Dibenzobarrelene-Derived Pd-NHCs: Efficient Precatalysts for the Suzuki-

Miyaura Polycondensations of Dichloroarenes Monomers

Yuman Guo, Hao Wu, Meng-Jiao Zhang, Feng-Shou Liu*

School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering and Technology Research Center, Guangdong, Pharmaceutical University, Zhongshan, Guangdong 528458, China

Content of Supporting Information

1. Physical Measurements	S2
2. Experimental Procedure: General Procedure for the Synthesis of Pd-NHCs	S3
3. NMR spectra for the products	S7
4. Single-crystal data for NHC-Pd catalysts	S19
5. References	S22

1. Physical Measurements

NMR spectra were acquired on a Bruker DMX 400 MHz instrument at ambient temperature, using TMS as an internal standard and CDCl₃ as the solvent. Single-crystal X-ray diffraction data were collected using the ω -2 θ scan mode on a Bruker SMART 1000 CCD diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at 173 K for compounds C2, C4 and C5. Cell parameters were refined globally based on the positions of all collected reflections. Intensities were corrected for Lorentz and polarization effects, as well as empirical absorption. Structures were solved by direct methods and refined using full-matrix least squares on F2. Hydrogen atoms were placed in calculated positions. Structure solution and refinement were performed using the SHELXL-97 software package. All non-hydrogen atoms were refined anisotropically, with hydrogen atoms introduced in calculated positions and displacement factors matching those of the host carbon atoms. GPC analyses of the molecular weights and molecular weight distributions (PDI = Mw/Mn) of the polymers were performed on a Waters Breeze 2 GPC chromatograph equipped with a differential refractive-index detector. Tetrahydrofuran (THF) used as the eluent at a flow rate of 1.0 mL/min.

2. Experimental Procedure: General Procedure for the Synthesis of Pd-NHCs

The carbene imidazolium salt of L and Pd-NHCs of C1 were synthesized according to our previous reports.¹

2.1 Synthesis Procedure of Carbene Palladium Catalyst C2:

Add imidazolium salt L1 (1 mmol), palladium chloride (1.1 mmol), K₂CO₃ (10 mmol), and 3,5-dimethylpyridine to a 100 mL flask. Stir the mixture at 60°C for 6 hours. After cooling, add dichloromethane (20 mL) to the mixture. Purify the reaction mixture using a short silica gel column with a significant amount of dichloromethane. Distill the filtrate to obtain a yellow solid. Slowly dissolve the yellow solid in a small amount of dichloromethane (approximately 0.5 mL), then add n-hexane to generate a large amount of light yellow powder with a yield of 73%. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 2.0 Hz, 2H), 7.57 (t, *J* = 7.7 Hz, 2H), 7.42 (d, *J* = 7.8 Hz, 4H), 7.21 (dd, *J* = 5.3, 3.2 Hz, 4H), 7.08 (s, 1H), 6.89 (dd, *J* = 5.4, 3.1 Hz, 4H), 5.15 (s, 2H), 2.88 (p, *J* = 6.7 Hz, 4H), 2.08 (s, 6H), 1.39 (d, *J* = 6.5 Hz, 12H), 1.01 (d, *J* = 6.8 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 152.89, 148.59, 147.95, 146.05, 144.59, 138.54, 133.06, 132.82, 130.27, 124.87, 124.30, 124.21, 47.33, 28.28, 27.06, 23.97, 18.13. HRMS (ESI) m/z: [M-Cl]⁺ calcd for C₄₈H₅₃ClN₃Pd, 812.2963; found, 812.2960.

2.2 The process of formation of carbene palladium catalyst C3:

To a 100 mL flask was added imidazolium salt L1 (1 mmol), palladium chloride (1.1 mmol), K₂CO₃ (10 mmol), and Bis[cinnamyl palladium(II) chloride], and the mixture was stirred at 60 °C for 6 h. Then the mixture was cooled and dichloromethane (20 mL) was added. The reaction mixture was washed by short silica. gel column containing a large amount of dichloromethane. The filtrate was distilled to give a yellow solid. The yellow solid was slowly treated with a small amount of dichloromethane until it was completely dissolved (about 0.5 mL), then, hexane was added to produce a yellow powder in 43% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (t, *J* = 7.7 Hz, -1H), 7.33 (d, *J* = 7.7 Hz, -3H), 7.22 (dd, *J* = 5.4, 3.2 Hz, -4H), 7.13 – 7.08 (m, -4H), 6.91 (dd, *J* = 5.5, 3.2 Hz, -4H), 5.11 (s, -1H), 5.02 – 4.87 (m, -1H), 4.21 (d, *J* = 12.6 Hz, -1H), 2.78 (p, *J* = 6.8 Hz, -3H), 1.26 – 1.22 (m, -11H), 1.01 (d, *J* = 6.8 Hz, -13H). ¹³C NMR (101 MHz, CDCl₃) δ 181.31, 146.81, 146.14, 144.53, 138.08, 134.11, 129.96, 128.18, 127.50, 126.61, 124.99, 124.94, 124.13, 124.01, 123.88, 108.47, 89.94, 48.05, 47.56, 29.74, 28.09, 25.95, 23.44, 14.18.

