Electronic Supplementary Information (ESI)

Synthesis of Amino-Functionalized Polyester via Ring-Opening Alternating Copolymerization of Glycidylamines with Cyclic Anhydrides

Ryota Suzuki, ${ }^{\text {a }}$ Tianle Gao, ${ }^{\text {a }}$ Ayaka Sumi, ${ }^{\text {b }}$ Takuya Yamamoto, ${ }^{\text {b }}$ Kenji Tajima, ${ }^{\text {b }}$ Feng Li, ${ }^{\text {b }}$ Takuya Isono, ${ }^{*}{ }^{\text {b }}$ Toshifumi Satoh ${ }^{*}$,b,c

${ }^{a}$ Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
${ }^{\mathrm{b}}$ Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
${ }^{c}$ List Sustainable Digital Transformation Catalyst Collaboration Research Platform (ICReDD ListPF), Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan

E-mail: isono.t@eng.hokudai.ac.jp satoh@eng.hokudai.ac.jp

1. Experimental section

1.1. Chemicals

Phthalic anhydride (PA; >98.0\%, Tokyo Chemical Industry Co. Ltd. (TCI)), succinic anhydride (SA; $>95.0 \%$, TCI), glutaric anhydride (GA; $>98.0 \%$, TCI), and diglycolic anhydride (DGA; $>98.0 \%, \mathrm{TCI}$) were purified by sublimation before use. Epichlorohydrin ($>99.0 \%, \mathrm{TCI}$), dibenzylamine ($>97.0 \%$, TCI), diallylamine ($>98.0 \%$, TCI), N-methylbenzylamine ($>98.0 \%$, TCI), phosphazene base $\mathrm{P}_{2}-t$ - Bu solution $\left(t-\mathrm{BuP}_{2} ; 2.0 \mathrm{M}\right.$ solution in THF, Sigma-Aldrich), phosphazene base $\mathrm{P}_{1}-t-\mathrm{Bu}\left(t-\mathrm{BuP}_{1} ;>97.0 \%\right.$, Sigma-Aldrich $)$, phosphazene base $\mathrm{P}_{4}-t-\mathrm{Bu}$ solution $\left(t-\mathrm{BuP}_{4} ; 0.8 \mathrm{M}\right.$ solution in n-hexane, Sigma-Aldrich), 1,4-benzene dimethanol (BDM; $>99.0 \%$, TCI), tetra- n-butylammonium hydrogen sulfate (TBAHS; >98.0\%, TCI), and sodium hydroxide ($\mathrm{NaOH} ; ~>97.0 \%$, FUJIFILM Wako Pure Chemical Corp. (WAKO)) were purchased from commercial sources and used as received. 3-phenyl-1-propanol (PPA; $>98 \%$, TCI), butanol ($>99.0 \%, \mathrm{TCI}$), triethylamine ($>99.0 \%$, Kanto Chemical Co. Inc. (KANTO)), butylene oxide (BO; >99.0\%, TCI), ethyl glycidyl ether (EGE; >98.0\%, TCI), 5-hexen-1-ol ($>97.0 \%, \mathrm{TCI}$), and propargyl alcohol ($>95 \%$) were purified by distillation over CaH_{2} under vacuum, which were then stored under an argon atmosphere. Cesium pivalate (CsOPiv; $>97.0 \%, \mathrm{TCI}$) and sodium acetate ($\mathrm{NaOAc} ;>99 \%$, Sigma-Aldrich) were dried by heating at $100{ }^{\circ} \mathrm{C}$ for 3 days. Poly(ethylene glycol) monomethyl ether (MeO-PEG-OH; typical $M_{\mathrm{n}}=400, M_{\mathrm{n}, \mathrm{SEC}}=440$, $Đ=1.33, \mathrm{TCI}$) was dried by azeotropic distillation in benzene. N, N-Dibenzylglycidylamine (DBGA), N-benzyl- N-methylglycidylamine (BMGA), and N, N-diallylglycidylamine (DAGA) were prepared
according to reported methods and then purified by distillation. ${ }^{1}$ Chloroform- $d\left(\mathrm{CDCl}_{3} ;>99.8 \%\right.$, KANTO), acetone ($>99.0 \%$, KANTO), hexane ($>95.0 \%$, KANTO), dry-tetrahydrofuran (dry-THF; $>99.5 \%$, KANTO), methanol ($>99.8 \%$, Sigma-Aldrich), and pyridine ($>99.5 \%$, KANTO) were used as received.

