Supplementary Information (SI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Interpretable Machining Learning Assisted Insight into Bifunctional Squaramide Catalyzed Ring-opening Polymerization of Lactide

Shaoju Cao¹, Mengting Hong¹, Junyuan Hu², Zhenjiang Li^{1,*}, Jin Huang^{1,*}, and Kai Guo¹

¹ State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China

² Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.

Table of Contents

Sable of Contents	1
Aaterials	2
nstruments	2
Experimental Procedures	
innorting Tables	9
appoints	13
apporting Figures	38
Join parational internets	

Materials

L-Lactide (L-LA; 99.5%) was purchased from Jinan Daigang Biomaterial Co. and purified by recrystallization from anhydrous toluene and dried under vacuum overnight (40 °C). Dichloromethane (>99.5%, Sinopharm Chemical Reagent Co.) was distilled over CaH₂ in an argon environment, and further dried over 4 Å molecular sieve pellets for 48 h before use. Tetrahydrofuran (THF; HPLC, Aldrich), 3-phenylpropanol (PPA) were dried and stored over 4 Å molecular sieves under an inert atmosphere. Pentaerythritol was dried over P₂O₅ in a vacuum before use. Pentaerythritol was dried over P₂O₅ in a vacuum before use. Pentaerythritol was dried over P2O5 in a vacuum before use. Ethanol (EtOH) was purchased from Sinopharm Chemical Reagent Co. Sodium hydroxide(NaOH), Lithium hydroxide(LiOH), Potassium hydroxide(KOH) and Cesium hydroxide(CsOH) were purchased from Sinopharm Chemical Reagent Co. Aniline, Benzylamine, 3,5-bis(trifluoromethyl)aniline, 4-tert-Butylaniline, Cyclohexylamine, Butylamine and tert-Butylamine were purchased from J&K Scientific Ltd. Diethyl squarate was purchased from J&K Scientific Ltd. Glycine(Gly), L-Alanine(L-Ala) , L-Valine(L-Vla), L-Isoleucine(L-Ile), β-Alanine, 4-Aminobutyric acid, 5-Aminovaleric acid, 6-Aminocaproic acid, 7-Aminoheptanoic acid, 8-Aminooctanoic acid, 9-azanylnonanoic acid, 10-Aminodecanoic acid, 11-Aminoundecanoic acid and 12-Aminododecanoic acid were purchased from Diba Biotechnology Co. 12-Crown-4, 15-Crown-5 and 18-Crown-6 were purchased from Maclean's Biochemical Technology Co.

Instruments

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were measured using deuterated chloroform (CDCl₃) as solvent on a Bruker AVANCE Ultrashield Plus spectrometer at 298K. Positive-ion MALDI Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) was performed on a Bruker Co. Ultrafiltrate mass spectrometer equipped with a Smartbeam/Smartbeam II modified laser (Nd: YAG) at 25 kV acceleration voltage. The polymer sample was dissolved in CHCl₃ at a concentration of 1 mg·mL⁻¹ with the addition of 50 μ L of 2 mg·L⁻¹ sodium iodide (NaI). 2,5-dihydroxybenzoic acid (DHB) was applied as a matrix and 1 μ L of 40 mg·mL⁻¹ solution was dropped to a stainless-steel target and air-dried. After the crystallization of DHB, the 1 μ L of the polymer solution was dropped on the crystal and air-dried. Size Exclusion Chromatography (SEC) was performed in tetrahydrofuran (THF) at room temperature at a flow rate of 0.7 mL min⁻¹ using an SSI 1500 pump equipped with a Waters column (5 μ m, 300 mm × 7.8 mm), and a Wyatt Optilab rEX differential refractive index (DRI) detector with a 658 nm light source. All SEC data were analyzed using Wyatt Astra V 6.1.1 software. The molecular weight distribution (*D*) was determined by a calibration with standard polystyrene samples.

Experimental Procedures

Preparation of the squaramide catalysts

Scheme S1. Synthesis of squaramide catalysts at ambient temperature

Square amide alkali metal carboxylate catalysts are synthesized by a two-step amine substitution reaction. Taking synthesis of 01 as an example. Aniline (0.93 g, 10 mmol, 1.0 equiv.) and diethyl squarate (1.7 g, 10 mmol, 1.0 equiv.) were added to a 50 mL vial and stirred using magnetic stir bar with ethanol as a solvent (20 mL) for 24 h at ambient temperature. The solvent was removed under vacuum to yield the single substituted product. Afterward, glycine (0.45 g, 5 mmol, 1.0 equiv.) and 1.0 M NaOH (5 mL) were added to a 25 mL flask at room temperature. After 8 h, 7.5 mL of ethanol was added to solubilize the single substituted product (1.1 g, 5 mmol, 1.0 equiv.). The reaction was quenched after 4 h and ethanol was removed under vacuum and dried for 24 h to yield 01 (yield = 80%. White powder.).

Catalyst 01

Catalyst 01 1.24 g; yield = 80%. White powder.¹H NMR (400 MHz, DMSO- d_6) δ 12.29 (s, 1H), 8.78 (s, 1H), 7.97 (d, J = 8.0 Hz, 2H), 7.25 (t, J = 7.9 Hz, 2H), 6.93 (t, J = 7.3 Hz, 1H), 4.08 (d, J = 4.6 Hz, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 184.32, 180.31, 170.38, 168.31, 140.37, 128.75, 121.76, 118.72, 48.06, 39.52. Chemical Formula: C₁₂H₉N₂NaO₄.

Catalyst 02

Catalyst 02 1.16 g; yield = 75%. Yellow powder.¹H NMR (400 MHz, DMSO- d_6) δ 12.49 (s, 1H), 9.19 (s, 1H), 7.94 (s, 2H), 7.23 (t, J = 7.6 Hz, 2H), 6.91 (t, J = 7.4 Hz, 1H), 4.40 (q, J = 7.0 Hz, 1H), 1.36 (d, J = 7.0 Hz, 3H). Chemical Formula: C₁₃H₁₁N₂NaO₄.

Catalyst 03

Catalyst 02 1.25 g; yield = 81%. Light yellow powder. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.48 (s, 1H), 9.02 (s, 1H), 7.99 (d, *J* = 7.8 Hz, 2H), 7.31 – 7.20 (m, 2H), 6.93 (t, *J* = 7.3 Hz, 1H), 4.38 (dd, *J* = 9.4, 5.4 Hz, 1H), 2.08 (dq, *J* = 13.7, 6.7 Hz, 1H), 0.91 (dd, *J* = 9.8, 6.8 Hz, 6H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 183.80, 180.19, 172.65, 168.85, 163.69, 128.84, 121.73, 118.52, 32.46, 19.12, 17.78. Chemical Formula: C₁₄H₁₂N₂NaO₄.

Catalyst 04

Catalyst 04 1.3 g; yield = 81%. Yellow powder. ¹H NMR (400 MHz, DMSO- d_6) δ 12.78 (s, 1H), 9.14 (s, 1H), 8.05 (d, 2H), 7.24 (m, 2H), 6.91 (t, 1H), 4.39 (d, 1H), 1.78 (m, 1H), 1.56 (m, 1H), 1.11 (m, 1H), 0.90 (m, J = 6.8 Hz, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 183.78, 172.65, 168.70, 163.75, 128.78, 121.57, 118.61, 63.91, 39.52, 24.58, 11.74. Chemical Formula: C₁₅H₁₄N₂NaO₄.

Catalyst 06

Catalyst 06 1.3 g; yield = 81%. White powder. ¹H NMR (400 MHz, DMSO- d_6) δ 12.44 (s, 1H), 9.09 (s, 1H), 7.86 (d, 2H), 7.28 (d, 2H), 4.40 (q, 1H), 1.38 (d, 3H), 1.26 (s, 9H). ¹³C NMR (101 MHz, DMSO- d_6) δ 183.57, 180.19, 173.82, 167.78, 164.24, 144.09, 137.76, 125.37, 118.58, 54.42, 33.87, 31.23, 22.63. Chemical Formula: C₁₇H₁₉N₂NaO₄.

