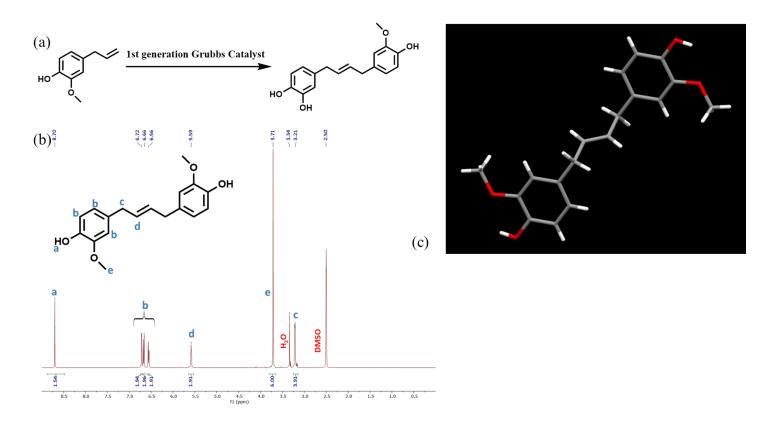
Supporting Information for

[Ru]-Catalyzed Olefin Metathesis and Ethenolysis for the Synthesis and Recycling of Bio-Based Polycarbonates and Polycyanurates

Dana M. Pinson, Francesca D. Eckstrom, Gregory S. Ostrom, Randall K. McClain, Lawrence C. Baldwin, and Benjamin G. Harvey*


US NAVY, NAWCWD, Research Department, Chemistry Division, China Lake, California 93555

*Corresponding author (email: benjamin.g.harvey.civ@us.navy.mil

Contents

Figure S1. (a) Synthesis of 4,4'-(2-butene-1,4-diyl)bis[2-methoxyphenol] as previously reported. (b)
¹ H NMR spectrum of of 4,4'-(2-butene-1,4-diyl)bis[2-methoxyphenol]. (c) Crystal structure of 4,4'-(2-
butene-1,4-diyl)bis[2-methoxyphenol]
Figure S2. ¹³ C NMR of bis(4-allyl-2-methoxyphenyl) carbonate (compound 2)S4
Figure S3. ¹³ C NMR of 4-Allyl-1-cyanato-2-methoxybenzene (compound 3)
Figure S4. ¹³ C NMR of 2,4,6-tris(4-allyl-2-methoxyphenoxy)-1,3,5-triazine (compound 4)S4
Figure S5. ATR FTIR spectrum of eugenol-based polycarbonateS5
Figure S6. GPC of polycarbonate ethenolysis products from all trials, PC1 refers to starting material and letters refer to line entries in table 2
Figure S7. GPC results from the depolymerization of eugenol-based polycarbonate oligomers to yield monomeric material.
Figure S8 . ¹ H NMR spectra of the 2 nd round of re- and de-polymerization for the triazine network. (a) ¹ H NMR spectrum of the repolymerized network. (b) ¹ H NMR spectrum of the oligomeric
depolymerization product. (c) ¹ H NMR spectrum of monomer obtained via ethenolysis of oligomers. S8 Figure S9. GPC results for a repolymerized triazine network and monomer resulting from full
depolymerization
Figure S10. ¹ H NMR spectrum of the 3 rd round of re- and de-polymerization for the triazine network.
(a) ¹ H NMR spectrum of repolymerized triazine. (b) ¹ H NMR spectrum of oligomers obtained by
ethenolyis of the network. (c) ¹ H NMR spectrum of the monomer obtained via ethnolysis of oligomers. S10
Figure S11. GPC results for the 3 rd round of re- and de-polymerization for the triazine networkS11
X-ray Crystallography Data Collection and Refinement Details:
Table S1. Crystal data and structure refinement for (E)-4,4'-(But-2-ene-1,4-diyl)bis(2-methoxyphenol) (compound 1).
Table S2. Crystal data and structure refinement for <i>Bis(4-allyl-2-methoxyphenyl) carbonate (compound 2)</i>
Table S3. Crystal data and structure refinement for 2,4,6-tris(4-allyl-2 methoxyphenoxy)-1,3,5-triazine (compound 4)
Figure S12. Solid-state structure of compound 1 with thermal ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity. Grey and red ellipsoids represent C and O atoms, respectively. S15
Figure S13. Solid-state structure of compound 2 with thermal ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity. Grey and red ellipsoids represent C and O atoms, respectively.

