Supplementary Information

Lewis acid ionic liquid catalysed synthesis of bioderived surfactants from β -pinene

Philippa L. Jacob,^a Fabricio Machado,^{a,b} Graham A. Rance,^c Gary Walker,^d Vincenzo Taresco,^a Daniel J. Keddie^a and Steven M. Howdle^{*a}

^aSchool of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

Email: steve.howdle@nottingham.ac.uk

^bUniversity of Brasília, Institute of Chemistry, Campus Universitário Darcy Ribeiro, Brasília, DF CEP: 70910-900, Brazil

°Nanoscale and Microscale Research Centre (nmRC), University of Nottingham, Nottingham, NG7 2QL, UK.

^dLubrizol Ltd., Hazelwood, Derby, DE56 4AN, UK.

Table S1: Synthetic details for the preparation of ILs.

IL	1-Methylimidazole	Alkyl chloride	Alkyl chloride	Acetonitrile (mL)	¹ H NMR conversion
[bmim]-Cl	1.00 equiv., 3.68 mL, 46.30 mmol	1-Chlorobutane	1.30 equiv., 6.27 mL, 60.13 mmol	5	70
[pmim]-Cl	1.00 equiv., 7.36 mL, 95.50 mmol	1-Chloropentane	1.26 equiv., 14.54 mL, 120.25 mmol	3	70ª
[omim]-Cl	1.00 equiv., 7.36 mL, 95.50 mmol	1-Chlorooctane	1.26 equiv., 20.43 mL, 120.25 mmol	3	51 ^b

^a¹H NMR conversion: 70% determined by comparing the integral of unreacted 1-methylimidazole at 6.91 ppm with that of 1-pentyl-3-methylimidazolium at 7.41 ppm. ^b ¹H NMR conversion: 51%, determined by comparing the integral of unreacted 1-methylimidazole at 6.92 ppm with that of 1-octyl-3-methylimidazolium chloride at 7.40 ppm.

[pmim]-Cl: ¹H-NMR: (CDCl₃, δ in ppm): 0.88 (3H, t, N(CH₂)₄CH₃), 1.32 (4H, m, N(CH₂)₂CH₂CH₂CH₃), 1.91 (2H, m, NCH₂CH₂(CH₂)₂CH₃), 4.12 (3H, s, NCH₃), 4.33 (2H, t, NCH₂(CH₂)₃CH₃), 7.41 (1H, s, CH₃NCHCHN), 7.58 (1H, s, CH₃NCHCHN), 10.75 (1H, s, NCHN). These data are in agreement with that of Yang *et al.*¹

[omim]-Cl: ¹H-NMR: (CDCl₃, δ in ppm): 0.77 (3H, t, N(CH₃)₇CH₃), 1.16 (10H, m, N(CH₃)₂(CH₂)₅CH₃, 1.82 (2H, m, NCH₂CH₂(CH₂)₅CH₃), 4.04 (3H, s, NCH₃), 4.22 (2H, t, NCH₂(CH₂)₆CH₃), 7.40 (1H, s, CH₃NCHCHN), 7.63 (1H, s, CH₃NCHCHN), 10.55 (1H, s, NCHN). These data are in agreement with that of Gómez *et al.*² Mass spectrometry: calculated *m/z* 195.1856, found *m/z* 195.1868 (M+, 100%).

LA-IL	LA	FeCl ₃
[bmim]-Fe ₂ Cl ₇	3.00 g, 17.23 mmol	5.5902 g, 34.46 mmol
[pmim] -Fe ₂ Cl ₇	3.00 g, 15.95 mmol	5.17 g, 31.89 mmol
[omim] -Fe ₂ Cl ₇	3.00 g, 13.03 mmol	4.23 g, 26.07 mmol

Table S2: Synthetic details for the preparation of LA-ILs.

Table S3: Synthetic details for the preparation of epoxidized PBP via mCPBA route.

Polymer	PBP	mCPBA	DCM	Degree of epoxidation of alkenes (%)
EPBP-10	20 g, 0,147 mol	3.04 g, 0.018 mol	200 mL	13
EPBP-50	20 g, 0.147 mol	15.22 g, 0.088 mol,	200 mL	54

Table S4: Synthetic details for the preparation of hydrolysis of EPBP.