1.2. Instruments

Polymerizations were carried out in an MBRAUN stainless steel glovebox equipped with a gas purification system (molecular sieves and copper catalyst) in a dry argon atmosphere $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}\right.$ $<0.1 \mathrm{ppm})$. The moisture and oxygen contents in the glovebox were monitored by a MB-MO-SE- 1 and MB-OX-SE-1, respectively.

Nuclear magnetic resonance (NMR) spectra were recorded at $25^{\circ} \mathrm{C}$ on a JEOL JNM-ECS400 instrument (400 MHz) or a JEOL JNM-ECZ600R $(600 \mathrm{MHz})$ using CDCl_{3} as the solvent and chemical shifts were referenced to an internal standard (TMS). The diffusion-ordered NMR (DOSY) analyses were carried out at $30^{\circ} \mathrm{C}$ using the ledbpgp2s sequence with at least 15 gradient increments.

Size exclusion chromatography (SEC) was conducted in DMF at $40^{\circ} \mathrm{C}$ and a flow rate of 0.6 $\mathrm{mL} \mathrm{min}{ }^{-1}$ using a Jasco high performance liquid chromatography system (PU-980 Intelligent HPLC pump, CO-965 Column oven, RI-930 Intelligent RI detector, and Shodex DEGAS KT-16) equipped with a Shodex KD-G guard column, Shodex Asahipak GF-310-HQ (7.6 mm ID $\times 300 \mathrm{~mm}$ L), and Shodex Asahipak GF-7M-HQ (7.6 mm ID $\times 300 \mathrm{~mm}$ L) . The polystyrene standard curve ranging from

2170 to 1320000 was used for calibration to achieve the molecular weight $\left(M_{\mathrm{n}, \mathrm{SEC}}\right)$ and polydispersity index (\boxplus) of the polymers.

Thermogravimetric analysis (TGA) experiments were performed using a Hitachi High-Tech Science STA200RV under nitrogen atmosphere. The sample was preheated to $100^{\circ} \mathrm{C}$ for 30 min to removed water. Then, the sample was cooled to room temperature and heated to $550^{\circ} \mathrm{C}$ at the heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$.

Diffrerential scanning calorimetry (DSC) was conducted using a Hitachi DSC 7000X. The sample was heated from $20^{\circ} \mathrm{C}$ to 150 at a rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ and held at $100^{\circ} \mathrm{C}$ for 10 min to erase thermal history. Then, the sample was cooled to $-100^{\circ} \mathrm{C}$ at a rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$ and holed at -100 ${ }^{\circ} \mathrm{C}$ for 10 min . Finally, the sample was heated to $150^{\circ} \mathrm{C}$ at a rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$. The second heating DSC curve was used to evaluate the glass transition temperature (T_{g}).

Matrix-assisted desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) experiment of the polymer was performed in linear mode using a Bruker Daltonics (Germany) Ultraflex MALDI-TOF/TOF mass spectrometer equipped with a 355 nm Nd:YAG laser. The sample for the measurement was prepared by mixing the polymer ($10 \mu \mathrm{~L}, 10 \mathrm{~g} \mathrm{~L}^{-1}$ in THF), matrix (2-(4hydroxyphenylazo)benzoic acid; $50 \mu \mathrm{~L}, 100 \mathrm{~g} \mathrm{~L}{ }^{-1}$ in THF).

