Supporting Information

Design of poly(*N*-isopropylacrylamide) coated MnO₂ nanoparticles for

thermally regulated catalytic decomposition of H_2O_2

Anashwara Babu,^{#a} Samarendra Maji,^{#*ab} Gomathi Sivakumar,^a and Richard Hoogenboom^{*b}

^aDepartment of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu-603203, India. Email: <u>samarenr@srmist.edu.in</u> ^bSupramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, Belgium E-mail: <u>richard.hoogenboom@ugent.be</u>

Figure S1. ¹H NMR spectrum of nitrodopamine hydrogensulfate measured in D₂O.

Figure S2. ¹H-NMR spectrum of pentafluorophenol (PFP) containing CTA measured in CDCl₃.

Figure S3. ¹H NMR spectrum of Nitro DOPA-CTA measured in CDCl₃.

Figure S4. SEC RI trace of PNIPAM in DMAc containing 50 mM of LiCl at 50 °C.

Figure S5. Photographs of plastic cuvettes containing $KMnO_4$ and MnO_2NPs in water.

Figure S6. Schematic representation for the preparation of PNIPAM@MnO₂NPs and thermoresponsive behavior.

Figure S7. (a) Analysis of length of the MnO₂NPs from SEM Images at 1 μ m scale, (b) Analysis of length of the PNIPAM modified MnO₂NPs from SEM Images at 1 μ m scale.

Table S1. EDX data for MnO₂ NPs.

Element	Net	Weight %	Atom %	Formula
	Counts			
С	1360	16.78	26.65	С
0	4292	52.62	62.73	0
Mn	2835	30.60	10.62	Mn
Total		100.00	100.00	

 Table S2. EDX data for PNIPAM@MnO2 NPs.

Element	Net	Weight %	Atom %	Formula
	Counts			
С	2945	31.32	37.51	С
N	372	22.57	23.18	N
0	1002	42.55	38.26	0
S	152	0.62	0.28	S
Mn	206	2.94	0.77	Mn
Total		100.00	100.00	

Figure S8. XPS-spectra (a) Overall PNIAM@MnO₂NPs, (b) Mn 2p,(c) O 1s, (d) C1s, (e) N 1s and (f) S 2p orbitals.

Figure S9. TGA graph for MnO₂NPs and PNIPAM@MnO₂NPs.

Figure S10. Stability of the MnO₂NPs measured via DLS at 0.2 mg/mL concentration in water.

Figure S11. (a) DLS data for PNIPAM@MnO₂NPs 25 °C and 50 °C, (b) reversible DLS measurement at 25 °C and 50 °C for 5 consecutive cycles at 0.1 mg/mL concentration in water.

Figure S12. Comparison of fluorescent intensity without and with 10 μ L PNIPAM@MnO₂NPs after 5 min in presence of 50 μ L HRP, 50 μ L HVA and 50 μ L H₂O₂ in 2340 μ L PBS at two different temperatures (a)10 °C and (b) 50 °C respectively ($\lambda_{Ex.}$ = 312 nm).

Figure S13. Fluorescence intensity (a) in presence of 50 μ L HRP, 100 μ L HVA and 50 μ L H₂O₂ in 2300 μ L PBS without PNIPAM@MnO₂NPs; (b) 10 μ L PNIPAM@MnO₂NPs in presence of 50 μ L HRP and 100 μ L HVA and 2340 μ L PBS without H₂O₂; (c) 10 μ L PNIPAM@MnO₂NPs in presence of 50 μ L HVA and 50 μ L H₂O₂ in 2390 μ L PBS without HRP at 37°C in PBS (λ_{Ex} = 312 nm).

As reference experiments, the fluorescence intensity of the non-fluorescent HVA dye in PBS was measured in time in the absence of PNIPAM@MnO₂NPs, H₂O₂, and HRP respectively (Figures S13a-c) was measured. It is evident from comparing the three spectra that H₂O₂ is essential for fluorescence enhancement and, thus, formation of the HVA dimer, as there is no increase in fluorescence without H₂O₂. In the absence of either the NPs or HRP the fluorescence increased in time. However, without HRP, the fluorescence intensity increase was 5 times lower than without the presence of PNIPAM@MnO₂NPs indicating the importance of HRP to catalyse the HVA dimerization.

Figure S14. Fluorescence intensity in presence of (a) 50 μ L HRP solution, 100 μ L HVA, 2300 μ L PBS and 50 μ L H₂O₂ (b) 50 μ L HRP solution, 100 μ L HVA, 2325 μ L PBS and 25 μ L H₂O₂ and (c) 50 μ L HRP solution, 100 μ L HVA, 2350 μ L PBS and 0 μ L H₂O₂ at 37 °C ($\lambda_{Ex.}$ = 312 nm).

To confirm the importance of H_2O_2 for oxidization of HVA in presence of HRP, two experiments were performed. In one experiment, 50 µL HRP solution, 100 µL HVA, 2300 µL PBS and 50 µL H_2O_2 were added in cuvette and measurement was done at 37 °C. As anticipated, a clear fluorescent signal is visible around 420 nm due to dimer formation. After 5 min the intensity reaches its maximum and no further change occurs after 10 or 15 min (at 0 min H_2O_2 was already present which is why a fluorescent signal is already noticeable) (Figure S14a). A decrease in $\lambda_{em,max}$ of 149 a.u. was observed by changing the H_2O_2 concentration from 50 mM to 25 mM (Figure S14b). In contrast when the same experiment was done without adding H_2O_2 no fluorescence signal is observable (Figure S14c). These results indicate that HRP can only oxidize HVA when H_2O_2 is present.