
Supporting information

Increase of Spatiotemporal Resolution and Reproducible Layer Thicknesses in Cationic Vat Photopolymerization

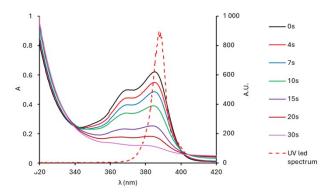

Emile Goldbach, Xavier Allonas, Christian Ley, Lucile Halbardier, Céline Croutxé-Barghorn

Table S1. Composition of the formulations based on 1,3-bis[2-(3,4-epoxycyclohexyl)ethyl]-tetramethyldisiloxane used in this study.

Formulation	[ITX] (mM)	[Speedcure 937] (mM)	[DMPy] (mM)	[2PL] (mM)
1	0,024	0,028	0	0
2	0,024	0,028	2	0
3	0,024	0,028	5	0
4	0,024	0,028	10	0
5	0,024	0,028	0	2
6	0,024	0,028	0	5
7	0,024	0,028	0	10

Figure S1. Change in the calculated heat flow H with time (according to eq.1) for formulations with 0, 2, 5 and 10 mM of DMPy and 2PL.

Figure S2. Changes in absorbance with the irradiation time (11 mW/cm²) for the formulation containing 0 mM of 2PL and spectrum of the UV LED used during this work.

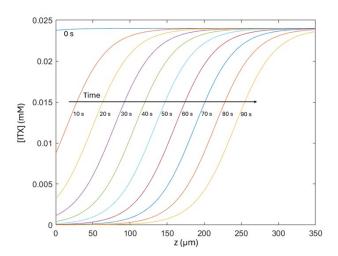


Figure S3. In-depth changes of [ITX] with the irradiation time calculated from eq. 3 to 6.

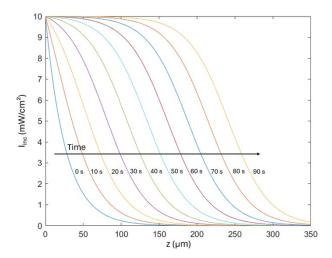


Figure S4. In-depth changes in the transmitted irradiance with the irradiation time calculated from eq. 3 to 6.

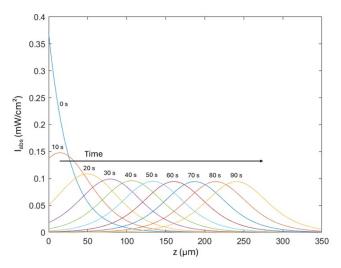


Figure S5. In-depth changes in the absorbed irradiance with the irradiation time calculated from eq. 3 to 6.