SUPPORTING INFORMATION

Polymerization of Isoprene and Butadiene with Unparallel Stereoselectivity Catalysed by Rare-earth Metal Cationic Species Bearing a Novel Tridentate Ligand

Xiuling Wang,^a Yang Wang,^a Zhonglei Qin^a, Liying Shen^{*b} and Xiaochao Shi^{*a}

^aDepartment of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China. E-mail: <u>xcshi@shu.edu.cn</u>

^bHebei Key Laboratory of Heterocyclic Compounds, Handan University, Handan, 056005, China. E-mail: sly19811025@hdc.edu.cn. Figure S1 ¹H NMR spectrum of L1-H (400 MHz, CDCl₃, 25 °C)

Figure S2 ¹³C NMR spectrum of L1-H (400 MHz, CDCl₃, 25 °C)

Figure S3 ¹H NMR spectrum of 1-Sc (400 MHz, CDCl₃, 25 °C)

Figure S4¹³C NMR spectrum of 1-Sc (400 MHz, CDCl₃, 25 °C)

Figure S5 ¹H NMR spectrum of 1-Y (400 MHz, CDCl₃, 25 °C)

Figure S6 ¹³C NMR spectrum of 1-Y (400 MHz, CDCl₃, 25 °C)

Figure S7 ¹H NMR spectrum of 1-Lu (400 MHz, CDCl₃, 25 °C)

Figure S8 ¹³C NMR spectrum of 1-Lu (400 MHz, CDCl₃, 25 °C)

Figure S9 (a) Polymerization of isoprene with $1-Y / [(Ph_3C)(B(C_6F_5)_4)]$ as a precursor: molecular weight *vs* conversion. (b) Polymerization of isoprene with $1-Y / [(Ph_3C)(B(C_6F_5)_4)]$ as a precursor: molecular weight vs isoprene-to-[1-Y] ratio.

Figure S10 ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of polyisoprene catalyzed by **1-Sc** (Entry 1 in Table 1)

Figure S11 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polyisoprene catalyzed by **1-Sc** (Entry 1 in Table 1)

Figure S12 ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of polybutadiene catalyzed by **1-Sc** (Entry 3 in Table 1)

Figure S13 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polybutadiene catalyzed by **1-Sc** (Entry 3 in Table 1)

Figure S14 ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of polyisoprene catalyzed by **1-Y** (Entry 5 in Table 1)

Figure S15 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polyisoprene catalyzed by **1-Y** (Entry 5 in Table 1)

Figure S16 ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of polyisoprene catalyzed by $1-Y/[PhMe_2NH][B(C_6F_5)_4]$ (Entry 6 in Table 1)

Figure S17 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polyisoprene catalyzed by **1-Y**/[PhMe₂NH][B(C₆F₅)₄] (Entry 6 in Table 1)

Figure S18 ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of polybutadiene catalyzed by **1-Y** (Entry 14 in Table 1)

Figure S19 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polybutadiene catalyzed by **1-Y** (Entry 14 in Table 1)

Figure S20 ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of polyisoprene catalyzed by **1-Lu** (Entry 17 in Table 1)

Figure S21 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polyisoprene catalyzed by **1-Lu** (Entry 17 in Table 1)

Figure S22 ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of polybutadiene catalyzed by **1-Lu** (Entry 19 in Table 1)

Figure S23 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polybutadiene catalyzed by **1-Lu** (Entry 19 in Table 1)

Figure S24 ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of polyisoprene catalyzed by **1-Tm** (Entry 21 in Table 1)

Figure S25 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polyisoprene catalyzed by **1-Tm** (Entry 21 in Table 1)

Figure S26 ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of polybutadiene catalyzed by **1-Tm** (Entry 23 in Table 1)

Figure S27 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polybutadiene catalyzed by **1-Tm** (Entry 23 in Table 1)

Figure S28 ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of polyisoprene catalyzed by **1-Er** (Entry 25 in Table 1)

Figure S29 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polyisoprene catalyzed by **1-Er** (Entry 25 in Table 1)

Figure S30 ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of polybutadiene catalyzed by **1-Er** (Entry 27 in Table 1)

Figure S31 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polybutadiene catalyzed by **1-Er** (Entry 27 in Table 1)

Figure S32 ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of polyisoprene catalyzed by **1-Ho** (Entry 29 in Table 1)

Figure S33 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polyisoprene catalyzed by **1-Ho** (Entry 29 in Table 1)

Figure S34 ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of polybutadiene catalyzed by **1-Ho** (Entry 31 in Table 1)

Figure S35 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polybutadiene catalyzed by **1-Ho** (Entry 31 in Table 1)

Figure S36 ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of copolymer **P-1** catalyzed by **1-Y** (Entry 1 in Table 2)

Figure S37 ¹³C NMR (400MHz, CDCl₃, 25 °C) spectrum of copolymer **P-1** catalyzed by **1-Y** (Entry 1 in Table 2)

