Supporting Information

Insights into the Bulk Kinetics of a 2K Radical Polymerization System Based on the Copper Catalyzed Cleavage of Diboranes and its Perspectives

F. Pieringer, Y. Catel, R. Liska, P. Knaack

Materials

B1 (5,5,5',5'-Tetramethyl-2,2'-bi-1,3,2-dioxaborinan) (98%, BLD Pharm), B3 (4,8-Dimethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2- yl)-1,3,6,2-dioxazaborocane) (95%, abcr), B4 (2-(Dimethylphenylsilyl)-4,4,5,5-tetramethyl-1,3,2- dioxaborolan) (95%, Merck), Cu(acac)2 (99.9%, Merck), tetrakis(dimethylamino)diboron (98%, BLD Pharm), 3-methylbutane-1,3-diol (97%, Merck), benzylmethacrylate (Sigma), methylmethacrylate (VWR), benzylacrylate (TCI), isobutylvinylether (TCI), dimethylacrylamide (Sigma), acrylomorpholine (Sigma), acetonitrile (ACROS) and styrene (ACROS) were used as received.

SI Figure 1: G' resulting from rheology/IR measurements of the polymerization of BzMA using either 3.5 mol% B1, B2, B3 or B4 and 0.2 mol% $Cu(acac)_2$ with logarithmic scale of the y-axis.

SI-Table 1: Summarized data derived from rheology/IR measurements of the polymerization of BzMA using 3.5 mol% of the respective diborane B1, B2, B3 or B4 and 0.2 mol% Cu(acac)₂. SEC measurements of polymers derived from the same concentrations, but prepared in larger bulk scale (500 mg) are included.

	t _{gel} (min)	DBC _{end} (%)	k _p (db% s⁻¹)	R _p (mol s ⁻¹)	M _n (kDa)	M _w (kDa)	PDI ()
B1	108	96	0.018	2.01*10 ⁻⁵	660	1984	3.0
B2	-	5.7	0.001	1.59*10 ⁻⁶	632	2127	3.4
B3	-	9.1	0.002	2.50*10 ⁻⁶	-	-	-
Β4	-	56	0.015	1.75*10 ⁻⁵	696	2339	3.4

SI-Figure 2: G' resulting from rheology/IR measurements of the polymerization of BzMA using either 1.8 mol% B1, 3.5 mol% B1 or 7 mol% B1 and 0.2 mol% Cu(acac)₂ with logarithmic scale of the y-axis.

SI-Table 2 Summarized data derived from rheology/IR measurements of the polymerization of BzMA using either 1.8 mol% B1, 3.5 mol% B1 or 7 mol% B1 and 0.2 mol% Cu(acac)₂.

	k _p (db% s⁻¹)	R _p (mol s ⁻¹)
7 mol%	0.018	2.04*10 ⁻⁵
3.5 mol%	0.018	2.01*10 ⁻⁵
1.8 mol%	0.012	1.35*10 ⁻⁵

SI-Figure 3: IR measurements of the polymerization of BzMA using 3.5 mol% B1 and 0.2 mol% Cu(acac)₂ interrupted at certain times to evaluate molecular mass from SEC. The reproducibility of methods is highly emphasized.

SI Figure 4: Rate of polymerization (R_p) of different monomers using 3.5 mol% B1 and 0.2 mol% Cu(acac)₂ derived from the rheology/IR measurements shown in figure 5A.

SI-Table 3: Summarized data derived from rheology/IR measurements of the polymerization of different monomers including BzMA, MMA, BzA, DMAA, A-Morph, AN, Styrene and isoBVE and the evaluated t_{gel} , DBC_{gel} and DBC_{end}. SEC measurements of polymers derived from the same concentrations, but prepared in larger bulk scale (500 mg) are included.

	M _n (kDa)	M _w (kDa)	PDI (-)	k _p (db%/s⁻¹)	R _p (mol s ⁻¹)
BzMA	660	1984	3	0.018	2.01*10 ⁻⁵
MMA	57	116	2	0.004	8.19*10 ⁻⁶
BzA	88	754	6.4	0.441	5.43*10 ⁻⁴
DMAA	< 1	< 1	-	0.008	1.51*10 ⁻⁵
A-Morph	< 1	< 1	-	0.014	1.96*10 ⁻⁵
AN	n.s.	n.s.	n.s.	0.249	2.41
ST	24	56	2.4	0.001	1.34*10 ⁻⁶
isoBVE	3.5	8.4	4.5	0.601	1.20*10 ⁻³

SI-Figure 5: ¹H-NMR of B2

SI-Figure 6: ¹¹B-NMR of B2