Long-Stable Lithium Metal Batteries with a High-Performance Dual-Salt Solid Polymer Electrolyte Supporting Information

S1. Calculation of ionic conductivity

The Li-ion conductivities of the electrolytes were acquired by EIS measurements (from 10^5 Hz to 10^{-2} Hz) at a temperature range of 20-80 °C. The ionic conductivities of the membranes were calculated according to the following equation (S1):

$$\sigma = \frac{d}{R_b A} \tag{S1}$$

where *d* is the film thickness, R_b is the electrolyte impedance, and *A* is the electrode area.

S2. Calculation of activation energy

The activation energy is used to demonstrate the difficulty of lithium-ion transfer. It is derived using the Arrhenius equation (S2):

$$\sigma = \sigma_0 \exp\left(-\frac{E_a}{RT}\right) \tag{S2}$$

where Ea is the activation energy, T is the test temperature, and R is the Boltzmann constant.

S3. Calculation of Li⁺ transference numbers

The Li⁺ transfer numbers (t_{Li^+}) of the electrolytes were tested using Li|SPE|Li symmetric cells. t_{Li^+} values are calculated from equation (S3):

$$t_{Li}^{+} = \frac{I_{ss}(\Delta V - I_0 R_0)}{I_0(\Delta V - I_{ss} R_{ss})}$$
(S3)

where ΔV is the applied polarization voltage (10 mV), I_0 and R_0 are the initial current and initial interface resistance respectively, and I_{SS} and R_{SS} are the post-polarization steady-state current and interface resistance respectively.

Fig. S1. Optical images of PVDF-HFP nanofiber membrane and the measurement of the thickness.

Fig. S2. EDS mappings of $N_2V_8L_{1-0.1}$ SPE.

Fig. S3. Cross-sectional SEM image of the $N_2 V_8 L_{1\mathchar`embrane}$.

Fig. S4. TG curves of $N_1V_9L_1$, $N_2V_8L_1$, $N_3V_7L_1$ and $N_2V_8L_{1-0.1}$ SPEs.

Fig. S5. The current-time curve for a $Li|N_2V_8L_1$ SPE|Li symmetrical cell with an applied polarization voltage of 10 mV and the corresponding EIS spectra before and after polarization.

Fig. S6. Long-term constant current cycling plots of $Li|N_2V_8L_1$ SPE|Li and $Li|N_2V_8L_1$.

 $_{0.1}$ SPE|Li cells at 0.5 mA cm⁻².

Fig. S7. Long-term constant current cycling of Li|SPE|Li cells with single-salt $N_1V_9L_1$ and $N_3V_7L_1$ SPEs at 0.1 mA cm⁻².

Fig. S8. CCD measurements of $Li|N_2V_8L_1$ SPE|Li and $Li|N_2V_8L_{1-0.1}$ SPE|Li cells.

Fig. S9. Long-term cycling plots of $Li|N_1V_9L_1$ SPE|LFP and $Li|N_3V_7L_1$ SPE|LFP cells

at 0.5 C.

Fig. S10. Long-term cycling plots of $Li|N_2V_8L_1$ SPE|LFP and $Li|N_2V_8L_{1-0.1}$ SPE|LFP

battery at 1 C.

Fig. S11. EIS plots and the fitting curves of (a) $Li|N_1V_9L_1$ SPE|LFP, (b) $Li|N_2V_8L_1$ SPE|LFP, (c) $Li|N_3V_7L_1$ SPE|LFP, (d) $Li|N_2V_8L_{1-0.1}$ SPE|LFP before and after cycling.

Fig. S12. Equivalent circuit model for EIS fitting.

Fig.S13. The charge curves and leakage current plots (inset) of Li||LFP batteries with different SPEs at a constant voltage of 4.0 V.

Fig. S14. SEM images of (a) the initial Al collector and the cycled Al collectors with (b) $N_2V_8L_1$ SPE and (c) $N_2V_8L_{1-0.1}$ SPE after 300 cycles.

Fig. S15. Cycling stability of Li||NCM811 cells with $N_1V_9L_1$, $N_2V_8L_1$, $N_3V_7L_1$ and $N_2V_8L_{1-0.1}$ SPEs at 0.5 C.

SPEs	T2A (ms)	T2B (ms)	Crosslinking percentage (%)	Pendulum chain percentage (%)	Crosslinking density (*E- 4mol/ml)
$N_1V_9L_1$	18.12	847.53	4.44	95.56	0.043
$N_2V_8L_1$	62.12	415.11	9.19	90.81	0.044
$N_3V_7L_1$	11.49	52.22	13	87	0.351
$N_2V_8L_{1-0.1}$	27.51	108.56	17.47	82.53	0.17

 Table S1. Comparison of crosslinking degrees of SPEs.

Table. S2. The mechanical property data for $N_2V_8L_{1-0.1}$ SPE, $N_2V_8L_1$ SPE and PVDF-

HFP memabrane.

