n,th} = DP \times conv. \times MW_{monomer} + MW_{RAFT agent.}$; ^cMolecular weight (M_n) and dispersity (D) were determined by GPC analysis (DMF as eluent) calibrated to poly(methyl methacrylate) standards.

Table SI 3 Quantification of H₂O₂ concentration generated by glucose/glucose oxidase system

Conditions	Abs at 353 nm	ε (M ⁻¹ cm ⁻¹)	Light path (cm)	Dilution	Conc. (mM)	Undiluted Conc. (mM)
Glu/Gox, Sealed, Blue light, FMN	0.739	26400	1	20	0.0280	0.5598
Glu/Gox, open, Blue light	2.674	26400	1	20	0.1013	2.0258
1.745 ul of 30% H O sol.	2.712	26400	1	-	0.1027	0.1027

Figure SI 2 Polymerization kinetics of FMN/H₂O₂ (orange) or glucose/glucose oxidase/FMN (blue) aqueous photo-RAFT polymerization of DMA. A) Conversion (%) profile of DMA photopolymerization. B) Evolution of $ln([M]_{0}/[M]_{1})$ against irradiation time. Polymerization was conducted under blue light ($\lambda = 451$ nm) using a ratio of [DMA]/[Bis-TTC]/[Riboflavin] = 460/1/2.6/0.1, or [DMA]/[Bis-TTC]/[Riboflavin] = 460/1/0.1 with glucose/glucose oxidase = 0.1 M/1 μ M in 3 mL water.

References

1. C. J. Hochanadel, *The Journal of Physical Chemistry*, 1952, 56, 587-594.