Figure S14. Solid-state structure of compound 4 with thermal ellipsoids at the 50% probability leve	el.
Hydrogen atoms are omitted for clarity. Grey, blue and red ellipsoids represent C, N and O atoms,	
respectively	.S15
References	.S16

Figure S1. (a) Synthesis of 4,4'-(2-butene-1,4-diyl)bis[2-methoxyphenol] as previously reported. (b) ¹H NMR spectrum of of 4,4'-(2-butene-1,4-diyl)bis[2-methoxyphenol]. (c) X-ray crystal structure of 4,4'-(2-butene-1,4-diyl)bis[2-methoxyphenol]

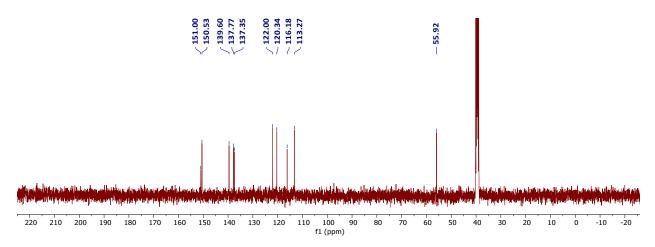


Figure S2. ¹³C NMR spectrum of bis(4-allyl-2-methoxyphenyl) carbonate (compound 2)

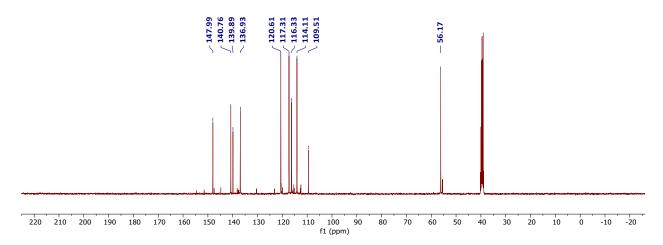


Figure S3. ¹³C NMR spectrum of 4-Allyl-1-cyanato-2-methoxybenzene (compound 3)

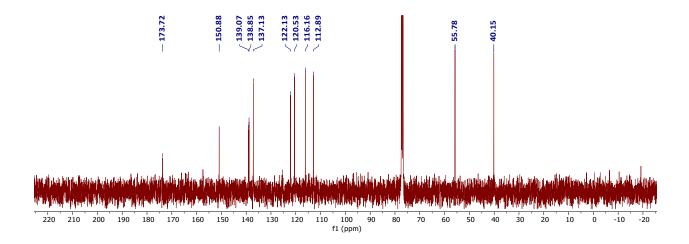
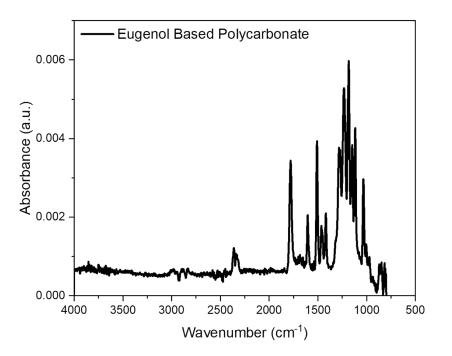
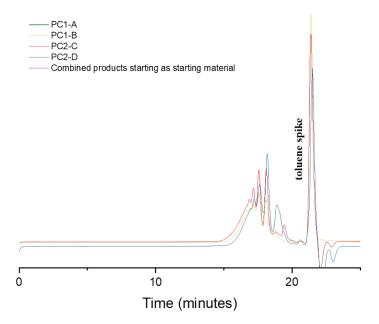
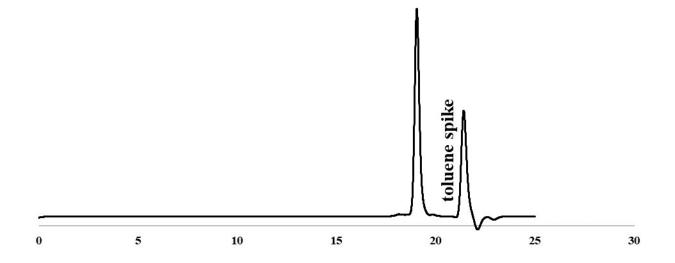
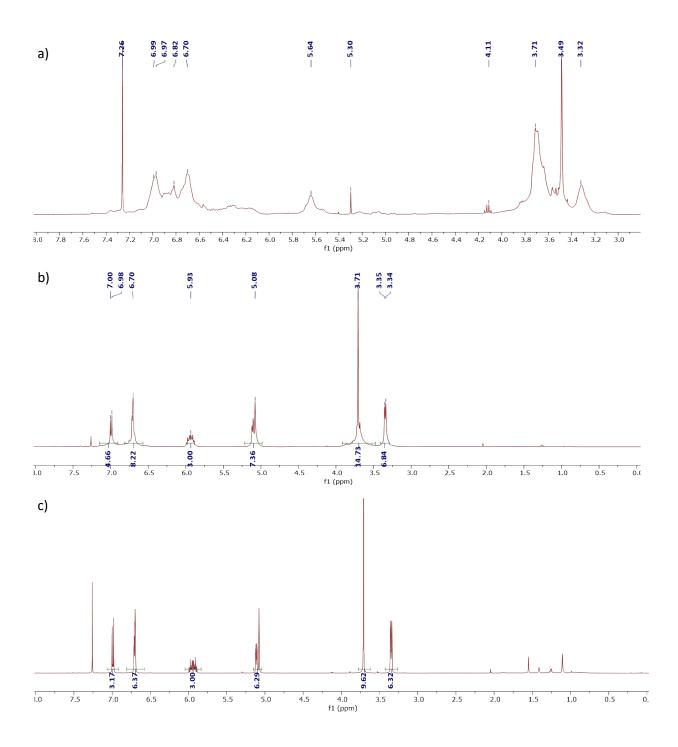
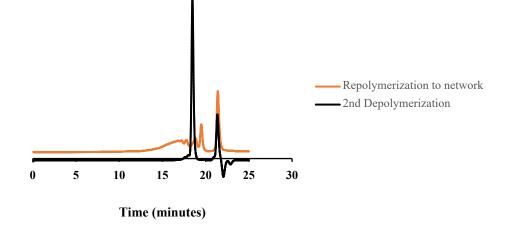