Polymer	Starting material (g)	<i>p</i> -TsOH (10 mol %)	Toluene (mL)	Water (mL)	Degree of alkene functionalisation to diols (%) ^a
PBP-OH- 10	EPBP-10, 9.00 g (0.90 g epoxidized polymer, 5.96 mmol)	0.60 mmol, 0.10 g	200	20	13
PBP-OH- 50	EPBP-50, 9.00 g (4.50 g epoxidized polymer, 29.80 mmol)	2.80 mmol, 0.51 g	270	90	54
PBP-OH- 80	EPBP-80, 2.00 g, 0132 mmol	0.0013 mmol, 0.22 g	50	30	84

^aAssuming complete hydrolysis of epoxides.

Supplementary Figures

Figure S1: ¹H NMR spectra of βP (upper) and PBP (lower) demonstrating the successful polymerisation. Full assignment of the ¹H NMR spectrum of βP has been reported by Kolehmainen et al.³

Figure S2: ¹³*C* NMR spectrum of PBP, synthesised using [bmim]- Fe_2Cl_7 , demonstrating the predominantly endo-olefin end group of the polymer.

Figure S3: PBP A) synthesised using [bmim]-Fe₂Cl₇ after purification with activated charcoal and extracted using $scCO_2 B$) synthesised using [bmim]-Fe₂Cl₇ and purified by aqueous washing and precipitation C) synthesised using FeCl₃ and purified using activated charcoal D) synthesised using FeCl₃ and purified with activated charcoal and extracted using $scCO_2$.

Figure S4: 1 L scCO₂ autoclave.

Figure S5: A) Solubility testing of PBP in $scCO_2$ at 45 °C and 193 bar. Polymer can clearly be seen in the vial, unable to enter the $scCO_2$ phase due to insolubility. B) PBP before (left) and after (right) exposure to $scCO_2$. After exposure to CO_2 the polymer is no longer tacky, and bubbles can be seen in the polymer showing where CO_2 has swollen the polymer matrix.

Figure S6: ¹*H NMR spectrum of the collected extract of PBP purification by scCO*₂ *extraction.*

*Figure S7: MALDI-ToF MS of PBP synthesised using [bmim]-Fe*₂ Cl_7 . *Silver trifluoroacetate was used as a cationisation agent and DCTB as a matrix. Note, as the reaction was quenched by adding NaOH, smaller peaks with an m/z difference of 16 are observed in addition to the major population.*

5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 Chemical shift / ppm

Figure S8: ¹H NMR spectra of A) PBP and B) EPBP-80.

Figure S9: ¹H NMR spectrum of PBP-OH-80.

Figure S10: DMA of EPBPs, demonstrating increasing T_{gs} *with increasing degrees of epoxidation. The second peak in the tanb trace of EPBP-80 is likely the result of epoxide curing.*

Figure S11: ¹*H NMR spectra of A) 3-mercaptopropionic acid functionalised PBP and B) dodecanethiol functionalised PBP.*

Figure S12: HMBC analysis of PBP-3-mercaptopropionic acid demonstrating the coupling of peaks between 2.80 and 2.65 ppm with a peak at 175 ppm.

Figure S13 Multiplicity edited HSQC analysis of PBP-3-mercaptopropionic acid demonstrating the presence of two $-CH_2$ groups in blue. $-CH_2$ groups are shown in the blue box, -CH and $-CH_3$ groups are shown in red.

References:

- 1. J.-Z. Yang, W. Guan, J. Tong, H. Wang and L. Li, J. Solution Chem., 2006, **35**, 845-852.
- 2. E. Gómez, B. González, Á. Domínguez, E. Tojo and J. Tojo, *Journal of Chemical & Engineering Data*, 2006, **51**, 696-701.
- 3. E. Kolehmainen, K. Laihia, R. Laatikainen, J. Vepsäläinen, M. Niemitz and R. Suontamo, *Magn. Reson. Chem.*, 1997, **35**, 463-467.