1.3. ROAC of PA and DBGA

Scheme S1. ROAC of PA and DBGA catalyzed by t-BuP ${ }_{1}$

A typical procedure for the ROAC is as follows (method A): In an argon-filled glovebox, t $\operatorname{BuP}_{1}(40 \mu \mathrm{~mol}, 9.4 \mu \mathrm{~L}, 1.0$ equiv.), PPA ($40 \mu \mathrm{~mol}, 5.4 \mu \mathrm{~L}, 1.0$ equiv.), PA ($1.0 \mathrm{mmol}, 148 \mathrm{mg}, 25$ equiv.), and DBGA ($3.0 \mathrm{mmol}, 760 \mathrm{mg}, 75$ equiv.) were placed in an oven-dried reaction vessel with a magnetic stir. To keep the argon atmosphere, the vessel was sealed with a greaseless valve. After removing the vessel from the glovebox, the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ in an oil bath. During the polymerization, a crude aliquot was time-regularly obtained from the system by a syringe in an argon flow and monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy and SEC to determine monomer conversion and molecular weight. After the defined time, the polymerization was terminated by diluting the reaction mixture with acetone. The reaction mixture was purified by reprecipitation from an acetone solution into n-hexane $/$ acetone $=4 / 1(\mathrm{vol} / \mathrm{vol})$. The purified product was dried under vacuum at $40^{\circ} \mathrm{C}$ to give poly(PA-alt-DBGA) as a colorless solid $\left(M_{\mathrm{n}, \mathrm{NMR}}=8000 ; M_{\mathrm{n}, \mathrm{SEC}}=3760, ~ D=1.10 ;\right.$ yield: 206 mg , 74.3%).

Synthesis of poly(PA-alt-DBGA) using Me-PEG-OH as an initiator: The method A was
used for the reaction of t - BuP_{1} ($40 \mu \mathrm{~mol}, 9.4 \mu \mathrm{~L}, 1.0$ equiv.), Me-PEG-OH ($40 \mu \mathrm{~mol}, 16 \mu \mathrm{~L}, 1.0$ equiv.), PA ($1.0 \mathrm{mmol}, 148 \mathrm{mg}, 25$ equiv.), and DBGA ($3.0 \mathrm{mmol}, 760 \mathrm{mg}, 75$ equiv.) to give PEG- $b-$ poly (PA-alt -DBGA$)$ as a colorless viscous liquid $\left(M_{\mathrm{n}, \mathrm{NMR}}=6700 ; M_{\mathrm{n}, \mathrm{SEC}}=4830, D=1.22\right.$; yield: 138 $\mathrm{mg}, 94.0 \%)$.

Synthesis of poly(PA-alt-DBGA) using 5-hexen-1-ol as an initiator: The method A was used for the reaction of $t-\mathrm{BuP}_{1}(40 \mu \mathrm{~mol}, 9.4 \mu \mathrm{~L}, 1.0$ equiv.), 5-hexen-1-ol ($40 \mu \mathrm{~mol}, 4.0 \mu \mathrm{~L}, 1.0$ equiv.), PA ($1.0 \mathrm{mmol}, 148 \mathrm{mg}, 25$ equiv.), and DBGA ($3.0 \mathrm{mmol}, 760 \mathrm{mg}, 75$ equiv.) to give poly(PAalt -DBGA) as a colorless viscous liquid $\left(M_{\mathrm{n}, \mathrm{NMR}}=7200 ; M_{\mathrm{n}, \mathrm{SEC}}=5240, ~ D=1.16\right.$; yield: 164 mg , 79.1\%).

Synthesis of poly(PA-alt-DBGA) using propargyl alcohol as an initiator: The method A was used for the reaction of t - BuP_{1} ($40 \mu \mathrm{~mol}, 9.4 \mu \mathrm{~L}, 1.0$ equiv.), propargyl alcohol ($40 \mu \mathrm{~mol}, 2.4 \mu \mathrm{~L}$, 1.0 equiv.), PA ($1.0 \mathrm{mmol}, 148 \mathrm{mg}, 25$ equiv.), and DBGA ($3.0 \mathrm{mmol}, 760 \mathrm{mg}, 75$ equiv.) to give poly(PA-alt-DBGA) as a colorless viscous liquid $\left(M_{\mathrm{n}, \mathrm{NMR}}=9000 ; M_{\mathrm{n}, \mathrm{SEC}}=5240, D=1.20 ;\right.$ yield: 178 mg, 49.1\%).

