Supplementary Information (SI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Fully Bio-Based Acetal Diepoxy Monomers: High Modulus, Good Thermal Stability and Readily Degradability

Zidie Song, ^a Li Liu, ^a Pengbo Zhang, ^b Kangle Xue, ^a Zibo Hua, ^a Tao You, ^a Yiqi Wu, ^a Hong Cui, ^c Zhen Hu^{a*} and Yudong Huang^{a*}

^aSchool of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China

^bAerospace Institute of Advanced Material & Processing Technology, Beijing 100071, China

^eBeijing Spacecrafts Manufacturing Co, Ltd., Beijing 100094, China

Contents

Figure S1	
Figure S2	
Figure S3	4
Figure S4	4
Table S1	

1. Analysis of NMR spectra of synthetic substances

1.1 NMR spectra of VX

¹H-NMR of VX (400 MHz, DMSO-d₆) δ=9.04 (s, 1H), 7.00 (s, 1H), 6.97 (s, 1H), 6.90 (d, J=5.4Hz, 1H), 6.87 (d, J=5.4Hz, 1H), 6.77 (d, 1H), 6.75 (d, 1H), 5.56 (s, 1H), 5.51 (s, 1H), 4.76 (t, 1H), 4.09(m, 2H), 3.97(m, 1H) 3.94(t, 1H), 3.84(s, 3H), 3.67-3.58 (m, 1H), 3.58-3.49 (m, 1H).

¹³C-NMR of VX (101 MHz, DMSO-d₆) δ=147.05, 147.03, 146.87, 146.78, 129.94, 129.77, 119.16, 118.83, 114.84, 110.64, 110.23, 99.73, 99.43, 78.85, 69.65, 69.14, 68.95, 59.52, 55.61, 55.51.

1.2 NMR spectra of DGEVX

¹H-NMR of DGEVX (400 MHz, CDCl₃) δ=7.19-7.00 (m, 2H), 7.00-6.85 (m, 1H), 5.61 (s, 1H), 5.54 (s, 1H), 4.39 (d, J=8Hz, 1H), 4.28-4.19 (m, 2H), 4.16 (d, J=2.0 Hz, 1H), 4.12 (dd, J=13.7, 11.5 Hz, 1H), 4.05-3.99 (m, 1H), 3.97 (s, 1H), 3.90 (s, 3H), 3.88 (s, 3H), 3.85 (m, 1H), 3.82 (s, 1H), 3.37(s, 2H), 2.89 (t, J=3.8Hz, 2H), 2.76 (dd, J=6.4, 2.6Hz, 2H), 2.00 (dd, J=3.6, 3.2Hz, 1H).

¹³C-NMR of DGEVX (101 MHz, CDCl₃) δ=149.54, 149.47, 148.76, 148.66, 131.85, 131.68, 119.28, 118.95, 113.88, 113.70, 110.44, 110.15, 100.92, 100.54, 78.84, 72.08, 70.33, 70.32, 70.20, 69.96, 62.03, 55.98, 50.14, 44.97.

Fig. S1 DSC curves of DGEVX-DDS before curing (a)5 °C/min, (b)10 °C/min, (c)15 °C/min, (d)20

Fig. S2 Viscosity-temperature-time curves of DGEVX-DDS(a)180 °C (b)0-300 s of 180 °C (c)200 °C (d)0-200 s of 200 °C

Fig. S3 In situ FT-IR spectroscopy of DGEVX-DDS cross-linked network.

Fig. S4 Contact angle between cross-linked network structure and organic solutions.

Composition	T _{d5} (°C)	Tg (°C)	Tensile strength (MPa)	Tensile modulus (GPa)	Reference		
DGEVX/DDS	315	240	82.00	4.06	This work		
DGEVE/DDS	290	184	63.3-79.3	3.35	1		
DGEVP/IPDA	278	169	78-92	3.13	2, 3		
DGHMDO/DDM	330	164	104.00	2.16	4		
SAE-E	<300	72	15.00	0.45	5		
AEp-2	292	147	67.40	1.88	6		
ACA-III	303	62	48.00	1.47	7		
ACE-III	309	189	66.00	1.72	8		
BOB-DDS-2	< 300	168.4	88.8	2.15	9		
TDE-85/DTDA	282	212	70.7	1.61	10		
TDS-V5	-	163	-	2.78	11		
DPG-0.3	322	165	78	3.9	12		
LAE-GLU	<300	133	93.5	2.16	13		

Tab. S1 Comparisons of the properties and temperature curing procedures of bio-massed degradable epoxy systems reported in the literature and this work.

3. References

- W. Yuan, S. Ma, S. Wang, Q. Li, B. Wang, X. Xu, K. Huang, J. Chen, S. You and J. Zhu, European Polymer Journal, 2019, 117, 200-207.
- S. Ma, J. Wei, Z. Jia, T. Yu, W. Yuan, Q. Li, S. Wang, S. You, R. Liu and J. Zhu, *Journal of Materials Chemistry A*, 2019, 7, 1233-1243.
- C. Yan, J. Wei, Y. Zhu, H. Xu, D. Liu, G. Chen, X. Liu, J. Dai and D. Lv, *Polymer Composites*, 2023, 44, 4081-4094.
- B. Wang, S. Ma, Q. Li, H. Zhang, J. Liu, R. Wang, Z. Chen, X. Xu, S. Wang, N. Lu, Y. Liu, S. Yan and J. Zhu, *Green Chemistry*, 2020, 22, 1275-1290.
- 5. W. Zhang, F. Gao, X. Chen, L. Shen, Y. Chen and Y. Lin, *ACS Sustainable Chemistry & Engineering*, 2023, **11**, 3065-3073.
- 6. P. Li, S. Ma, B. Wang, X. Xu, H. Feng, Z. Yu, T. Yu, Y. Liu and J. Zhu, *Composites Science and Technology*, 2022, **219**.
- 7. I. Toendepi, S. Zhu, Y. Liu, L. Zhang, Y. Wei and W. Liu, *Polymer*, 2023, 272.
- 8. I. Toendepi, S. Zhu, Y. Liu, L. Zhang, Y. Wei and W. Liu, *Polymer*, 2024, 290.
- 9. X. Zhang, S. Cai, Z. Jian, X. Yang, Y. Wang, Z. Wang, X. Lu and H. Xia, *Industrial & Engineering Chemistry Research*, 2023, **62**, 18473-18483.
- H. Gong, J. Wu, Z. Zhao, Z. Guo, L. Gao, B. Zhang, M.-H. Li and J. Hu, *Chemical Engineering Journal*, 2022, 446.
- X. Jiao, Y. Ma, Z. Zhao, L. Gao, B. Zhang, J. Yang, M.-H. Li and J. Hu, Advanced Functional Materials, 2024, DOI: 10.1002/adfm.202409223.
- 12. B. Zhang, T. Cui, X. Jiao, Y. Ma, L. Gao and J. Hu, *Chemical Engineering Journal*, 2023, 476.
- 13. Y. Liu, Z. Yu, B. Wang, X. Xu, H. Feng, P. Li, J. Zhu and S. Ma, *Acs Sustainable Chemistry & Engineering*, 2022, **10**, 10898-10907.