Catalyst 07

Catalyst 07 1.13 g; yield = 73%. White powder. ¹H NMR (400 MHz, DMSO- d_6) δ 10.30 (s, 1H), 8.40 (s, 1H), 7.39 (d, J = 7.2 Hz, 2H), 7.32 (t, J = 7.4 Hz, 2H), 7.24 (t, J = 7.2 Hz, 1H), 4.66 (d, J = 6.6 Hz, 2H), 4.12 (p, J = 6.8 Hz, 1H), 1.31 (d, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 182.33, 182.08, 173.89, 167.00, 139.80, 128.40, 127.77, 126.97, 53.64, 46.43, 22.40.Chemical Formula: C₁₄H₁₃N₂NaO₄.

Catalyst 08

Catalyst 08 1.33 g; yield = 86%. White powder. ¹H NMR (400 MHz, DMSO- d_6) δ 9.51 (s, 1H), 8.34 (s, 1H), 4.19 – 4.12 (m, 1H), 3.78 (dtd, J = 15.0, 7.3, 6.9, 4.0 Hz, 1H), 1.75 (d, J = 49.9 Hz, 6H), 1.49 (d, J = 35.1 Hz, 4H). ¹³C NMR (101 MHz, DMSO- d_6) δ 181.93, 173.76, 167.27, 53.67, 52.15, 33.70, 24.85, 24.41, 22.42. Chemical Formula: C₁₃H₁₇N₂NaO₄.

Catalyst 09 1.33 g; yield = 86%. Yellow powder. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.23 (s, 1H), 8.47 (s, 1H), 4.23 (q, 1H), 1.36 (s, 9H), 1.27 (d, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 182.08, 173.76, 167.86, 167.40, 54.03, 51.86, 30.42, 22.27. Chemical Formula: C₁₁H₁₅N₂NaO₄.

Catalyst 10

Catalyst 09 0.95 g; yield = 61%. Yellow powder. ¹H NMR (400 MHz, DMSO- d_6) δ 9.76 (s, 1H), 8.36 (s, 1H), 4.10 (q, 1H), 3.49 (m, 2H), 1.30 (m, 4H), 0.87 (d, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 182.27, 181.79, 173.78, 168.29, 166.72, 53.73, 42.69, 32.84, 22.53, 19.16. Chemical Formula: C₁₁H₁₅N₂NaO₄.

Catalyst 11

Catalyst 11 1.24 g; yield = 80%. Yellow powder. ¹H NMR (400 MHz, DMSO- d_6) δ 12.51 (s, 1H), 9.15 (s, 1H), 7.99 (d, J = 8.0 Hz, 2H), 7.31 – 7.20 (m, 2H), 6.93 (t, J = 7.3 Hz, 1H), 4.49 – 4.40 (m, 1H), 1.37 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 183.85, 173.94, 167.94, 164.20, 140.47, 128.82, 121.82, 118.77, 54.54, 22.64. C₁₃H₁₁N₂LiO₄.

Catalyst 12

Catalyst 12 1.24 g; yield = 80%. Yellow powder.¹H NMR (400 MHz, DMSO- d_6) δ 12.64 (s, 1H), 9.20 (s, 1H), 8.02 (d, J = 7.4 Hz, 2H), 7.29 – 7.21 (m, 2H), 6.93 (t, J = 7.3 Hz, 1H), 4.44 (s, 1H), 1.37 (d, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 183.84, 180.18,173.86, 167.91, 164.20, 140.53, 128.77, 121.77, 118.80, 54.55, 22.66. Chemical Formula: C₁₃H₁₁KN₂O₄.

Catalyst 13 1.24 g; yield = 80%. Yellow powder.¹H NMR (400 MHz, DMSO- d_6) δ 12.59 (s, 1H), 9.18 (s, 1H), 8.01 (d, J = 8.7 Hz, 2H), 7.30 – 7.20 (m, 2H), 6.93 (t, J = 7.3 Hz, 1H), 4.48 – 4.39 (m, 1H), 1.37 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 183.83, 180.18, 173.80, 167.93, 164.19, 140.51, 128.78, 121.78, 118.78, 54.52, 22.61. Chemical Formula: C₁₃H₁₁CsN₂O₄.

Catalyst 14

Catalyst 14 1.25 g; yield = 81%. Yellow powder.¹H NMR (400 MHz, DMSO- d_6) δ 12.71 (s, 1H), 9.92 (s, 1H), 7.64 (d, J = 7.8 Hz, 2H), 7.27 – 7.20 (m, 2H), 6.91 (t, J = 7.3 Hz, 1H), 3.78 (s, 2H), 2.29 – 2.23 (m, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 184.35, 180.00, 174.91, 169.70, 164.36, 140.42, 128.69, 118.71, 41.53, 38.90. Chemical Formula: C₁₃H₁₁N₂NaO₄.

Catalyst 15

Catalyst 15 1.25 g; yield = 81%. Yellow powder. ¹H NMR (400 MHz, DMSO- d_6) δ 12.51 (s, 1H), 9.95 (s, 1H), 7.77 (d, J = 8.0 Hz, 2H), 7.25 (dd, J = 8.6, 7.3 Hz, 2H), 6.93 (t, J = 7.3 Hz, 1H), 3.59 (t, J = 7.0 Hz, 2H), 2.11 (t, J = 7.3 Hz, 2H), 1.81 (p, J = 7.3 Hz, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 184.10, 180.18, 176.38, 169.68, 164.38, 128.80, 121.69, 118.49, 43.71, 34.69, 28.06. Chemical Formula: C₁₄H₁₃N₂NaO₄.

Catalyst 16

Catalyst 16 1.25 g; yield = 81%. Yellow powder. ¹H NMR (400 MHz, DMSO- d_6) δ 12.79 (s, 1H), 10.83 (s, 1H), 7.65 (d, J = 7.4 Hz, 2H), 7.29 – 7.18 (m, 2H), 6.94 – 6.87 (m, 1H), 3.56 (s, 2H), 2.03 (d, J = 6.8 Hz, 2H), 1.62 – 1.46 (m, 4H). ¹³C NMR (101 MHz, DMSO- d_6) δ 184.3, 179.93, 177.43, 140.52, 128.72, 118.63, 43.72, 37.74, 30.99, 23.46. Chemical Formula: C₁₅H₁₅N₂NaO₄.

Catalyst 17 0.78 g; yield = 78%. Yellow powder. ¹H NMR (400 MHz, DMSO-d6) δ 12.70 (s, 1H), 10.29 (s, 1H), 7.75 (d, J = 8.0 Hz, 2H), 7.32 – 7.20 (m, 2H), 6.92 (t, J = 7.3 Hz, 1H), 3.56 (d, J = 4.5 Hz, 2H), 2.01 (t, J = 7.3 Hz, 2H), 1.63 – 1.30 (m, 6H). ¹³C NMR (101 MHz, DMSO-d6) δ 184.18, 180.12, 177.70, 169.44, 128.82, 121.69, 118.50, 43.61, 37.96, 30.72, 26.19, 26.12.

Catalyst 18

Catalyst 18 1.1 g; yield = 80%. Yellow powder. ¹H NMR (400 MHz, DMSO-d6) δ 12.83 (s, 1H), 10.50 (s, 1H), 7.70 (d, J = 8.0 Hz, 2H), 7.28 – 7.21 (m, 2H), 6.91 (t, J = 7.3 Hz, 1H), 3.59 (d, J = 5.4 Hz, 2H), 2.00 (t, J = 6.9 Hz, 2H), 1.60 – 1.32 (m, 8H). ¹³C NMR (101 MHz, DMSO-d6) δ 184.31, 180.04, 177.63, 169.82, 164.49, 128.80, 121.68, 118.56, 43.63, 38.08, 30.40, 29.02, 26.25, 26.19.

