Mechanistic insights into ortho-blocked and ortho-free vitrimeric polybenzoxazines incorporating dynamic Schiff linkages for closed-loop recyclability

Gaurav Rai, Leena Nebhani*

Department of Materials Science and Engineering, Indian Institute of Technology Delhi Hauz Khas, New Delhi – 110016

*Corresponding author: Leena.Nebhani@mse.iitd.ac.in

Supporting Information

Figure S1. ¹H NMR of BASA.

Figure S2. DSC of BASA and PBASA.

Table S1. Estimation of activation energy (E_a) for the benzoxazine curing using the Ozawa method.

 Table S2. Calculation of activation energy (E_a) using stress relaxation studies.

S3. Calculation of crosslink density.

Figure S3. Swelling studies in different solvents (A) PVBI, and (B) PHBI

Table S3. Swelling ratio in different solvents kept for 7 days

Figure S4. Contact angle analysis performed on PVBI and PHBI

Figure S5. FTIR of Pristine and Recycled PVBI

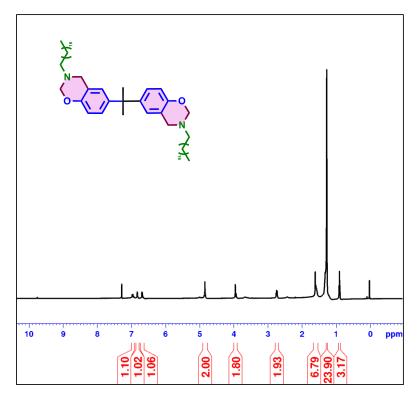


Figure S1. ¹H NMR spectra of control Sample – BASA.

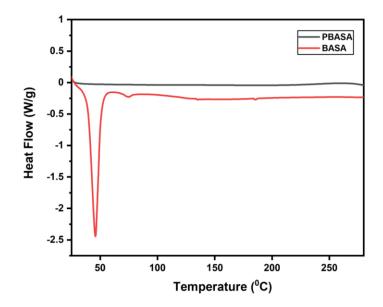


Figure S2. DSC comparison of BASA and PBASA.

Table S1. Estimation of activation energy (E _a) for the benzoxazine curing using the Ozawa	
method	

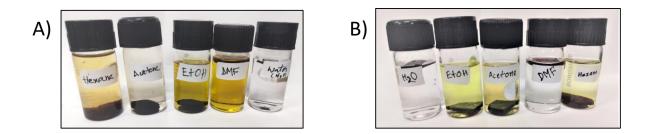
VBI	НВІ	
Y= -15.45x - 32.11 (R ² = 0.99)	Y= -12.52x - 27.509 (R ² = 0.99)	
$Ln(\beta) = -1.052E_a/RT_P + C$	$Ln(\beta) = -1.052E_a/RT_P + C$	
-15.45x = -1.052E _a /RT _P (R= 8.314 J mol ⁻¹ K ⁻¹)	-12.52x = -1.052E _a /RT _P (R= 8.314 J mol ⁻¹ K ⁻¹)	
E _a /R = 15.45/1.052	E _a /R = 12.52/1.052	
E _a = 15.45*8.314/1.052 = 122.1 kJ/mol	Ea = 12.52*8.314/1.052 = 98.9 kJ/mol	

Table S2. Calculation of activation energy (E_a) using stress relaxation studies

PVBI	РНВІ	
Y= 6.23x - 14.79 (R ² = 0.992)	Y= 8.284x - 15.66(R ² = 0.999)	
Ln(T*)= 6.18 *1000/T – 14.7	Ln(T*)= 8.28 *1000/T – 15.66	
τ * = τ ₀ exp (E_a/RT) (R = 8.314 J mol ⁻¹ K ⁻¹)	$\tau * = \tau_0 \exp (E_a/RT) (R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1})$	
$ln(\tau^*) = ln(\tau_0) + E_a/RT$	$ln(\tau^*) = ln(\tau_0) + E_a/RT$	
$E_a/R = 6.18*1000$	E _a /R = 8.284*1000	
E _a = 6.18*1000*8.314 = 51.38 kJ/mol	E _a = 8.284*1000*8.314 = 68.873 kJ/mol	

S3. Calculation of crosslink density

PHBI


$$\nu = \frac{E'}{3RT} = \frac{46.29 \times 10^6}{3 \times 8.314 \times 383.23} = 4842.2 \ mol/m^3$$

PVBI

$$\nu = \frac{E'}{3RT} = \frac{3.960 \times 10^6}{3 \times 8.314 \times 383.23} = 414.2 \ mol/m^3$$

Where v is crosslink density, E' is storage modulus determined from the rubbery plateau, R is universal gas constant and T is the temperature at which the modulus is taken.

4. Swelling studies

Figure S3. Photographs of cured polybenzoxazine in different solvents kept for one-week (A) PVBI, and (B) PHBI.

Table S3. Swelling ratio for cured polybenzoxazine in different solvents kept for one-week.

Solvent	PVBI	PHBI
Hexane	35.63	4.07
Acetone	34.64	14.97
Ethanol	13.51	3.94
DMF	15.23	2.85
Water	0.57	0.36

5. Contact angle Analysis

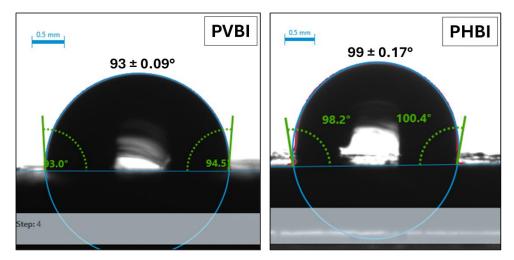


Figure S4. Contact angle analysis performed on PVBI and PHBI.

6. FTIR of Pristine and Recycled PVBI

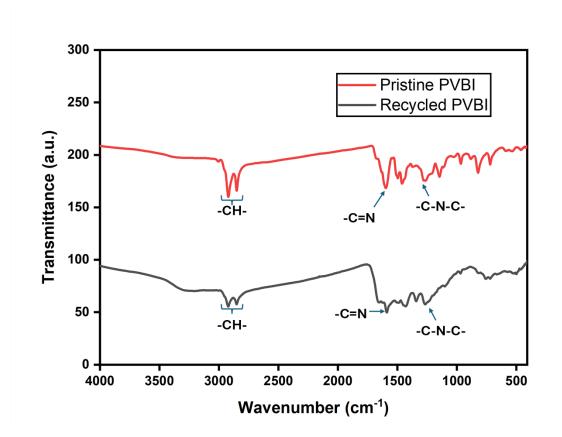


Figure S5. FTIR comparison of pristine sample and recycled sample.