2.3 Synthesis Procedure of Carbene Palladium Catalyst C4:

Dissolve **C3** (0.5 mmol) in 1,4-dioxane (2 mL) and hydrochloric acid (1 mL) at room temperature for 12 hours. Dilute the mixture with water and filter it. After removing

the solvent from the mixture, dissolve the remaining solid in dichloromethane. Then, add n-hexane to obtain a yellow powder with a yield of 54%. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 2.3 Hz, 2H), 8.38 (dd, J = 5.5, 1.4 Hz, 2H), 7.57 (t, J = 7.7 Hz, 4H), 7.48 (ddd, J = 8.2, 2.4, 1.3 Hz, 2H), 7.41 (d, J = 7.7 Hz, 8H), 6.99 (dd, J = 8.2, 5.6 Hz, 2H), 6.90 (dd, J = 5.4, 3.1 Hz, 8H), 5.16 (s, 4H), 2.85 (p, J = 6.7 Hz, 8H), 1.38 (d, J = 6.5 Hz, 24H), 1.01 (d, J = 6.8 Hz, 24H). ¹³C NMR (101 MHz, CDCl₃) δ 150.36, 150.32, 149.36, 147.91, 145.95, 144.75, 137.22, 132.62, 131.72, 130.41, 124.92, 124.33, 124.26, 124.18, 47.32, 28.29, 27.08, 23.93, 14.12.

2.4 Synthesis Procedure of Carbene Palladium Catalyst C5:

C1 (0.5 mmol) and 2-aminothiazole (0.7 mmol) were added to dichloromethane (1 mL) and reacted at room temperature for 12 hours. The resulting product was then evaporated to dryness, washed with n-hexane 3 times, and filtered to obtain a pale yellow solid with a yield of 90%. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (t, *J* = 7.7 Hz, 2H), 7.41 (d, *J* = 7.7 Hz, 4H), 7.21 (dd, *J* = 5.4, 3.2 Hz, 4H), 6.89 (dd, *J* = 5.4, 3.1 Hz, 4H), 6.76 (d, *J* = 4.0 Hz, 1H), 6.06 (d, *J* = 4.1 Hz, 1H), 5.56 (s, 1H), 5.29 (s, 1H), 5.16 (s, 2H), 2.82 (p, *J* = 6.7 Hz, 4H), 1.35 (d, *J* = 6.5 Hz, 12H), 1.00 (d, *J* = 6.8 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 169.00, 152.02, 148.08, 146.02, 144.66, 138.71, 132.79, 130.33, 124.97, 124.36, 124.26, 105.87, 47.38, 28.37, 27.19, 23.90. HRMS (ESI) m/z: [M-Cl]⁺ calcd for C₄₄H₄₈ClN₄PdS, 805.2323; found, 805.2323.

2.5 Synthesis Procedure of Carbene Palladium Catalyst C6:

Dissolve C1 (0.5 mmol) and 2,6-dimethylpyridine (0.7 mmol) in dichloromethane (1

mL) and react at room temperature for 12 hours. Then, evaporate the solvent and wash the product with n-hexane 3 times. Filter the mixture to obtain a light yellow solid with a yield of 49%. ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.54 (m, 2H), 7.43 (d, *J* = 7.8 Hz, 4H), 7.21 (dt, *J* = 7.1, 3.5 Hz, 5H), 6.90 (dd, *J* = 5.4, 3.1 Hz, 4H), 6.71 (d, *J* = 7.7 Hz, 2H), 5.23 (s, 2H), 2.86 (p, *J* = 6.7 Hz, 4H), 2.47 (s, 6H), 1.35 (d, *J* = 6.5 Hz, 12H), 1.01 (d, *J* = 6.8 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 158.77, 155.40, 148.49, 146.10, 144.53, 137.18, 132.98, 130.09, 124.83, 124.41, 123.88, 122.12, 47.59, 28.43, 27.46, 24.77, 23.36.

2.6 General Procedure for Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Polymerization:

1 mol% N-heterocyclic carbene palladium catalyst was used, with KO^tBu (2 mmol) as the base, and a THF/H₂O (3:1) mixture as the solvent. The reaction between the chloroarene and pinacol boronate ester was carried out at 80°C under nitrogen atmosphere for 12 hours. Post-reaction, the polymer was precipitated and washed using methanol.