Catalyst 19

Catalyst 19 0.9 g; yield = 80%. Yellow powder. ¹H NMR (400 MHz, DMSO- d_6) δ 12.82 (s, 1H), 10.25 (s, 1H), 7.71 (d, J = 8.0 Hz, 2H), 7.24 (t, J = 7.9 Hz, 2H), 6.91 (t, J = 7.3 Hz, 1H), 3.57 (d, J = 7.8 Hz, 2H), 1.98 (t, J = 7.1 Hz, 2H), 1.61 – 1.27 (m, 10H). ¹³C NMR (101 MHz, DMSO- d_6) δ 184.20, 180.11, 177.48, 169.78, 164.46, 128.81, 121.7, 118.51, 43.45, 38.05, 30.56, 29.24, 28.74, 26.23, 25.91.

Catalyst 20

Catalyst 20 1.05 g; yield = 79%. Yellow powder. ¹H NMR (400 MHz, DMSO- d_6) δ 12.77 (s, 1H), 10.70 (s, 1H), 7.69 (d, J = 8.0 Hz, 2H), 7.24 (t, J = 7.8 Hz, 2H), 6.92 (t, J = 7.3 Hz, 1H), 3.55 (q, J = 5.8 Hz, 2H), 1.98 (t, J = 7.0 Hz, 2H), 1.48 (d, J = 147.0 Hz, 12H). ¹³C NMR (101 MHz, DMSO- d_6) δ 184.24, 180.16, 177.53, 128.75, 121.65, 118.63, 42.79, 39.10, 38.89, 38.09, 30.10, 28.23, 27.33, 24.62.

Catalyst 21

Catalyst 21 1.05 g; yield = 79%. Yellow powder. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.77 (s, 1H), 10.46 (s, 1H), 7.66 (d, *J* = 8.1 Hz, 2H), 7.24 (t, *J* = 7.7 Hz, 2H), 6.92 (d, *J* = 7.4 Hz, 1H), 3.57 (t, *J* = 6.4 Hz, 2H), 1.98 (t, *J* = 7.1 Hz, 2H), 1.58 – 1.26 (m, 14H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 184.28, 169.93, 128.77, 121.67, 118.62, 43.24, 38.83, 30.28, 29.30, 28.56, 28.01, 27.99, 25.87, 25.21.

Catalyst 22 1.01 g; yield = 78%. Yellow powder. ¹H NMR (400 MHz, DMSO- d_6) δ 12.77 (s, 1H), 10.70 (s, 1H), 7.69 (d, J = 8.0 Hz, 2H), 7.24 (t, J = 7.8 Hz, 2H), 6.92 (t, J = 7.3 Hz, 1H), 3.55 (q, J = 5.8 Hz, 2H), 1.98 (t, J = 7.0 Hz, 2H), 1.27 (s, 16H). ¹³C NMR (101 MHz, DMSO- d_6) δ 184.31, 177.54, 164.58, 128.74, 121.64, 118.63, 43.02, 37.89, 30.29, 29.1, 28.56, 28.11, 28.08, 28.05, 25.96, 25.46.

Catalyst 23

Catalyst 23 1.02 g; yield = 77%. Yellow powder. ¹H NMR (400 MHz, DMSO- d_6) δ 12.86 (s, 1H), 11.10 (s, 1H), 7.66 (d, J = 8.0 Hz, 2H), 7.24 (dd, J = 8.5, 7.2 Hz, 2H), 6.92 (t, J = 7.3 Hz, 1H), 3.60 (d, J = 5.8 Hz, 2H), 2.01 – 1.98 (m, 2H), 1.57 – 1.27 (m, 18H). ¹³C NMR (101 MHz, DMSO- d_6) δ 184.42, 180.00, 177.65, 169.95, 164.51, 140.50, 128.74, 121.65, 118.71, 43.49, 37.81, 29.86, 27.82, 27.78, 27.75, 27.74, 27.70, 27.67, 27.62, 25.04.

1.2 Ring-opening polymerization of L-lactide catalyzed by squaramide-carboxylate

Scheme S2. Ring-opening polymerization of LLA using catalyst 02

In an argon-filled glovebox, L-LA (240 mg, 1.67 mmol, 25 equiv.), squaramide-carboxylate (4.7 mg, 0.017 mmol 0.25 equiv), and PPA (9 μ L, 0.067 mmol 1 equiv) were charged in a 10 mL reaction vial. The reaction mixture was stirred at 140 °C. After predetermined time, the polymerization was quenched by benzoic acid. The attained polymer was dissolved in a minimum amount of CH₂Cl₂ and precipitated in cold methanol. The monomer conversion that was determined from the ¹H NMR spectroscopy. ¹H NMR(CDCl₃) δ (ppm), 1.58 (m, 3H × n, (-CH₃)n), 1.97 (q, 2H, ArCH₂CH₂-), 2.67 (t, 2H, ArCH₂-), 4.15 (m, 2H, ArCH₂CH₂-), 4.36 (m, 1H, -CH(CH₃)OH), 5.10–5.23 (q, 1H × n − 1, (-CH(CH₃)O–)_{n-1}), 7.15–7.31 (m, 5H, aromatic).

Chart S1. SISSO Algorithm Workflow Representation

Supporting Tables

Table S1. Ring-opening polymerizations of LLA catalyzed by different CS.^a

Entry	Catalyst	Time (h)	Conv. ^b (%)	TOF ^c (h ⁻¹)	$M_{ m n,calcd}^d$ (kg mol ⁻¹)	$M_{ m n,NMR}^{e}$ (kg mol ⁻¹)	$M_{ m n,SEC}$ (kg mol ⁻¹)	D^d
1	01	6	13	2.2	0.6	0.6	_	_
2	02	6	61	10.2	2.3	2.0	3.6	1.08
3	03	6	63	10.5	2.3	2.0	4.1	1.10
4	04	6	64	10.7	2.4	2.1	1.5	1.11
5	05	6	49	8.2	1.8	1.8	4.3	1.17
6	06	6	53	8.8	2.0	1.6	12.4	1.02
7	07	6	42	7.0	1.6	1.4	3.6	1.09
8	08	6	37	6.2	1.4	2.0	2.8	1.10
9	09	6	45	7.5	1.7	1.6	2.8	1.05
10	10	6	59	9.8	2.1	1.9	4.1	1.10

 a [LLA] $_{0}/[PPA]_{0}/[Cat.] = 25/1/0.25$; Temp.140°C; bulk. b Determined by ¹H NMR in CDCl₃. b Determined by ¹H NMR in CDCl₃. c Calculated from ([M] $_{0}/[I]_{0}) \times \text{conv.} \times (M_{w} \text{ of LLA}) + (M_{w} \text{ of BnOH})$. d Determined by SEC in THF using an absolute method of measurement (dn/dc = 0.05). c Calculated by TOF (h⁻¹) = ([M]_{0} \times \text{Conv.})/([Cat.]_{0} \times \text{polymerization time}).

Table S2 Apparent rate constants (kobs) of the LLA polymerization.a

Entry	Crown	Cation	$[Crown]_0 / [Cat.]_0$	$k_{\rm obs} \times 10^{-4} {\rm min^{-1}}$
1	12	Li ⁺	0	56.9
2	12	Li ⁺	0.5	2.3
3	12	Li ⁺	1	2.6
4	12	Li ⁺	2	6.6
5	12	Na^+	0	96.5
6	12	Na^+	0.5	70.2
7	12	Na^+	1	70.7
8	12	Na^+	2	223.6
9	12	\mathbf{K}^+	0	158.1
10	12	\mathbf{K}^+	0.5	223.7
11	12	\mathbf{K}^+	1	158.1
12	12	\mathbf{K}^+	2	231.5
13	15	Li ⁺	0	56.9
14	15	Li ⁺	0.5	98.6
15	15	Li ⁺	1	4.1
16	15	Li ⁺	2	1.5
17	15	Na^+	0	96.5
18	15	Na^+	0.5	111.8
19	15	Na^+	1	111.8
20	15	Na^+	2	103.8
21	15	K^+	0	158.1
22	15	\mathbf{K}^+	0.5	223.6
23	15	\mathbf{K}^+	1	169.0
24	15	\mathbf{K}^+	2	223.6
25	18	Li ⁺	0	56.9
26	18	Li ⁺	0.5	4.8
27	18	Li ⁺	1	1.1
28	18	Li ⁺	2	5.4
29	18	Na^+	0	96.5
30	18	Na^+	0.5	158.1
31	18	Na^+	1	174.6
32	18	Na^+	2	223.7
33	18	K^+	0	158.1
34	18	K^+	0.5	260.1
35	18	\mathbf{K}^+	1	260.1
36	18	\mathbf{K}^+	2	158.1

^aDetermined from the semilogarithmic plots of LLA polymerizations initiated with PPA and catalysed with different catalysts.