Figure S4. ¹³C NMR spectrum of 2,4,6-tris(4-allyl-2-methoxyphenoxy)-1,3,5-triazine (compound 4)


Figure S5. ATR FTIR spectrum of eugenol-based polycarbonate.


Figure S6. GPC of polycarbonate ethenolysis products from all trials, PC1 refers to starting material and letters refer to line entries in table 2.

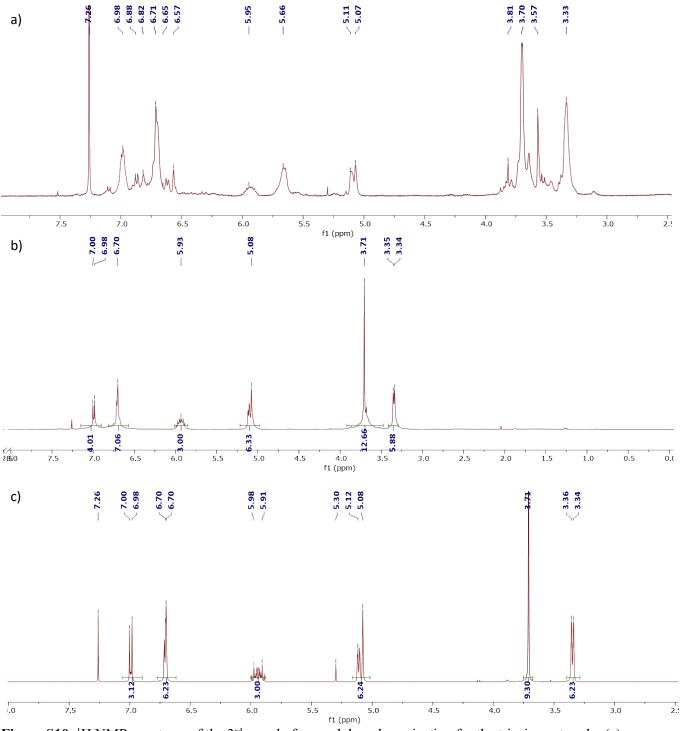

Figure S7. GPC results from the depolymerization of eugenol-based polycarbonate oligomers to yield monomeric material.