Synthesis of poly(PA-alt-DBGA) using BDM as an initiator: The method A was used for the reaction of $t-\mathrm{BuP}_{1}(40 \mu \mathrm{~mol}, 9.4 \mu \mathrm{~L}, 1.0$ equiv. $), \mathrm{BDM}(40 \mu \mathrm{~mol}, 5.5 \mathrm{mg}, 1.0$ equiv.), $\mathrm{PA}(1.0$
mmol, 148 mg , 25 equiv.), and DBGA ($3.0 \mathrm{mmol}, 760 \mathrm{mg}$, 75 equiv.) to give poly(PA-alt-DBGA) as a colorless viscous liquid ($M_{\mathrm{n}, \mathrm{NMR}}=7900 ; M_{\mathrm{n}, \mathrm{SEC}}=4150, ~ Đ=1.21$; yield: $255 \mathrm{mg}, 79.1 \%$).

Synthesis of poly(PA-alt-DBGA) without alcohol initiator: The method A was used for the reaction of $t-\mathrm{BuP}_{1}$ ($40 \mu \mathrm{~mol}, 9.4 \mu \mathrm{~L}, 1.0$ equiv.), PA ($1.0 \mathrm{mmol}, 148 \mathrm{mg}, 25$ equiv.), and DBGA (3.0 mmol, $760 \mathrm{mg}, 75$ equiv.) to give poly(PA-alt-DBGA) as a colorless liquid $\left(M_{\mathrm{n}, \mathrm{SEC}}=44500, ~ D=1.43\right.$; yield: $164 \mathrm{mg}, 82.3 \%)$.

1.4. ROAC of PA and BO catalyzed by TEA

Scheme S2. ROAC of PA and BO catalyzed by TEA

In an argon-filled glovebox, PPA ($50 \mu \mathrm{~mol}, 6.8 \mu \mathrm{~L}, 1.0$ equiv.), PA ($1.3 \mathrm{mmol}, 185 \mathrm{mg}, 25$ equiv.), BO ($3.8 \mathrm{mmol}, 270 \mathrm{mg}, 75$ equiv.), and TEA ($3.8 \mathrm{mmol}, 380 \mathrm{mg}$, 75 equiv.) were placed in an oven-dried reaction vessel with a magnetic stir. To keep the argon atmosphere, the vessel was sealed with a greaseless valve. After removing the vessel from the glovebox, the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ in an oil bath. After 6.5 h , a crude aliquot was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy to determine monomer conversion.

1.5. Synthesis of poly(cyclic anhydride-alt-glycidylamine) catalyzed by \boldsymbol{t}-BuP ${ }_{1}$

Scheme S3. ROAC of cyclic anhydride and glycidylamine catalyzed by t-BuP ${ }_{1}$

cyclic anhydride

A typical procedure for the ROAC is as follows (method B): In an argon-filled glovebox, t $\mathrm{BuP}_{1}(40 \mu \mathrm{~mol}, 9.4 \mu \mathrm{~L}, 1.0$ equiv.), PPA ($40 \mu \mathrm{~mol}, 5.4 \mu \mathrm{~L}, 1.0$ equiv.), PA ($1.0 \mathrm{mmol}, 148 \mathrm{mg}, 25$ equiv.), and BMGA ($3.0 \mathrm{mmol}, 532 \mathrm{mg}$, 75 equiv.) were placed in an oven-dried reaction vessel with a magnetic stir. To keep the argon atmosphere, the vessel was sealed with a greaseless valve. After removing the vessel from the glovebox, the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ under an argon atmosphere in an oil bath. During the polymerization, a crude aliquot was time-regularly obtained from the system by a syringe in an argon flow and monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy and SEC to determine monomer conversion and molar mass. After the defined time, the polymerization was
terminated by diluting the reaction mixture with acetone. The reaction mixture was purified by reprecipitation from an acetone solution into n-hexane/acetone $=4 / 1(\mathrm{vol} \%)$. The purified product was dried under vacuum at $40^{\circ} \mathrm{C}$ to give poly(PA-alt-BMGA) as a light yellow solid $\left(M_{\mathrm{n}, \mathrm{NMR}}=4600\right.$; $M_{\mathrm{n}, \mathrm{SEC}}=1790, D=1.23$; yield: $\left.118 \mathrm{mg}, 48.2 \%\right)$.