Reaction conditions of the polymerizations: $[LLA]_0/[PPA]_0/[Catalysis]_0 = 25/1/0.25, 140 \ ^{\circ}C$

Entry	Feature symbol	Description	Unit
1	С	ratio of crown ether	-
2	r _d	radius of alkali cation	Å
3	⊿E	dissociation energy of catalyst complex (electronic	eV
		energy)	
4	⊿G	dissociation energy of catalyst complex (Gibbs free	kcal ·mol ⁻¹
		energy)	
5	$\varDelta E_n$	weight of $\Delta E (\Delta E_n = \Delta E \cdot c)$	eV
6	ΔG_n	weight of $\Delta G (\Delta G_n = \Delta G \cdot c)$	kcal·mol ⁻¹
7	%V_Bur ^a	percent buried volume centered on alkali cation	-
8 ^b	$E_{ m N}$	the electronic energy of catalyst molecule	Hartree
9	$E_{\rm N-1}$	the electronic energy of catalyst molecule (subtract	Hartree
		one lectron)	
10	$E_{\rm N^{+1}}$	the electronic energy of catalyst molecule (gain one	Hartree
		electron)	
11	$E^{\rm N}_{\rm HOMO}$	HOMO orbital energy of catalyst	Hartree
12	$E^{ m N-1}$ homo	HOMO orbital energy of catalyst	Hartree
13	V _{IP}	vertical ionization potential	Hartree
14	$V_{\rm EA}$	vertical electron affinity	-
15	C_{p}	chemical potential	-
16	Н	hardness	-
17	S	softness	Hartree ⁻¹
18	$N_{ m i}$	nucleophilicity index	Hartree
19	$E_{\rm i}$	electrophilicity index	-
20	$H_{ m sf}$	Hirshfeld charge of alkali cation	-

Table S3 Primary features derived from bench experiments and DFT simulation

21	$H_{\rm adch}$	atomic dipole moment-corrected Hirshfeld charges	-
22	M_{q} N	Hirshfeld charge of alkali cation	-
23	M_{q}^{N-1}	Hirshfeld charge of alkali cation (subtract one	-
		electron)	
24	$M_q^{ m N+1}$	Hirshfeld charge of alkali cation (gain one electron)	-
25	M_{f^+}	condensed Fukui function (nucleophilic reaction)	-
26	M_{f} -	condensed Fukui function (electrophilic reaction)	-
27	M _{nu}	condensed local nucleophilicity	-
28	M_{s^+}	relative nucleophilicity index	-
29	<i>M</i> _s -	relative electrophilicity index	-

a the optimized structures were analysed using the open-source Python package DBSTEP¹; b data presented at entry 8-29 derived from optimized structures and further analysed by the Multiwfn software package².

Table S4. The correlation	between k_{obs} and	l physical descrip	otors analysed by	SISSO model.
---------------------------	-----------------------	--------------------	-------------------	--------------

Q1	$k_{obs} = b + a \cdot \left(\frac{E_N}{\Delta E_n}\right) \cdot \left(M_{S+} - \Delta G_n\right)$	$R^{2}=0.74 RMSE = 3.57$
Q2	$k_{obs} = b + a_1 \left(\left \left(\left(H_{adch} \cdot c \right) - \left(\frac{M_{nu}}{H_{adch}} \right) \right) \right \right) + a_2 \left(\left(\frac{E_N}{\Delta E_n} \right) \cdot \left(M_{S+} - \Delta G_n \right) \right) \right $	$R^{2}=0.89$ RMSE = 2.34
Q3	$k_{obs} = b + a(E_N \cdot r) \cdot (M_{S+} - \Delta E)$	$R^2 = 0.69$ RMSE = 3.87
Q4	$k_{obs} = b + a_1 \left(\frac{\sin(\Delta E_n)}{M_{S+} - \% V_{Bur}} \right) + a_2 (E_N \cdot r \cdot (M_{S+} - \Delta G))$	$R^2 = 0.88$ RMSE = 2.45

Figure S1. ¹H NMR spectrum of polylactide initiated by PPA in CDCl₃ (Table 1, entry 1). Experimental conditions: 1.6 mmol LLA, $[PPA]_0/[Catalysis]_0/[LLA]_0 = 1/0.25/25$, at 140 °C, in bulk for 6 h.

Figure S2. SEC traces of the obtained PLA samples with series ratios of $[M]_0/[I]_0=25$; 50;100; 200 (**Table 1**, entry 1-4) (eluent, THF; flow rate, 0.7 ml min⁻¹).

mass = [H₂O] + [monomer unit] x n + Na⁺

Figure S3. MALDI mass spectrum of PLLA (precipitation from ethanol), magnification between m/z = 1800 and m/z = 3000. Table 1 entry 1. Purification was carried out by precipitation in ethanol.

Figure S4. Semilogarithmic kinetic plot of the ROP of LLA catalyzed by squaramide-carboxylate with different lengths of CH_2 segments. Conditions: $[LLA]_0/[BnOH]_0/[Cat.] = 25/1/0.25$, $T = 140^{\circ}C$ in bulk.

Figure S5. The relaxed scan of dihedral angle C6-N9-C16-C11. The phenyl group was replaced by methyl to reduce the cost of simulation. The gradual increase of dihedral angle leads to different the rotation energies, where the high energy required for **02** to rotate as compared to **01** (ΔE_{02} vs ΔE_{01} , 2.19 vs 0.2 kcal·mol⁻¹). This demonstrate the steric hinderance induced by methyl group enables a stable structure for the catalyzation process. Calculation level: B3LYP//6-31+G(d,p).

Figure S6. ¹H NMR spectrum (DMSO-d₆, 400 MHz) of catalyst 02 and 15-crown-5 with different ratios.

Figure S7. Heatmap representing the correlation between k_{obs} and single descriptor (electronic, thermodynamic, and bench results) for CS, deeper blue color represents stronger correlation.

Figure S8. The visulization of the representative SISSO model with different physical descriptors. 70% of k_{obs} was randomly selected for training, while the remaining 30% was used for testing.

Figure S10. ¹³C NMR spectrum (DMSO-d₆, 101 MHz) of catalyst 01

Figure S12. ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of catalyst 03

Figure S14. ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of catalyst 04

Figure S16. ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of catalyst 05

Figure S18. ¹H NMR spectrum (DMSO-*d*₆,400 MHz) of catalyst 07

Figure S20. ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of catalyst 08

Figure S22. ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of catalyst 09

Figure S24. ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of catalyst 10

Figure S32. ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of catalyst 14

Figure S34. ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of catalyst 15

Figure S36. ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of catalyst 16

Figure S38. ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of catalyst 17

Figure S40. ¹H NMR spectrum (DMSO-d₆, 400 MHz) of catalyst 18

Figure S42. ¹H NMR spectrum (DMSO-d₆, 400 MHz) of catalyst 19

Figure S44. ¹H NMR spectrum (DMSO-d₆, 400 MHz) of catalyst 20

Figure S48. ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of catalyst 22

Figure S50. ¹H NMR spectrum (DMSO-d₆, 400 MHz) of catalyst 23

Computational Methods

Geometry optimizations of structures, binding energy of complexes were performed using Gaussian 16 program³, the structures were illustrated by CYLview⁴. the structures were optimized at B3LYP//Def2TZVP and single-point energy were obtained on optimized structures with B3LYP/SDD. The physical descriptors were withdrawn by the Multiwfn program⁵.