Figure S8. ¹H NMR spectra of the 2nd round of re- and de-polymerization for the triazine network. (a) ¹H NMR spectrum of the repolymerized network. (b) ¹H NMR spectrum of the oligomeric depolymerization product. (c) ¹H NMR spectrum of monomer obtained via ethenolysis of oligomers.

Figure S9. GPC results for a repolymerized triazine network and monomer resulting from full depolymerization.

Figure S10. ¹H NMR spectrum of the 3rd round of re- and de-polymerization for the triazine network. (a) ¹H NMR spectrum of repolymerized triazine. (b) ¹H NMR spectrum of oligomers obtained by ethenolyis of the network. (c) ¹H NMR spectrum of the monomer obtained via ethnolysis of oligomers.

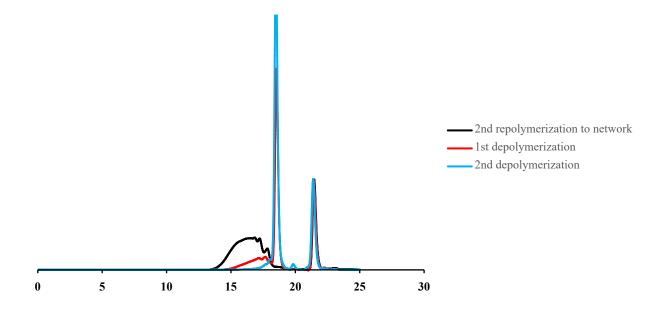


Figure S11. GPC results for the 3rd round of re- and de-polymerization for the triazine network.

X-ray Crystallography Data Collection and Refinement Details:

Crystal Samples were coated with Parabar oil and mounted on a MiTeGen polyimide loop. X-ray intensity data were measured using a Bruker SMART Apex II diffractometer equipped with a PHOTON II detector. Data collection was performed at 100 K or 298 K under the N_2 stream of an Oxford Cryosystems Cryostream with MoK α (graphite monochrometer) or CuK α radiation (I μ S source). The frames were integrated and scaling was performed using APEX3 software, including a multi-scan absorption correction.

Structure solutions were obtained with SHELXT using direct methods and refined via least-square refinement against F² by SHELXL, as implemented in OLEX2 crystallographic software.¹⁻³ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed on geometrically calculated positions using the riding model and refined isotropically.

(*E*)-4,4'-(*But-2-ene-1*,4-diyl)bis(2-methoxyphenol) (compound 1). This compound crystallized in the space group *Pbca* with half of a molecule in the asymmetric unit. Two reflections (0 2 1, 1 2 2) were omitted from the refinement, as they were likely affected by the beamstop during data collection. The low resolution of this data set (0.95 Å) resulted in one checkCIF A alert. Attempts to isolate single crystals that could yield higher resolution data were unsuccessful.

Bis(4-allyl-2-methoxyphenyl) carbonate (compound 2). This compound crystallized in the space group C2/c with half of a molecule in the asymmetric unit. No checkCIF level A or B alerts were found.

2,4,6-tris(4-allyl-2-methoxyphenoxy)-1,3,5-triazine (compound 4). This compound crystallized in the space group $P2_1/n$ with a full molecule in the asymmetric unit. Positive and negative residual density resulted in three checkCIF B alerts. This residual density could not be modelled as any chemically reasonable species and likely results from minor errors in the absorption correction.

Table S1. Crystal data and structure refinement for (E)-4,4'-(But-2-ene-1,4-diyl)bis(2-methoxyphenol)(compound 1).

CCDC Deposition Number	2360344
Empirical formula	$C_{18}H_{20}O_4$
Formula weight	300.357
Temperature/K	298.00
Crystal system	orthorhombic
Space group	Pbca
a/Å	4.8827(2)
b/Å	10.6999(4)
c/Å	29.5508(11)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1543.86(10)
Ζ	4
$\rho_{calc}g/cm^3$	1.292
µ/mm ⁻¹	0.738
F(000)	642.2
Crystal size/mm ³	$0.187 \times 0.134 \times 0.074$
Radiation	Cu Ka ($\lambda = 1.54178$)
	· · · · · · · · · · · · · · · · · · ·

2Θ range for data collection/°	5.98 to 108.44
Index ranges	$-5 \le h \le 5, -11 \le k \le 11, -31 \le l \le 31$
Reflections collected	27266
Independent reflections	942 [$R_{int} = 0.0305, R_{sigma} = 0.0126$]
Data/restraints/parameters	942/0/103
Goodness-of-fit on F ²	1.095
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0307, wR_2 = 0.0805$
Final R indexes [all data]	$R_1 = 0.0318, wR_2 = 0.0824$
Largest diff. peak/hole / e Å ⁻³	0.11/-0.10

Table S2. Crystal data and structure refinement for *Bis(4-allyl-2-methoxyphenyl) carbonate (compound*2).