Synthesis of poly(PA-alt-DAGA): The method B was used for the reaction of t - BuP_{1} (40 $\mu \mathrm{mol}, 9.4 \mu \mathrm{~L}, 1.0$ equiv.), PPA ($40 \mu \mathrm{~mol}, 5.4 \mu \mathrm{~L}, 1.0$ equiv.), PA ($1.0 \mathrm{mmol}, 148 \mathrm{mg}, 25$ equiv.), and DAGA ($3.0 \mathrm{mmol}, 460 \mathrm{mg}, 75$ equiv.) to give poly(PA-alt-DAGA) as a light yellow solid ($M_{\mathrm{n}, \mathrm{NMR}}=$ $5300 ; M_{\mathrm{n}, \mathrm{SEC}}=2480, ~ Đ=1.30$; yield: $\left.216 \mathrm{mg}, 70.5 \%\right)$.

Synthesis of poly(GA-alt-DBGA): The method B was used for the reaction of t - BuP_{1} (40 $\mu \mathrm{mol}, 9.4 \mu \mathrm{~L}, 1.0$ equiv.), PPA ($40 \mu \mathrm{~mol}, 5.4 \mu \mathrm{~L}, 1.0$ equiv.), PA ($1.0 \mathrm{mmol}, 114 \mathrm{mg}, 25$ equiv.), and DBGA ($3.0 \mathrm{mmol}, 760 \mathrm{mg}, 75$ equiv.) to give poly(GA-alt-DBGA) as a colorless viscous solid ($M_{\mathrm{n}, \mathrm{NMR}}$ $=2000 ; M_{\mathrm{n}, \mathrm{SEC}}=4390, ~ D=1.50 ;$ yield: $\left.105 \mathrm{mg}, 75.8 \%\right)$.

Synthesis of poly(DGA-alt-DBGA): The method B was used for the reaction of t - BuP_{1} (40 $\mu \mathrm{mol}, 9.4 \mu \mathrm{~L}, 1.0$ equiv.), PPA ($40 \mu \mathrm{~mol}, 5.4 \mu \mathrm{~L}, 1.0$ equiv.), DGA ($1.0 \mathrm{mmol}, 116 \mathrm{mg}, 25$ equiv.), and DBGA ($3.0 \mathrm{mmol}, 760 \mathrm{mg}, 75$ equiv.) to give poly(DGA-alt-DBGA) as a light yellow viscous solid ($M_{\mathrm{n}, \mathrm{NMR}}$: N.D.; $M_{\mathrm{n}, \mathrm{SEC}}=5000, ~ Ð=1.86$; yield: $338 \mathrm{mg}, 90.2 \%$).

Synthesis of poly(SA-alt-DBGA): The method B was used for the reaction of t - $\mathrm{BuP}_{1}(40$
$\mu \mathrm{mol}, 9.4 \mu \mathrm{~L}, 1.0$ equiv.), PPA ($40 \mu \mathrm{~mol}, 5.4 \mu \mathrm{~L}, 1.0$ equiv.), SA ($1.0 \mathrm{mmol}, 100 \mathrm{mg}, 25$ equiv.), and DBGA ($3.0 \mathrm{mmol}, 760 \mathrm{mg}, 75$ equiv.) to give poly(SA-alt-DBGA) as a black solid $\left(M_{\mathrm{n}, \mathrm{NMR}}=4900\right.$; $M_{\mathrm{n}, \mathrm{SEC}}=6800, ~ D=2.22$; yield: $\left.150 \mathrm{mg}, 62.1 \%\right)$.