Ν	1.69897400	0.22444000	0.00174100
Н	1.66186500	-0.79119200	0.00031500
С	4.05186800	-0.42638000	-0.00006200
0	3.58485900	-1.61383500	-0.00068400
0	5.28355600	-0.14649000	0.00010800
Na	5.69888200	-2.31410100	-0.00075300
С	3.06392600	0.73942100	0.00027500
Н	3.25841300	1.36314000	0.87920800
Н	3.25702100	1.36203900	-0.87980900
С	-2.78683600	-0.79983200	0.00001700
С	-3.79162800	0.17812300	-0.00040800
С	-3.13741800	-2.16040200	0.00039300
С	-5.12962200	-0.22089000	-0.00040000
Н	-3.53287800	1.23205800	-0.00087600
С	-4.47828700	-2.54084900	0.00046200
Н	-2.35917600	-2.92096000	0.00057300
С	-5.48596500	-1.57234100	0.00008600
Н	-5.90084500	0.54398500	-0.00072900
Н	-4.73233500	-3.59691000	0.00080600
Н	-6.53082700	-1.86657700	0.00014100

A	1
U	7

С	-1.23975100	2.12698600	-0.22962900
С	0.27069400	2.38201300	-0.20033300
0	-2.23640900	2.81356800	-0.36646500
0	1.01132700	3.34360300	-0.29165600
С	-0.92877200	0.68429300	-0.02778700
С	0.45732200	0.92214900	-0.00585400
Ν	-1.59033400	-0.49611400	0.10949600
Н	-1.00637200	-1.30680900	0.27117200
Ν	1.52474900	0.13065200	0.13379300
Н	1.44611500	-0.88314000	0.15242300
С	2.91912900	0.58423500	0.08094400
Н	3.06091300	1.22733900	-0.79498400
С	3.33503700	1.36905500	1.33583900
Н	3.19074500	0.76219000	2.23617800
Н	4.38931800	1.64579300	1.25814700
Н	2.73816800	2.28052900	1.41678900
С	3.80707100	-0.65510600	-0.11467400
0	3.26078000	-1.80877500	-0.06946700

0	5.04239800	-0.46692500	-0.30234300
Na	5.28126600	-2.65490700	-0.44934300
С	-2.97185600	-0.78362900	0.07350100
С	-3.94945200	0.19954100	-0.13576000
С	-3.35655400	-2.12253400	0.25611900
С	-5.29489000	-0.17277200	-0.15913300
Н	-3.66421000	1.23745700	-0.27444500
С	-4.70442500	-2.47647000	0.22957700
Н	-2.59941100	-2.88684500	0.41936400
С	-5.68512100	-1.50271300	0.02103800
Н	-6.04496400	0.59594500	-0.32130300
Н	-4.98512000	-3.51597300	0.37264000
Н	-6.73537500	-1.77631900	0.00013200

文子学

03			
С	-1.39539300	1.88468000	-0.87836700
С	0.13001700	2.02617300	-0.83798600
0	-2.32097100	2.54982700	-1.30733600
0	0.95688700	2.84205200	-1.20109600
С	-1.22217700	0.58013900	-0.17931700
С	0.17750300	0.71066400	-0.15184800
Ν	-1.99153400	-0.42932000	0.30967700
Н	-1.48992500	-1.16620700	0.78914900
Ν	1.16499000	-0.05349400	0.32867300
Н	0.99080300	-1.02450800	0.57485400
С	2.59565000	0.22107500	0.12680900
Н	2.69932700	0.99233300	-0.64063900
С	3.27680000	0.71984400	1.43869600
Н	3.20452700	-0.10082200	2.16791400
С	3.23638800	-1.08220400	-0.38328100
0	2.68807000	-2.18219200	-0.03256100
0	4.27137100	-1.01176900	-1.10509400
Na	4.23098500	-3.21425400	-1.25061900
С	-3.39034300	-0.61619300	0.27655000
С	-4.26572900	0.29135800	-0.33674700
С	-3.90085300	-1.77309700	0.88886800
С	-5.63664200	0.02701500	-0.32698100
Н	-3.88321400	1.19113100	-0.80783300
С	-5.27240000	-2.02139400	0.88887600
Н	-3.22327000	-2.47802700	1.36639800
С	-6.15176900	-1.12200200	0.27956900

Н	-6.30703600	0.73660000	-0.80330500
Н	-5.65100600	-2.92002400	1.36732800
Н	-7.22027200	-1.31335200	0.27895700
С	2.53768700	1.94038900	2.00914400
Н	2.53796200	2.76921900	1.29225200
Н	1.49847400	1.70937800	2.25920700
Н	3.03183300	2.28305300	2.92472600
С	4.76132700	1.05189000	1.21822800
Н	5.21243900	1.38069400	2.16078500
Н	5.32907100	0.19788800	0.84187600
Н	4.87200300	1.86578400	0.49212300

С	-1.75399900	1.93540500	-0.75325900
С	-0.22820900	1.97853500	-0.88542900
0	-2.66882100	2.71175600	-0.96282800
0	0.61314200	2.78653500	-1.23340400
С	-1.60175400	0.53497600	-0.26845700
С	-0.20126900	0.57943400	-0.39058300
Ν	-2.38545600	-0.49008600	0.16213600
Н	-1.89174400	-1.32601700	0.44807900
Ν	0.77689500	-0.30206700	-0.16816800
Н	0.59326200	-1.25104500	0.14492400
С	2.20897500	-0.02047800	-0.34002100
Н	2.35110900	0.56931200	-1.24949200
С	2.90805300	-1.37374100	-0.53461900
0	2.34144700	-2.41159100	-0.05132900
0	4.01009700	-1.39748700	-1.15331700
Na	4.04033300	-3.58792900	-0.86851200
С	-3.78865400	-0.58449200	0.28354000
С	-4.65562800	0.46071000	-0.06574100
С	-4.31321100	-1.79093800	0.77683900
С	-6.03216300	0.28199300	0.08447400
Н	-4.26152900	1.39844800	-0.44413000
С	-5.69025800	-1.95230900	0.91981400
Н	-3.64199800	-2.60283700	1.04960600
С	-6.56133200	-0.91548300	0.57387300
Н	-6.69573400	1.09767700	-0.18784500
Н	-6.07962000	-2.89111500	1.30302200
Н	-7.63405300	-1.03907100	0.68484600
С	4.22236100	1.27055400	0.76994500

Н	4.49378100	1.32952100	-0.29217000
С	2.75115600	0.79390700	0.86457600
Н	2.59541200	0.21067700	1.78236100
Н	2.09773600	1.67009100	0.93245600
С	4.36392200	2.67882400	1.37218600
Н	5.40074600	3.02963300	1.31418400
Н	3.73196000	3.40112300	0.84492600
Н	4.07072500	2.68437100	2.43018100
С	5.19910200	0.29824100	1.45209400
Н	4.98592400	0.22639300	2.52677700
Н	5.13747800	-0.70348300	1.01865800
Н	6.23334200	0.64407800	1.34109200

С	1.64592600	-1.79975800	-1.05749500	
С	0.11668600	-1.88327000	-1.10926800	
0	2.56993500	-2.46729300	-1.48628800	
0	-0.71712400	-2.63695900	-1.57629400	
С	1.48023400	-0.54575400	-0.26992200	
С	0.07736000	-0.62221700	-0.32719900	
Ν	2.25634200	0.39202200	0.33700600	
Н	1.75506700	1.11134300	0.84276700	
Ν	-0.90766400	0.14211000	0.15692300	
Н	-0.71362900	1.08020600	0.49744900	
С	-2.33430000	-0.06075500	-0.13693200	
Н	-2.42138500	-0.75702600	-0.97477700	
С	-2.89728700	1.30887600	-0.55951900	
0	-2.33297900	2.34866400	-0.07607100	
0	-3.88776100	1.34951600	-1.34422800	
Na	-3.76350500	3.55251200	-1.27242400	
С	3.66061500	0.52323300	0.39567500	
С	4.53616700	-0.37013600	-0.23789300	
С	4.17692000	1.60801000	1.12415000	
С	5.91299000	-0.16401200	-0.13191900	
Н	4.14878400	-1.21481300	-0.79852900	
С	5.55436100	1.79884200	1.21922600	
Н	3.49914100	2.30162200	1.61771100	
С	6.43394200	0.91313600	0.59048800	
Н	6.58335800	-0.86216300	-0.62488800	
Н	5.93736500	2.64191900	1.78696600	

