Supporting Information for

A dual-initiating organic frustrated Lewis pair catalyst for living polymerizations of

(bio)acrylates to facilitate the synthesis of metal-free multiblock copolymers

Zhen-Hua Zhang, $^{a,b,\perp}$ Yuyang Chen, $^{b,\perp}$ Yuesheng Li, a Miao Hong *,b,c,

^aTianjin Key Lab of Composite & Functional Materials, School of Materials Science and Engineering,

Tianjin University, Tianjin 300072, China

^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese

Academy of Sciences, Shanghai 200032, China

^c School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of

Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China

 $^{\perp}$ Z.-H.Z. and Y.C. contributed equally to this work.

*Correspondence to: miaohong@sioc.ac.cn

Figure S1. ¹H NMR spectra (toluene-d₈, RT): (top) $B(2,4-F_2C_6H_3)_3$; (middle) $DPPh_2 \rightarrow B(2,4-F_2C_6H_3)_3$ CLA; (bottom) $DPPh_2$.

Figure S2. ¹H NMR spectra (toluene-d₈, RT): (top) $B(2,4-F_2C_6H_3)_3$; (middle) $DPCy_2 \rightarrow B(2,4-F_2C_6H_3)_3$ CLA; (bottom) $DPCy_2$.

Figure S3. ¹H NMR spectra (benzene-*d*₆, RT): (top) B(2,4-F₂C₆H₃)₃; (middle) DP'Bu₂/B(2,4-F₂C₆H₃)₃ FLP; (bottom) DP'Bu₂.

Figure S4. ¹¹B NMR spectra (toluene-d₈, RT) of B(2,4-F₂Ph)₃ (a), DP'Bu₂/B(2,4-F₂C₆H₃)₃ FLP (b), DPPh₂ \rightarrow B(2,4-F₂C₆H₃)₃ CLA (c), and DPCy₂ \rightarrow B(2,4-F₂C₆H₃)₃ CLA (d).

Figure S5. ¹H NMR spectrum (CDCl₃) of THGA.

Figure S6. ¹³C NMR spectrum (CDCl₃) of THGA.

Figure S10. ¹³C NMR spectrum (CDCl₃) of 4aGA.

Figure S11. ¹H NMR spectrum (CDCl₃, RT) of PTHGA (Table 1, Run 15).

Figure S12. ¹³C NMR spectrum (CDCl₃, RT) of PTHGA (Table 1, Run 15).

Figure S13. ¹H NMR spectrum (CDCl₃, RT) of P4pGA (Table 1, Run 11).

Figure S14. ¹³C NMR spectrum (CDCl₃, RT) of P4pGA (Table 1, Run 11).

Figure S16. ¹³C NMR spectrum (CDCl₃, RT) of P4pGA (Table 1, Run 13).

Figure S18. ¹³C NMR spectrum (CDCl₃, RT) of PIBOA (Table 1, Run 17).

Figure S19. GPC curves of P^{*n*}BA homopolymer ($M_n = 30.2 \text{ kg/mol}$, D = 1.09), and PMA-*b*-P^{*n*}BA-*b*-PMA triblock copolymer ($M_n = 38.4 \text{ kg/mol}$, D = 1.09).