1.6. Terpolymerization of cyclic anhydride, glycidylamine, and non amino-functionalized epoxide

Scheme S4. Ring-opening terpolymerization of anhydride, glycidylamine, with other epoxides

Terpolymerization of PA, BMGA, and BO: The method B was used for the reaction of t $\operatorname{BuP}_{1}(40 \mu \mathrm{~mol}, 9.4 \mu \mathrm{~L}, 1.0$ equiv.), n-butanol ($40 \mu \mathrm{~mol}, 3.7 \mu \mathrm{~L}, 1.0$ equiv.), $\mathrm{PA}(4.0 \mathrm{mmol}, 593 \mathrm{mg}$, 100 equiv.), BMGA ($6.0 \mathrm{mmol}, 1.06 \mathrm{~g}, 150$ equiv.), and BO ($6.0 \mathrm{mmol}, 433 \mathrm{mg}, 150$ equiv.) to give poly(PA-alt-BMGA)-co-poly(PA-alt-BO) as a light yellow viscous solid $\left(M_{\mathrm{n}, \mathrm{NMR}}=6200 ; M_{\mathrm{n}, \mathrm{SEC}}=\right.$ $3120, ~ D=2.23$; yield: $980 \mathrm{mg}, 89.6 \%)$.

Terpolymerization of PA, DBGA, and EGE: The method B was used for the reaction of t $\operatorname{BuP}_{1}(40 \mu \mathrm{~mol}, 9.4 \mu \mathrm{~L}, 1.0$ equiv. $)$, $\operatorname{PPA}(40 \mu \mathrm{~mol}, 6.7 \mu \mathrm{~L}, 1.0$ equiv.), $\mathrm{PA}(4.0 \mathrm{mmol}, 593 \mathrm{mg}, 100$ equiv.), DBGA ($6.0 \mathrm{mmol}, 1.46 \mathrm{~g}, 150$ equiv.), and EGE ($6.0 \mathrm{mmol}, 613 \mathrm{mg}, 150$ equiv.) to give poly(PA-alt -DBGA)-co-poly(PA-alt-EGE) as a light yellow viscous solid $\left(M_{\mathrm{n}, \mathrm{NMR}}=14700 ; M_{\mathrm{n}, \mathrm{SEC}}=\right.$ $6350, ~ Đ=1.39$; yield: $1.03 \mathrm{~g}, 79.5 \%)$.

2. Supporting figures and tables

Figure S1. SEC trace of poly(PA-alt-DBGA) obtained via run 1 in Table 1 (eluent, DMF containing $0.01 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{LiCl}$; flow rate, $0.6 \mathrm{~mL} \mathrm{~min}^{-1}$).

Figure S2. SEC traces of poly(PA-alt-DBGA) obtained via runs $1-6$ in Table 1 (eluent, DMF containing $0.01 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{LiCl}$; flow rate, $0.6 \mathrm{~mL} \mathrm{~min}^{-1}$).

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra of PA (upper) and crude aliquot obtained via run 1 in Table 2 (in CDCl_{3}, 400 MHz).

Calculated mass

Calculated mass			
$n=16$	$n=17$	$n=18$	
6577.7	6978.8	7380.0	
∇	6725.7	7126.9	

Figure S4. MALDI-TOF MS analysis of poly(PA-alt-DBGA) (run 3 in Table 1).

Figure S5. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of poly(PA-alt-DBGA) (run 3 in Table 1).

Figure S6. SEC traces of Me-PEG-OH (black line) and PEG-b-poly(PA-alt-DBGA) (red line) obtained via run 1 in Table 2 (eluent, DMF containing $0.01 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{LiCl}$; flow rate, $0.6 \mathrm{~mL} \mathrm{~min}^{-1}$).

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of PEG-b-poly(PA-alt-DBGA) (run 1 in Table 2).

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of poly(PA-alt-DBGA) using 5 -hexen-1-ol as an initiator (run 2 in Table 2).

Figure S9. SEC trace (eluent, DMF containing $0.01 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{LiCl}^{\text {; flow rate, }} 0.6 \mathrm{~mL} \mathrm{~min}^{-1}$) of poly(PA-alt-DBGA) using 5-hexen-1-ol as an initiator (run 2 in Table 2).