Н	7.50699600	1.05976700	0.66380200
С	-3.10738900	-0.64743200	1.08942100
Н	-3.11280500	0.13205800	1.86721500
С	-2.37925100	-1.88211700	1.64503600
Н	-2.29896500	-2.66366900	0.88078600
Н	-1.37000600	-1.63697400	1.98634600
Н	-2.91991900	-2.29716400	2.50038000
С	-4.57059900	-0.97529600	0.71824300
Н	-5.00038800	-0.14321200	0.15309700
Н	-4.57216800	-1.83596300	0.03510500
С	-5.47058900	-1.27460100	1.92497500
Н	-6.50231700	-1.44866700	1.60047500
Н	-5.14982600	-2.16340600	2.47771500
Н	-5.48277200	-0.43233000	2.62818400

0.48908100	2.42981700	-0.23130900
2.01984300	2.47619600	-0.20187300
-0.40491400	3.24600600	-0.36764200
2.88501200	3.32821800	-0.29254200
0.59970200	0.95775100	-0.03062800
2.00554700	1.00512800	-0.00839700
-0.21734500	-0.11970400	0.10517100
0.24848100	-1.00401200	0.26462300
2.95504600	0.07481500	0.13125400
2.73836200	-0.91856600	0.14867000
4.39803900	0.33447700	0.08092100
4.62766700	0.95263100	-0.79439900
5.11015200	-1.01363900	-0.11377600
4.41266900	-2.08279600	-0.07083100
6.36019300	-0.99460900	-0.29842500
6.30050600	-3.19450700	-0.44460000
-1.62625100	-0.21241200	0.07469200
-2.46426500	0.89233100	-0.12946800
-2.20191800	-1.47591800	0.25631000
-3.84515200	0.70787000	-0.14607100
-2.04492500	1.88345800	-0.27005100
-3.58845100	-1.63555400	0.23541700
-1.56722200	-2.34551400	0.41637000
-4.45101400	-0.54881500	0.03361200
-4.46274800	1.58670500	-0.30609100
	0.48908100 2.01984300 -0.40491400 2.88501200 0.59970200 2.00554700 0.21734500 0.24848100 2.95504600 2.73836200 4.39803900 4.62766700 5.11015200 4.41266900 6.30050600 -1.62625100 -2.20191800 -2.20191800 -2.20191800 -3.884515200 -2.04492500 -3.58845100 -1.56722200 -4.45101400 -4.46274800	0.489081002.429817002.019843002.47619600-0.404914003.246006002.885012003.328218000.599702000.957751002.005547001.00512800-0.21734500-0.119704000.24848100-1.004012002.955046000.074815002.73836200-0.918566004.398039000.334477004.627667000.952631005.11015200-1.013639006.36019300-2.082796006.36019300-0.994609006.30050600-3.19450700-2.464265000.89233100-2.20191800-1.47591800-3.58845100-1.63555400-1.56722200-2.34551400-4.45101400-0.54881500

H	-3.98534600	-2.63360300	0.38122200
С	4.91459900	1.05544000	1.33683300
Н	4.44706400	2.03964100	1.41669200
Н	4.68710200	0.47383300	2.23669100
Н	5.99691000	1.18607200	1.26136100
С	-5.98430900	-0.68320400	0.00423100
С	-6.44805400	-2.13699500	0.22118900
Н	-7.54200800	-2.18153000	0.19245100
Н	-6.07079400	-2.80693300	-0.55930900
Н	-6.12833300	-2.52698700	1.19380700
С	-6.60247600	0.19075800	1.12304900
Н	-6.34617800	1.24758400	1.00185700
Н	-7.69580600	0.10885400	1.11033500
Н	-6.24798000	-0.12801600	2.10928000
С	-6.51981100	-0.20743800	-1.36858600
Н	-7.61249800	-0.29221100	-1.40158600
Н	-6.26056300	0.83706700	-1.56619800
Н	-6.10590700	-0.81399100	-2.18146300

С	0.86543000	2.50869700	-0.02457400
С	2.39779500	2.58899400	0.00515500
0	-0.05084700	3.30773500	-0.08790300
0	3.24269300	3.46045900	-0.01544300
С	1.01368900	1.03267200	0.04770800
С	2.41648200	1.09987700	0.07356100
Ν	0.21068600	-0.07224300	0.09072800
Н	0.69104100	-0.95919200	0.17197600
Ν	3.38472300	0.18584500	0.12963400
Н	3.19318300	-0.81225700	0.07125700
С	4.82467800	0.47494600	0.10418900
Н	5.04288200	1.16566400	-0.71783900
С	5.55415200	-0.84451200	-0.19915400
0	4.86759600	-1.92072600	-0.24271700
0	6.80247200	-0.79495100	-0.38035000
Na	6.77264100	-2.98061400	-0.70348800
С	-1.18775400	-0.17658000	0.04698600
С	-2.03569900	0.93420100	-0.05513600
С	-1.73949600	-1.46810000	0.10522800
С	-3.41810700	0.73144300	-0.09761400
Н	-1.62436600	1.93976400	-0.09974900
С	-3.11886400	-1.64218500	0.05966700

Н	-1.09112500	-2.33563900	0.17993000
С	5.32826800	1.09624300	1.41665400
Н	4.84781600	2.06390000	1.57900400
Н	5.10987800	0.43839900	2.26461400
Н	6.40851700	1.24786100	1.35367100
С	-3.97826700	-0.54399900	-0.04189800
Н	-5.05122600	-0.68067900	-0.08089600
С	-3.70176800	-3.02762800	0.17291100
С	-4.30834400	1.94693200	-0.21761900
F	-4.09333800	-3.30649400	1.44530400
F	-2.81256300	-3.99134400	-0.17789400
F	-4.79409200	-3.18695600	-0.61154500
F	-4.10530500	2.81949700	0.79866600
F	-4.07709200	2.62461300	-1.36922100
F	-5.62449900	1.62263800	-0.20655800

F -5.6244

С	-0.46232900	2.65060700	-0.23620200
С	1.05912100	2.55975200	-0.40189800
0	-1.34065100	3.48135000	-0.40865800
0	1.96962600	3.28976700	-0.75263500
С	-0.43142000	1.24498600	0.22350200
С	0.95981000	1.14642600	0.05453200
Ν	-1.39417800	0.38176100	0.60757600
Н	-1.12464000	-0.53267500	0.94729000
Ν	1.84868700	0.16183000	0.23954800
Н	1.55633200	-0.78554700	0.46178100
С	3.28106600	0.26320500	-0.05443600
Н	3.42094300	0.70147100	-1.04927500
С	3.85631100	-1.16106600	-0.10098100
0	3.10042300	-2.13574500	0.22980000
0	5.06202900	-1.29476900	-0.45792800
Na	4.82275700	-3.46989800	-0.19218700
С	4.03664800	1.12887000	0.96782400
Н	3.65978100	2.15375600	0.93283100
Н	3.90724200	0.73098800	1.98020800
Н	5.10136300	1.13738500	0.72161100
С	-2.78392200	0.79182200	0.84806600
Н	-2.91840500	1.75442200	0.34620900
Н	-2.94909500	0.95920300	1.92085300
С	-3.77219500	-0.23633300	0.33560000

С	-3.82115300	-0.56004900	-1.02942600
С	-4.65904200	-0.87268000	1.21216700
С	-4.73832900	-1.49783700	-1.50395900
Н	-3.13850600	-0.07047700	-1.71880500
С	-5.58142500	-1.81273800	0.73942400
Н	-4.63328000	-0.62808000	2.27155500
С	-5.62210700	-2.12765800	-0.61972600
Н	-4.76943700	-1.73377500	-2.56390000
Н	-6.26407200	-2.29576100	1.43274800
Н	-6.33773700	-2.85583100	-0.99046600