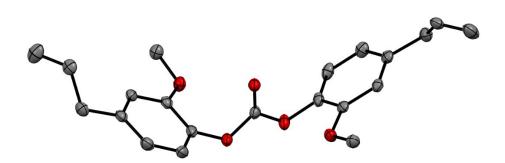

CCDC Deposition Number	2360346
Empirical formula	C ₂₁ H ₂₂ O ₅
Formula weight	354.406
Temperature/K	100.00
Crystal system	monoclinic
Space group	C2/c
a/Å	15.9421(5)
b/Å	8.6790(3)
c/Å	13.2926(4)
α/°	90
β/°	101.624(1)
γ/°	90
Volume/Å ³	1801.46(10)
Z	4
$\rho_{calc}g/cm^3$	1.307
μ/mm ⁻¹	0.093
F(000)	752.5
Crystal size/mm ³	$0.372 \times 0.348 \times 0.244$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	5.22 to 50.7
Index ranges	$-19 \le h \le 19, -10 \le k \le 10, -16 \le l \le 16$
Reflections collected	12445
Independent reflections	1644 [$R_{int} = 0.0329, R_{sigma} = 0.0183$]
Data/restraints/parameters	1644/0/121
Goodness-of-fit on F ²	1.092
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0287, wR_2 = 0.0721$
Final R indexes [all data]	$R_1 = 0.0340, wR_2 = 0.0787$
Largest diff. peak/hole / e Å ⁻³	0.20/-0.17

Table S3. Crystal data and structure refinement for 2,4,6-tris(4-allyl-2 methoxyphenoxy)-1,3,5-triazine (compound 4).

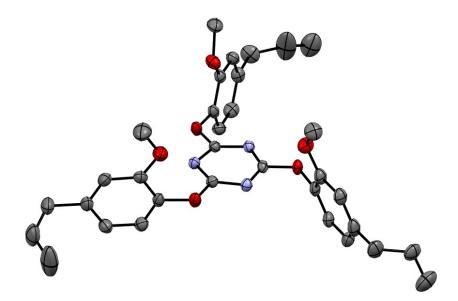

CCDC Deposition Number	2360345
Empirical formula	$C_{33}H_{33}N_3O_6$
Formula weight	567.646
Temperature/K	100.00
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	13.0353(5)
b/Å	11.7214(5)
c/Å	20.1820(8)
α/°	90
β/°	107.691(1)
γ/°	90
Volume/Å ³	2937.8(2)
Z	4
$\rho_{calc}g/cm^3$	1.283
μ/mm ⁻¹	0.089
F(000)	1200.8
Crystal size/mm ³	$0.524 \times 0.247 \times 0.072$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	4.06 to 50.7
Index ranges	$-15 \le h \le 15, -14 \le k \le 14, -24 \le l \le 24$
Reflections collected	37621
Independent reflections	5374 [$R_{int} = 0.0443$, $R_{sigma} = 0.0276$]
Data/restraints/parameters	5374/0/382
Goodness-of-fit on F ²	1.061
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0665, wR_2 = 0.1694$
Final R indexes [all data]	$R_1 = 0.0828, wR_2 = 0.1828$
Largest diff. peak/hole / e Å ⁻³	1.04/-1.00

Figure S12. Solid-state structure of compound **1** with thermal ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity. Grey and red ellipsoids represent C and O atoms, respectively.

Figure S13. Solid-state structure of compound **2** with thermal ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity. Grey and red ellipsoids represent C and O atoms, respectively.

Figure S14. Solid-state structure of compound **4** with thermal ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity. Grey, blue and red ellipsoids represent C, N and O atoms, respectively.

References

- (1) Sheldrick, G. M. SHELXT Integrated Space-Group and Crystal-Structure Determination. *Acta Crystallogr. A* 2015, *71*, 3–8.
- (2) Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. A 2008, 64, 112–122.
- (3) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2 : A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42 (2), 339–341.