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$; left panel) and SEC trace (eluent, DMF containing $0.01 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{LiCl}$; flow rate, $0.6 \mathrm{~mL} \mathrm{~min}{ }^{-1}$; right panel) of poly(PA-alt-DBGA) using propargyl alcohol as an initiator (run 3 in Table 2).

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$; left panel) and SEC trace (eluent, DMF containing $0.01 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{LiCl}$; flow rate, $0.6 \mathrm{~mL} \mathrm{~min}{ }^{-1}$; right panel) of poly(PA-alt-DBGA) using BDM as an initiator (run 4 in Table 2).

Figure S12. SEC trace (eluent, DMF containing $0.01 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{LiCl}$; flow rate, $0.6 \mathrm{~mL} \mathrm{~min}{ }^{-1}$) of poly(PA-alt-DBGA) synthesized without catalyst (run 5 in Table 2).

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$; left panel) and SEC trace (eluent, DMF containing $0.01 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{LiCl}$; flow rate, $0.6 \mathrm{~mL} \mathrm{~min}^{-1}$; right panel) of poly(PA-alt-BMGA) obtained via run 2 in Table 3.

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$; left panel) and SEC trace (eluent, DMF containing $0.01 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{LiCl}$; flow rate, $0.6 \mathrm{~mL} \mathrm{~min}^{-1}$; right panel) of poly(PA-alt-DAGA) obtained via run 3 in Table 3.

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$; left panel) and SEC trace (eluent, DMF containing $0.01 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{LiCl}$; flow rate, $0.6 \mathrm{~mL} \mathrm{~min}^{-1}$; right panel) of poly(GA-alt-DBGA) obtained via run 4 in Table 3.

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$; left panel) and SEC trace (eluent, DMF containing $0.01 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{LiCl}$; flow rate, $0.6 \mathrm{~mL} \mathrm{~min}^{-1}$; right panel) of poly(DGA-alt-DBGA) obtained via run 5 in Table 3.

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$; left panel) and SEC trace (eluent, DMF containing $0.01 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{LiCl}$; flow rate, $0.6 \mathrm{~mL} \mathrm{~min}^{-1}$; right panel) of poly(SA-alt-DBGA) obtained via run 6 in Table 3.

Figure S18. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of poly(PA-alt-BMGA) (run 1 in Table 4).

Figure S19. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of poly(PA-alt-DAGA) (run 2 in Table 4).

Figure S20. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of poly(GA-alt-DBGA) (run 3 in Table 4).

Figure S21. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of poly(DGA-alt-DBGA) (run 4 in Table 4).

Figure S22. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of poly(SA-alt-DBGA) (run 5 in Table 4).

Figure S23. Thermogravimetric analysis of the poly(cyclic anhydride-alt-glycidylamine)s in Table 3.

Figure S24. DSC thermograms of the poly(cyclic anhydride-alt-glycidylamine)s in Table 3.

Figure S25. Time to conv. plots of PA (square), BO (filled circle), and BMGA (triangle) determined via ${ }^{1} \mathrm{H}$ NMR spectrum for run 1 in Table 4.

Table S1. ROAC of PA and cyclic ethers using $t-\mathrm{BuP}_{1}$ as a catalyst ${ }^{a}$

		$+\underset{\substack{\text { ethyl glycidyl ether } \\(E G E)}}{\text { O. }}$			 poly(PA-alt-EGE)			
run	monomer	initiator	time (h)	$\begin{gathered} \text { conv.PA } \\ (\%)^{b} \end{gathered}$	$M_{\text {n,theo. }}{ }^{\text {c }}$	$M_{\mathrm{n}, \mathrm{NMR}}{ }^{\text {b }}$	$M_{\mathrm{n}, \mathrm{SEC}}{ }^{\text {d }}$	\oplus^{d}
1	PA/BMGA	n-butanol	3.0	>99	33000	5800	3520	2.11
2	PA/BO	n-butanol	1.5	>99	22000	18000	11000	1.22
3	PA/EGE	PPA	2.0	98	25000	20000	5680	1.31