С	-0.97684700	2.09854900	-0.50183000
С	0.52695300	2.35548200	-0.34962900
0	-1.98305800	2.75216100	-0.72863700
0	1.28207100	3.31211500	-0.38104600
С	-0.69129100	0.66651600	-0.25888600
С	0.69045000	0.89241500	-0.13919000
Ν	-1.46826800	-0.43605200	-0.22272000
Н	-1.05062800	-1.30180900	0.09883600
N	1.74240300	0.09383200	0.08776200
Н	1.65142700	-0.91801400	0.08672700
С	3.13708100	0.54249700	0.12297900
Н	3.33726100	1.18645600	-0.74122700
С	4.03765500	-0.69472700	-0.01653900
0	3.49382800	-1.85027200	-0.01288100
0	5.28358700	-0.50372200	-0.11995900
Na	5.53427500	-2.68813200	-0.25597800
С	3.47440500	1.32842800	1.40114400
Н	2.87311100	2.23970600	1.44211500
Н	3.27224700	0.72218400	2.29089100
Н	4.53161300	1.60503100	1.39082900
С	-2.93832800	-0.37135800	-0.18757200
С	-3.53286600	-1.54550100	-0.97885300
С	-3.47474600	-0.34247800	1.25586100
Н	-3.20817200	0.56992900	-0.67811100
С	-5.07027800	-1.52966300	-0.94381700
Н	-3.16946500	-2.48997500	-0.54291100
Н	-3.16790300	-1.51077200	-2.01176400
С	-5.01185300	-0.31944200	1.28476000
Н	-3.11029400	-1.23525600	1.78742800

Н	-3.06588700	0.53078600	1.77666500
С	-5.60756000	-1.49536400	0.49544800
Н	-5.46187100	-2.40326000	-1.47864100
Н	-5.43145100	-0.64454400	-1.48610600
Н	-5.36462500	-0.33655600	2.32285900
Н	-5.36457500	0.62671800	0.85123500
Н	-6.70238200	-1.43139600	0.48770500
Н	-5.35246200	-2.43862300	1.00086600

С	-1.95480400	1.65317800	-0.29377800
С	-0.50313100	2.13486400	-0.26103800
0	-3.05455800	2.16077300	-0.44759800
0	0.08878900	3.19595900	-0.36586000
С	-1.43878000	0.27979800	-0.05677700
С	-0.10331000	0.72475400	-0.03578200
Ν	-1.97044600	-0.95331800	0.08175400
Н	-1.33543400	-1.69763300	0.33765700
N	1.06998100	0.10094200	0.13152200
Н	1.13653600	-0.91270500	0.15680400
С	2.37943100	0.75692000	0.07315800
Н	2.42852300	1.39856400	-0.81423700
С	3.44879500	-0.33340400	-0.09654000
0	3.08830100	-1.55732100	-0.03759700
0	4.64298500	0.04047500	-0.27856700
Na	5.21651400	-2.08396200	-0.38388200
С	2.66458400	1.62141400	1.31261900
Н	1.93461100	2.43217900	1.37166500
Н	2.60829300	1.01767700	2.22494300
Н	3.66489100	2.05408800	1.23260500
С	-3.41645000	-1.30359100	0.09761400
С	-4.12693600	-0.57933400	1.25728200
Н	-4.09093200	0.50392400	1.11718000
Н	-5.17936700	-0.88069900	1.29902400
Н	-3.65942200	-0.83147400	2.21537600
С	-4.05673700	-0.92549400	-1.25067700
Н	-5.10890200	-1.23011300	-1.26092700
Н	-4.01542800	0.15462600	-1.41120000
Н	-3.54339200	-1.43063900	-2.07572400
С	-3.48032800	-2.82522400	0.30438600
Н	-4.52214800	-3.15645800	0.31931500

Н	-2.96970800	-3.35658200	-0.50711100
Н	-3.02465100	-3.11691800	1.25856700

С	-1.52944400	1.89123500	-0.18293800
С	-0.03733700	2.23054400	-0.27419100
0	-2.59504000	2.46929500	-0.32911900
0	0.64766800	3.21074900	-0.51112300
С	-1.12775900	0.50785800	0.15751700
С	0.24124800	0.80740500	0.05572500
Ν	-1.82409100	-0.61654900	0.41981600
Н	-1.31506200	-1.43902300	0.71807500
Ν	1.36103500	0.08670500	0.20683700
Н	1.33334900	-0.92201900	0.32392200
С	2.71762200	0.60038800	-0.00186500
Н	2.75850300	1.15561200	-0.94609600
С	3.66400800	-0.60202800	-0.14225700
0	3.19710400	-1.77403200	0.05702600
0	4.86997600	-0.36661700	-0.44156500
Na	5.23305900	-2.53854100	-0.38550700
С	3.17817300	1.53461300	1.12971500
Н	2.53408400	2.41642800	1.16385600
Н	3.13666200	1.01955600	2.09563700
Н	4.20533800	1.85668600	0.94125300
С	-3.27937300	-0.63371200	0.60149400
Н	-3.65618200	0.31518700	0.21497000
Н	-3.52056800	-0.66896900	1.67478100
С	-3.92086100	-1.82786200	-0.11285000
Н	-3.71936600	-1.74784900	-1.18910300
Н	-3.42998800	-2.75076400	0.22973700
С	-5.43456700	-1.94951100	0.13049100
Н	-5.77675500	-2.90007000	-0.29760700
Н	-5.62334200	-2.01860500	1.21112600
С	-6.26456500	-0.80387600	-0.46463100
Н	-7.33482200	-0.97643900	-0.30881800
Н	-6.01937900	0.16264400	-0.01255500
Н	-6.09527100	-0.71500100	-1.54418700

Squaramide No cation

С	-2.44902000	0.81632500	-0.15463600
С	-1.10015600	1.53556500	-0.18231900
0	-3.62971900	1.12689800	-0.21188100
0	-0.70984800	2.67916500	-0.25840300
С	-1.70981300	-0.43600900	-0.03869800
С	-0.45050000	0.19168600	-0.07301800
Ν	-2.07382000	-1.73764700	0.02314300
Н	-1.34844600	-2.40327400	0.24236800
Ν	0.77343400	-0.28393300	-0.01991600
Н	1.00292900	-1.29157300	-0.01891000
С	2.05315300	0.41875000	-0.11560900
Н	2.08416700	1.00442200	-1.03812900
С	2.32043100	1.33732000	1.07320400
Н	2.27212600	0.77221200	2.00789800
Н	3.32426900	1.74957000	0.97384200
Н	1.59620400	2.15325400	1.11383500
С	3.14638400	-0.71564600	-0.23340100
0	2.69837600	-1.89302600	-0.16268400
0	4.31015600	-0.31976100	-0.37696800
С	-3.44025700	-2.13103200	0.32324700
Н	-4.10916600	-1.34050000	-0.01140600
Н	-3.68778200	-3.05578100	-0.20189200
Н	-3.60465900	-2.28522100	1.39666900

Squaramide Li

С	2.56102300	-0.81416300	-0.23241700
С	1.17539200	-1.47171900	-0.22389300
0	3.71205000	-1.15431300	-0.38313100
0	0.71226400	-2.58164700	-0.34676700
С	1.87442800	0.47329100	0.01563800
С	0.60991100	-0.12058000	0.00859300
Ν	2.31320300	1.73395500	0.15632400
Н	1.65206500	2.44490400	0.42557300

N	-0.63427500	0.34563500	0.16398100
Н	-0.82442500	1.33871200	0.16867100
С	-1.83562800	-0.47487100	0.04060600
Н	-1.74434700	-1.13301400	-0.82719800
С	-2.09264100	-1.34458500	1.27707900
Н	-2.17460600	-0.72492200	2.17231000
Н	-3.01733400	-1.90527900	1.14616200
Н	-1.27143600	-2.04868100	1.40290300
С	-3.02053800	0.44868200	-0.22646400
0	-2.85693500	1.71034600	-0.18359900
0	-4.14574800	-0.06367000	-0.47486900
С	3.72826300	2.07309100	0.24073100
Н	4.31030400	1.22304500	-0.10731600
Н	3.94723900	2.93690900	-0.38907800
Н	4.02585100	2.30161800	1.26808700
Li	-4.67670800	1.70299100	-0.59818100