3. NMR spectra for the products

 $\begin{array}{c} -2.22228 \\ -2.2228 \\ -2.228 \\ -2.288 \\ -2.2$

Figure S4. The ¹³C NMR spectrums of C3

 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8

Figure S6. The ¹³C NMR spectrums of C4

Figure S8. The ¹³C NMR spectrums of C5

Figure S10. The ¹³C NMR spectrums of C6

Figure S16. The NMR spectrums of P6.

Figure S18. The NMR spectrums of P8.

4. Single-crystal data for NHC-Pd catalysts

Table S1.	Crystal	data	and st	tructure	refinement	for	C2.
-----------	---------	------	--------	----------	------------	-----	-----

Identification code	C2
Empirical formula	$C_{48}H_{53}Cl_2N_3Pd$
Formula weight	849.23
Temperature/K	292.98(10)
Crystal system	triclinic
Space group	P-1
a/Å	12.49350(10)
b/Å	17.71260(10)
c/Å	22.0093(2)
α/°	100.5540(10)
β/°	103.9520(10)
$\gamma/^{\circ}$	96.6100(10)
Volume/Å ³	4581.63(7)
Z	4
$\rho_{calc}g/cm^3$	1.231
µ/mm ⁻¹	4.588
F(000)	1768.0
Crystal size/mm ³	$0.15\times0.12\times0.11$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	5.148 to 147.086
Index ranges	$-11 \le h \le 15, -22 \le k \le 21, -25 \le l \le 27$
Reflections collected	70868
Independent reflections	17881 [$R_{int} = 0.0472, R_{sigma} = 0.0373$]
Data/restraints/parameters	17881/0/993
Goodness-of-fit on F ²	1.046
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0444, wR_2 = 0.1191$
Final R indexes [all data]	$R_1 = 0.0540, wR_2 = 0.1250$
Largest diff. peak/hole / e Å-3	2.27/-0.79

Table S2. Crystal data and structure refinement for C4.

Identification code	C4
Empirical formula	$C_{82}H_{88}Cl_4N_4Pd_2$
Formula weight	1484.16
Temperature/K	169.99(10)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	12.9002(4)
b/Å	27.2207(10)
c/Å	20.8068(7)
α/°	90
β/°	90.068(3)
$\gamma/^{\circ}$	90
Volume/Å ³	7306.4(4)
Z	4
$\rho_{calc}g/cm^3$	1.349
µ/mm ⁻¹	5.665
F(000)	3072.0
Crystal size/mm ³	0.15 imes 0.1 imes 0.08
Radiation	$Cu K\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	5.346 to 147.736
Index ranges	$-16 \le h \le 15, -33 \le k \le 32, -25 \le l \le 24$
Reflections collected	42105
Independent reflections	14193 [$R_{int} = 0.1102, R_{sigma} = 0.1261$]
Data/restraints/parameters	14193/0/845
Goodness-of-fit on F ²	1.028
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0699, wR_2 = 0.1575$
Final R indexes [all data]	$R_1 = 0.1117, wR_2 = 0.1778$
Largest diff. peak/hole / e Å ⁻³	0.92/-0.95

Table S3. Crystal data and structure refinement for C5.

Identification code	C5
Empirical formula	$C_{45}H_{50}Cl_4N_4PdS$
Formula weight	927.15
Temperature/K	169.99(10)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	13.0079(2)
b/Å	24.0698(3)
c/Å	13.9399(2)
α/°	90
β/°	101.1780(10)
γ/°	90
Volume/Å ³	4281.75(11)
Z	4
$\rho_{calc}g/cm^3$	1.438
µ/mm ⁻¹	6.530
F(000)	1912.0
Crystal size/mm ³	0.15 imes 0.13 imes 0.11
Radiation	Cu Ka (λ = 1.54184)
2Θ range for data collection/°	7.346 to 133.156
Index ranges	$-12 \le h \le 15, -28 \le k \le 28, -16 \le l \le 16$
Reflections collected	32142
Independent reflections	7580 [$R_{int} = 0.0571$, $R_{sigma} = 0.0401$]
Data/restraints/parameters	7580/0/512
Goodness-of-fit on F ²	1.029
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0469, wR_2 = 0.1193$
Final R indexes [all data]	$R_1 = 0.0502, wR_2 = 0.1227$
Largest diff. peak/hole / e Å ⁻³	1.96/-0.97

5. References

 Y.-M. Guo, Y. Zhang, M.-J. Zhang, T. Li, J.-Y. Wu and F.-S. Liu, Heteroaryl– Heteroaryl Suzuki–Miyaura Cross-Coupling Enabled by Large-but-Flexible Dibenzobarrelene-Derived Pd-NHC Precatalysts, *Organometallics.*, 2023, 42, 2028-2037.