Figure S38 ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of copolymer **P-2** catalyzed by **1-Y** (Entry 2 in Table 2)

Figure S39 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of copolymer P-2 catalyzed by 1-Y (Entry 2 in Table 2)

Figure S40 ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of copolymer **P-3** catalyzed by **1-Y** (Entry 3 in Table 2)

Figure S41 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of copolymer **P-3** catalyzed by **1-Y** (Entry 3 in Table 2)

Figure S42 ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of copolymer **P-4** catalyzed by **1-Y** (Entry 4 in Table 2)

Figure S43 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of copolymer **P-4** catalyzed by **1-Y** (Entry 4 in Table 2)

Figure S44 ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of copolymer **P-5** catalyzed by **1-Y** (Entry 5 in Table 2)

Figure S45 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of copolymer P-5 catalyzed by 1-Y (Entry 5 in Table 2)

Figure S46 ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of copolymer **P-6** catalyzed by **1-Y** (Entry 6 in Table 2)

Figure S47 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of copolymer **P-6** catalyzed by **1-Y** (Entry 6 in Table 2)

Figure S48 ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of copolymer **P-7** catalyzed by **1-Y** (Entry 7 in Table 2)

Figure S49 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of copolymer P-7 catalyzed by 1-Y (Entry 7 in Table 2)

Table S1 The data for Fineman-Ross diagram

Table S2 The data for content of isoprene and butadiene in the copolymers versus the conversions

Figure S50 DSC curves of highly trans-1,4-PBD

Figure S51 DSC curves of copolymers after hydrogenation

Figure S2¹³C NMR spectrum of L1-H (400 MHz, CDCl₃, 25 °C)

Figure S4 ¹³C NMR spectrum of 1-Sc (400 MHz, C₆D₆, 25 °C)

Figure S9 (a) Polymerization of isoprene with $1-Y / [(Ph_3C)(B(C_6F_5)_4)]$ as a precursor: molecular weight *vs* conversion. (b) Polymerization of isoprene with $1-Y / [(Ph_3C)(B(C_6F_5)_4)]$ as a precursor: molecular weight vs isoprene-to-[1-Y] ratio.

Figure S11 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polyisoprene catalyzed by **1-Sc** (Entry 1 in Table 1)

<5.13
<5.11
<5.11
<4.73
<4.65
</pre>

by 1-Sc (Entry 3 in Table 1)

by 1-Y (Entry 5 in Table 1)

Figure S17 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polyisoprene catalyzed by 1-Y/[PhMe₂NH][B(C₆F₅)₄] (Entry 6 in Table 1)

by 1-Y (Entry 14 in Table 1)

by **1-Lu** (Entry 17 in Table 1)

Figure S23 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polybutadiene catalyzed by 1-Lu (Entry 19 in Table 1)

Figure S25 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polyisoprene catalyzed by 1-Tm (Entry 21 in Table 1)

Figure S27 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polybutadiene catalyzed by 1-Tm (Entry 23 in Table 1)

Figure S29 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polyisoprene catalyzed by 1-Er (Entry 25 in Table 1)

Figure S31 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polybutadiene catalyzed by 1-Er (Entry 27 in Table 1)

Figure S33 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polyisoprene catalyzed by 1-Ho (Entry 29 in Table 1)

-5.15

Figure S35 ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of polybutadiene catalyzed by 1-Ho (Entry 31 in Table 1)

catalyzed by **1-Y** (Entry 1 in Table 2)

catalyzed by **1-Y** (Entry 2 in Table 2)

catalyzed by **1-Y** (Entry 3 in Table 2)

-5.40 -5.12

catalyzed by **1-Y** (Entry 4 in Table 2)

catalyzed by 1-Y (Entry 5 in Table 2)

-5.40 -5.12

catalyzed by **1-Y** (Entry 6 in Table 2)

catalyzed by **1-Y** (Entry 7 in Table 2)

$F = (M_1/M_2)$	$F=(m_1/m_2)$	F ² /f	F(f-1)/f
0.25	0.55	0.11	-0.20
0.67	1.49	0.30	0.22
1.00	2.20	0.46	0.55
1.50	3.45	0.65	1.07
2.33	5.88	0.93	1.94

Table S1 The data for Fineman-Ross diagram

 Table S2 The data for content of isoprene and butadiene in the copolymers versus the conversions

Entry	Conversion	Content of PIP sequence	Content of PBD sequence in the polymer
1	15.9	66.7	33.3
2	27.8	66.4	33.6
3	42.2	64.4	35.6
4	54.3	63.1	36.9
5	68.9	61.3	38.7
6	73.8	59.7	40.3
7	82.4	57.5	42.5
8	90.9	54.3	45.7
9	92.8	53.5	46.5
10	100.0	50.7	49.3

Figure S50 DSC curves of highly trans-1,4-PBD

Figure S51 DSC curves of copolymers after hydrogenation