Squaramide Na

С	3.00122800	-0.62123600	-0.29584900
С	1.70166800	-1.43490000	-0.27611100
0	4.17975400	-0.82208800	-0.48789100
0	1.36762000	-2.58706900	-0.42568100
С	2.18029700	0.56755300	0.01383900
С	0.98975800	-0.16508100	0.01632500
Ν	2.47382800	1.86801700	0.18492400
Н	1.74415400	2.48141000	0.51148100
Ν	-0.29084700	0.15459800	0.21484600
Н	-0.59349400	1.11906200	0.26657700
С	-1.40686600	-0.78106500	0.09775800
Н	-1.27631000	-1.39580300	-0.79575400
С	-1.52641000	-1.71112700	1.30976300
Н	-1.64350400	-1.13170700	2.22812000
Н	-2.39144900	-2.36178300	1.18773600
Н	-0.63235800	-2.32844200	1.38909600
С	-2.69528300	0.02952500	-0.09801000
0	-2.63714700	1.29307500	0.00569500
0	-3.74882200	-0.61046400	-0.34285000
С	3.84334300	2.35775500	0.27674600
Н	4.50941200	1.60597200	-0.14017400
Н	3.95017800	3.28339600	-0.29109500

Н	4.13747500	2.54498300	1.31384800
Na	-4.80933000	1.30804000	-0.42992400

Squaramide K

С	3.41232100	-0.45508200	-0.33841000
С	2.18969100	-1.37977800	-0.31653100
0	4.60081700	-0.54848000	-0.55562500
0	1.95640700	-2.55354000	-0.48779800
С	2.49814100	0.64871100	0.01279200
С	1.37389500	-0.18320900	0.01747000
N	2.67949800	1.96739900	0.20873800
Н	1.90645500	2.50194000	0.57231800
N	0.07700600	0.02367200	0.24414500
Н	-0.30806500	0.95817200	0.31903600
С	-0.96799200	-0.99057100	0.12163100
Н	-0.81520900	-1.56402400	-0.79563200
С	-0.98439500	-1.96407600	1.30370900
Н	-1.11882900	-1.42380600	2.24358900
Н	-1.80424100	-2.67088300	1.18164300
Н	-0.04663600	-2.51755500	1.34225600
С	-2.32105900	-0.26690800	-0.01731200
0	-2.33833000	0.99367600	0.11511300
0	-3.32581300	-0.98216700	-0.24715500
С	4.00383700	2.56692200	0.30798100
Н	4.72425500	1.89468400	-0.15232900
Н	4.02270000	3.52365500	-0.21641600
Н	4.29927700	2.73038700	1.34902600
K	-4.86981700	1.02620900	-0.32410200

Squaramide Cs

С	-4.66377300	0.22610400	-0.39825000
С	-3.55046500	1.27991400	-0.37391600
0	-5.84836900	0.18201700	-0.65100400
0	-3.44179700	2.46657400	-0.57761700
С	-3.64628200	-0.75904600	0.01379300

С	-2.61930800	0.19059800	0.02143800
Ν	-3.68768700	-2.08388100	0.24763400
Н	-2.87291200	-2.51659100	0.65326400
Ν	-1.31574900	0.13219800	0.28872400
Н	-0.83388900	-0.75229500	0.40582100
С	-0.37918300	1.24713100	0.16329600
Н	-0.56008600	1.77254000	-0.77732900
С	-0.50448500	2.25234500	1.31146800
Н	-0.34630600	1.75807600	2.27282600
Н	0.24182100	3.03665400	1.19063200
Н	-1.49515400	2.70612900	1.30353900
С	1.04692600	0.66318700	0.09042700
0	1.18651700	-0.58299000	0.26567300
0	1.97776700	1.47320000	-0.13299200
С	-4.94169900	-2.82016800	0.33860600
Н	-5.71578600	-2.25149000	-0.17150600
Н	-4.83958400	-3.79463800	-0.14159600
Н	-5.25147100	-2.97066200	1.37756000
Cs	4.02280200	-0.46030500	-0.14729700

Squaramide tert-butylammonium

С	5.53122500	-0.15285000	-0.56527300
С	4.45995200	-1.24683100	-0.49761000
0	6.69847600	-0.06265600	-0.88394400
0	4.38423500	-2.43361500	-0.71608500
С	4.50602900	0.78657800	-0.08035900
С	3.51236700	-0.19818600	-0.03190600
Ν	4.51143900	2.11003500	0.17311700
Н	3.70844000	2.49938100	0.64172700
Ν	2.22722100	-0.18577600	0.30747200
Н	1.71945000	0.67971800	0.46573300
С	1.30987100	-1.32068500	0.21803300
Η	1.44284500	-1.82229000	-0.74333500
С	1.53190000	-2.34224300	1.33541000
Н	1.42190800	-1.86893300	2.31407400
Н	0.79596900	-3.14057100	1.24653400
Н	2.53011300	-2.77351500	1.25959700
С	-0.13480800	-0.76050200	0.24777600
0	-0.27441700	0.47549600	0.44998500

0	-1.05130400	-1.59640900	0.07237100
С	5.74536300	2.88236300	0.22934800
Н	6.50696300	2.36188100	-0.34690100
Н	5.58653500	3.87255600	-0.20073900
Н	6.10932900	2.99901400	1.25535000
С	-3.95041400	-1.11267400	-0.91146900
Н	-4.23544100	-0.85419700	-1.92866900
Н	-2.88924400	-1.36965600	-0.88715300
С	-3.56556000	-0.13970000	1.31388600
Н	-4.34617600	-0.76844500	1.73749900
Н	-2.66073100	-0.73248000	1.16645400
N	-4.04366900	0.18891700	-0.10609500
С	-5.45771700	0.71405500	-0.05723400
Н	-5.42005200	1.65436100	0.48611600
Н	-6.02555400	0.01352500	0.55233500
С	-3.07368000	1.16139300	-0.79768400
Н	-2.07686100	0.86548400	-0.45633200
Н	-3.15138200	0.94328900	-1.86108700
С	-4.78709000	-2.27415600	-0.40538600
Н	-5.85585000	-2.05870200	-0.35890800
Н	-4.65337000	-3.09446300	-1.11233300
Н	-4.45397300	-2.63768100	0.56466800
С	-6.13695000	0.90482100	-1.40455700
Н	-7.09762800	1.39275300	-1.23327800
Н	-5.56377000	1.53912800	-2.07932700
Н	-6.33692800	-0.04025800	-1.90719900
С	-3.29428400	2.64940900	-0.57508500
Н	-4.23183600	3.02045100	-0.98955900
Н	-3.23188700	2.94652900	0.46786400
Н	-2.48511000	3.16031800	-1.09991900
С	-3.27453200	1.02788800	2.23801100
Н	-2.37696600	1.56172600	1.93409300
Н	-4.10765700	1.72254100	2.35482600
Н	-3.07202500	0.60167900	3.22238300

References

1. Luchini, G.; Patterson, T.; Paton, R. S. DBSTEP: DFT Based Steric Parameters. 2022, DOI: 10.5281/zenodo.4702097

2. Reference: Tian Lu, Feiwu Chen, Multiwfn: A Multifunctional Wavefunction Analyzer, J. Comput. Chem. 33, 580-592 (2012) DOI: 10.1002/jcc.22885.

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.;
 Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.;
 Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng,
 B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara,
 M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell,

- K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V.
- N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi,
- M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman,
- J. B.; Fox, D. J. Gaussian 16 Rev. A.03, Wallingford, CT, 2016
- 4. CYLview, b. L., C. Y., Université de Sherbrooke, 2009 (http://www.cylview.org).
- 5. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B 1988, 37 (2), 785-789.