SDEc	Young's	Elongation at	Tensile	Tensile Fracture
SPES	modulus (MPa)	break (%)	Strength (MPa)	Stress (MPa)
N ₂ V ₈ L _{1-0.1} SPE	10.77	120.71	12.18	7.32
$N_2V_8L_1$ SPE	9.31	124.22	11.1	7.91
PVDF-HFP	6.23	211.2	9.71	5.85

Table S3. Impedance data of different $Li \| LFP$ cells.

Stulo	Before cycle		After cycle	
Style	$R_{\text{bulk}}(\Omega)$	$R_{interphase}\left(\Omega ight)$	$R_{\text{bulk}}(\Omega)$	$R_{interphase}\left(\Omega ight)$
Li N1V9L1SPE LFP	4.8	147.48	4.8	276.8
Li N ₂ V ₈ L ₁ SPE LFP	16.1	153.4	14.2	197.4
Li N ₃ V ₇ L ₁ SPE LFP	18.0	272.1	19.11	295.7
Li N ₂ V ₈ L _{1-0.1} SPE LFP	10.5	160.1	9.1	157.2

Table. S4. Electrochemical performance of different SPEs reported in literature.

SPE ingredients	Voltage window (V)	Room temperature ionic conductivity (10 ⁻⁴ S·cm ⁻¹)	Cell(cycles)capacity retention/C-rate
	6.00	0.85	Li LFP (80 th)
$N_{13}D_2O_3/PEO^2$			97.5%/0.2 C
LESI DOI 2	4.70	7.90	Li LFP (500 th)
LIF SI-DOL-			69.3%/1 C
Due TESI/DEO3	4.50	3.98	Li LFP (100 th)
FyI ₁₄ IFSI/FEO ²			82.9%/0.5 C
DEO L'OCSI4	5.53	/	Li LFP (85 th)
FEO-LIFCSI			80%/0.1 C
Poly (diethylene	/	1.6	LFP Li (100 th)

glycol carbonate) ⁵			95%/0.2 C
DCL I TESI6	4.6	0.25	NCM622 Li (100 th)
PCL-LIIF5I*		0.23	81.6%/0.1 C
I TEDED /D(DO/EM)7	4.6	1 55	Li LFMP (100th)
LIII'I'D/F(FO/LM)		1.55	88.7%/0.1 C
	5	1.1	Li LFP (100 th)
I EO/EDII		1.1	88%/0.2 C
ΡΕΩ-Ι ΑΤΡ ⁹	5	0.12	Li LFP (50 th)
		0.12	84%/0.1 C
$UV-PCCE^{10}$	4.78	91	Li LFP (180 th)
C V I COL		<i>y</i> .1	83.9%/0.5 C
PEO-cPTFBC ¹¹	4.7	2.2	Li LFP (150 th)
		2.2	98.2%/0.1 C
NPGDA-VEC/PVDF-			Li LFP (1400 th)
HFP	5.10	2.64	98.4%/0.5 C
(This work)			,

References

- 1 Z. Guo, Y. Wu, X. Li, X. Wu, Q. Hu, Z. Wang, H. Guo, W. Peng, G. Yan and J. Wang, *Ionics*, 2022, **28**, 779–788.
- 2 H. Cheng, J. Zhu, H. Jin, C. Gao, H. Liu, N. Cai, Y. Liu, P. Zhang and M. Wang, *Mater. Today Energy*, 2021, 20, 100623.
- 3 L. Tian, M. Wang, Y. Liu, Z. Su, B. Niu, Y. Zhang, P. Dong and D. Long, *J. Power Sources*, 2022, **543**, 231848.
- 4 H. Yuan, J. Luan, Z. Yang, J. Zhang, Y. Wu, Z. Lu and H. Liu, ACS Appl. Mater. Interfaces, 2020, 12, 7249–7256.
- 5 X. Liu, G. Ding, X. Zhou, S. Li, W. He, J. Chai, C. Pang, Z. Liu and G. Cui, *J. Mater. Chem. A*, 2017, **5**, 11124–11130.
- 6 Y. Seo, Y.-C. Jung, M.-S. Park and D.-W. Kim, J. Membr. Sci., 2020, 603, 117995.
- Q. Wang, Z. Cui, Q. Zhou, X. Shangguan, X. Du, S. Dong, L. Qiao, S. Huang, X. Liu, K. Tang,
 X. Zhou and G. Cui, *Energy Storage Mater.*, 2020, 25, 756–763.
- 8 Q. Wang, J.-F. Wu, Z.-Y. Yu and X. Guo, Solid State Ion., 2020, 347, 115275.
- 9 L. Liu, L. Chu, B. Jiang and M. Li, Solid State Ion., 2019, 331, 89-95.
- 10 Y. Lu, K.-W. He, S.-J. Zhang, Y.-X. Zhou and Z.-B. Wang, Ionics, 2019, 25, 1607–1615.
- 11 Q. Wang, X. Liu, Z. Cui, X. Shangguan, H. Zhang, J. Zhang, K. Tang, L. Li, X. Zhou and G. Cui, *Electrochimica Acta*, 2020, 337, 135843.