${ }^{a}$ Polymerization conditions: temp., $80{ }^{\circ} \mathrm{C}$; atmosphere, Ar; catalyst, t-BuP ${ }_{1}$; monomer; [t $\left.\mathrm{BuP}_{1}\right] /[\text { initiator }]_{0} /[\mathrm{PA}]_{0} /[\text { glycidylamine or epoxide }]_{0}=1 / 1 / 100 / 300 .{ }^{b}$ Determined via ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} .{ }^{c}$ Calculated from (M.W. of initiator) $+[\mathrm{PA}]_{0} /[\text { initiator }]_{0} \times$ conv.PA \times (M.W. of PA + M.W. of glycidylamine or epoxide). ${ }^{d}$ Determined via SEC in DMF containing $0.01 \mathrm{~mol} \mathrm{~L}{ }^{-1} \mathrm{LiCl}$ using PSt. standard.

Figure S26. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$; left panel) and SEC trace (eluent, DMF containing 0.01 mol $\mathrm{L}^{-1} \mathrm{LiCl}$; flow rate, $0.6 \mathrm{~mL} \mathrm{~min}{ }^{-1}$; right panel) of poly(PA-alt-BMGA)-co-poly(PA-alt-BO) obtained via run 1 in Table 5.

Figure S27. DOSY $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ spectrum of poly(PA-alt-BMGA)-co-poly(PA-alt-BO) obtained from run 1 in Table 5.

Figure S28. ${ }^{1} \mathrm{H}$ NMR spectra of poly(PA-alt-BMGA) (run 1 in Table S 1), poly(PA-alt-BMGA)-co-$\operatorname{poly}(\mathrm{PA}-$ alt -BO$)\left([\mathrm{BMGA}]_{0} /[\mathrm{BO}]_{0}=150 / 150\right.$, run 1 in Table $5 ;[\mathrm{BMGA}]_{0} /[\mathrm{BO}]_{0}=60 / 240$, run 2 in Table 5), and poly(PA-alt-BO) (run 2 in Table S 1) in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$.

poly(PA-alt-DBGA)-co-poly(PA-alt-EGE)

Figure S29. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$; left panel) and SEC trace (eluent, DMF containing 0.01 mol $\mathrm{L}^{-1} \mathrm{LiCl}$; flow rate, $0.6 \mathrm{~mL} \mathrm{~min}{ }^{-1}$; right panel) of poly(PA-alt-DBGA)-co-poly(PA-alt-EGE) obtained from run 3 in Table 5.

Figure S30. DOSY ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ spectrum of poly(PA-alt-DBGA)-co-poly(PA-alt-EGE) obtained from run 3 in Table 5.

Figure S31. Time to conv. plots of PA (square), EGE (filled circle), and DBGA (triangle) determined via ${ }^{1} \mathrm{H}$ NMR spectrum for run 3 in Table 5.

Figure S32. ${ }^{1} \mathrm{H}$ NMR spectra of poly(PA-alt-DBGA) (run 8 in Table 1), poly(PA-alt-DBGA)-copoly $\left(\mathrm{PA}-\right.$ alt-EGE) $\left([\mathrm{DBGA}]_{0} /[\mathrm{EGE}]_{0}=150 / 150\right.$, run 3 in Table $5 ;[\mathrm{DBGA}]_{0} /[\mathrm{EGE}]_{0}=60 / 240$, run 4 in Table 5), and poly(PA-alt-EGE) (run 3 in Table S1) in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$.

3. References

(1) Isono, T; Asai, S.; Satoh, Y.; Takaoka, T.; Tajima, K.; Toyoji, K.; Satoh, T. Controlled/Living Ring-Opening Polymerization of Glycidylamine Derivatives Using t-Bu- $\mathrm{P}_{4} /$ Alcohol Initiating System Leading to Polyethers with Pendant Primary, Secondary, and Tertiary Amino Groups. Macromolecules 2015, 48, 3217-3229.

