Supplementary Information

Lewis acid ionic liquid catalysed synthesis of bioderived surfactants from β-pinene

Philippa L. Jacob,^a Fabricio Machado,^{a,b} Graham A. Rance,^c Gary Walker,^d Vincenzo Taresco,^a Daniel J. Keddie^a and Steven M. Howdle*^a

aSchool of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

Email: steve.howdle@nottingham.ac.uk

^bUniversity of Brasília, Institute of Chemistry, Campus Universitário Darcy Ribeiro, Brasília, DF CEP: 70910-900, Brazil

^cNanoscale and Microscale Research Centre (nmRC), University of Nottingham, Nottingham, NG7 2QL, UK.

^dLubrizol Ltd., Hazelwood, Derby, DE56 4AN, UK.

Table S1: Synthetic details for the preparation of ILs.

^{a 1}H NMR conversion: 70% determined by comparing the integral of unreacted 1-methylimidazole at 6.91 ppm with that of 1-pentyl-3-methylimidazolium at 7.41 ppm. ^t ¹H NMR conversion: 51%, determined by comparing the integral of unreacted 1-methylimidazole at 6.92 ppm with that of 1-octyl-3-methylimidazolium chloride at 7.40 ppm.

[pmim]-Cl: ¹H-NMR: (CDCl3, δ in ppm): 0.88 (3H, t, N(CH2)4C**H3**), 1.32 (4H, m, N(CH2)2C**H2**C**H2**CH3), 1.91 (2H, m, NCH2C**H2**(CH2)2CH3), 4.12 (3H, s, NC**H3**), 4.33 (2H, t, NC**H2**(CH2)3CH3), 7.41 (1H, s, CH3NC**H**CHN), 7.58 (1H, s, CH3NCHC**H**N), 10.75 (1H, s, NC**H**N). These data are in agreement with that of Yang *et al*. 1

[omim]-Cl: ¹H-NMR: (CDCl3, δ in ppm): 0.77 (3H, t, N(CH3)7C**H3**), 1.16 (10H, m, N(CH3)2(C**H2**)**5**CH3, 1.82 (2H, m, NCH2C**H2**(CH2)5CH3), 4.04 (3H, s, NC**H3**), 4.22 (2H, t, NC**H2**(CH2)6CH3), 7.40 (1H, s, CH3NC**H**CHN), 7.63 (1H, s, CH3NCHC**H**N), 10.55 (1H, s, NC**H**N). These data are in agreement with that of Gómez *et al.²* Mass spectrometry: calculated *m/z* 195.1856, found *m/z* 195.1868 (M+, 100%).

L_A-H	LA	FeCl
[bmim]- $Fe2Cl7$	3.00 g, 17.23 mmol	5.5902 g, 34.46 mmol
[pmim] $-Fe2Cl7$	3.00 g, 15.95 mmol	5.17 g, 31.89 mmol
[omim] $-Fe2Cl7$	3.00 g, 13.03 mmol	4.23 g, 26.07 mmol

Table S2: Synthetic details for the preparation of LA-ILs.

Table S3: Synthetic details for the preparation of epoxidized PBP *via* **mCPBA route**.

Table S4: Synthetic details for the preparation of hydrolysis of EPBP.

^aAssuming complete hydrolysis of epoxides.

Supplementary Figures

Figure S1: ¹H NMR spectra of βP (upper) and PBP (lower) demonstrating the successful polymerisation. Full *assignment of the ¹H NMR spectrum of βP has been reported by Kolehmainen et al.³*

Figure S2: ¹³C NMR spectrum of PBP, synthesised using [bmim]- $Fe₂Cl₇$, demonstrating the predominantly *endo-olefin end group of the polymer.*

Figure S3: PBP A) synthesised using [bmim]-Fe₂Cl₇ after purification with activated charcoal and extracted using $scCO₂ B$) synthesised using [bmim]-Fe₂Cl₇ and purified by aqueous washing and precipitation C) synthesised using $FeCl₃$ and purified using activated charcoal D) synthesised using $FeCl₃$ and purified with activated charcoal and *extracted using scCO2.*

Figure S4: 1 L scCO² autoclave.

Figure S5: A) Solubility testing of PBP in $\sec O_2$ at 45 °C and 193 bar. Polymer can clearly be seen in the vial, unable to enter the $scCO_2$ phase due to insolubility. B) PBP before (left) and after (right) exposure to $scCO_2$. After exposure to CO_2 the polymer is no longer tacky, and bubbles can be seen in the polymer showing where CO_2 has *swollen the polymer matrix.*

Figure S6: ¹H NMR spectrum of the collected extract of PBP purification by scCO² extraction.

Figure S7: MALDI-ToF MS of PBP synthesised using [bmim]-Fe2Cl7 Silver trifluoroacetate was used as a cationisation agent and DCTB as a matrix. Note, as the reaction was quenched by adding NaOH, smaller peaks with *an m/z difference of 16 are observed in addition to the major population.*

4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6
Chemical shift / ppm $\frac{1}{5.8}$ 5.6 5.4 5.2 5.0 4.8

Figure S8: ¹H NMR spectra of A) PBP and B) EPBP-80.

Figure S9: ¹H NMR spectrum of PBP-OH-80.

Figure S10: DMA of EPBPs, demonstrating increasing $T_{\rm g}$ s with increasing degrees of epoxidation. The second peak *in the tanδ trace of EPBP-80 is likely the result of epoxide curing.*

Figure S11: ¹H NMR spectra of A) 3-mercaptopropionic acid functionalised PBP and B) dodecanethiol functionalised PBP.

Figure S12: HMBC analysis of PBP-3-mercaptopropionic acid demonstrating the coupling of peaks between 2.80 and 2.65 ppm with a peak at 175 ppm.

Figure S13 Multiplicity edited HSQC analysis of PBP-3-mercaptopropionic acid demonstrating the presence of two -CH₂ groups in blue. -CH₂ groups are shown in the blue box, -CH and -CH₃ groups are shown in red.

References:

-
- 1. J.-Z. Yang, W. Guan, J. Tong, H. Wang and L. Li, *J. Solution Chem.*, 2006, **35**, 845-852. 2. E. Gómez, B. González, Á. Domínguez, E. Tojo and J. Tojo, *Journal of Chemical & Engineering Data*, 2006, **51**, 696-701.
- 3. E. Kolehmainen, K. Laihia, R. Laatikainen, J. Vepsäläinen, M. Niemitz and R. Suontamo, *Magn. Reson. Chem.*, 1997, **35**, 463-467.