Supplementary Information

For

Axial-phenyl Constrained Bis(imino)acenaphthene-Nickel Precatalysts Enhancing

Ethylene Polymerization

Quanchao Wang,^{a,b} Qiuyue Zhang,^a Yizhou Wang,^{a,b} Song Zou,^a Yanping Ma,^a Tongling Liang,^a

and Wen-Hua Sun*a,b

^a Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences,

Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^b CAS Research/Education Center for Excellence in Molecular Sciences, University of

Chinese Academy of Sciences, Beijing 100049, China

Contents	Pages
Figure S1. FT-IR spectrum of Ni1-Ni5.	S4
Figure S2. ¹ H NMR (400 MPa) spectrum of Ni1 (recorded in CDCl ₃ at 25 °C).	S4
Figure S3. ¹ H NMR (400 MPa) spectrum of Ni2 (recorded in $CDCl_3$ at 25 °C).	S5
Figure S4. ¹ H NMR (400 MPa) spectrum of Ni3 (recorded in CDCl ₃ at 25 °C).	S5
Figure S5. ¹ H NMR (400 MPa) spectrum of Ni4 (recorded in CDCl ₃ at 25 °C).	S6
Figure S6. ¹ H NMR (400 MPa) spectrum of Ni5(recorded in $CDCl_3$ at 25 °C).	S6
Figure S7. ¹ H NMR (500 MPa) spectrum of Ni2 (recorded in $C_6D_4Cl_2$ at 25 °C).	S7
Figure S8. ¹ H NMR (500 MPa) spectrum of Ni2 (recorded in $C_6D_4Cl_2$ at 40 °C).	S7
Figure S9. ¹ H NMR (500 MPa) spectrum of Ni2 (recorded in $C_6D_4Cl_2$ at 60 °C).	S8
Figure S10. ¹ H NMR (500 MPa) spectrum of Ni2(recorded in $C_6D_4Cl_2$ at 80 °C).	S8
Figure S11. ¹ H NMR (500 MPa) spectrum of Ni2 (recorded in $C_6D_4Cl_2$ at 100 °C).	S9
Figure S12. DSC spectrum of the polyethylenes obtained at different polymerization temperatures using MMAO or EASC as cocatalyst.	S9
Figure S13. DSC spectrum of amorphous polyethylenes.	S10
Figure S14. GPC traces of the polyethylenes produced by Ni2/EASC.	S10
Figure S15. The structures of Ni13 , Ni8 , Ni2 and Ni3 and the value of their buried volume (%V _{Bur}).	S11
Figure S16. Topographical stereograms of Ni3 (a) and Ni2 (b).	S11
Figure S17. ¹³ C NMR (125 MPa) spectrum of PE _{Ni2-60-M1} .	S12
Figure S18. ¹³ C NMR (125 MPa) spectrum of PE _{Ni2-80-M1} .	S12
Figure S19. ¹³ C NMR (125 MPa) spectrum of PE _{Ni2-60-E5} .	S13
Figure S20. ¹³ C NMR (125 MPa) spectrum of PE _{Ni2-80-E5} .	S13
Figure S21. ¹³ C NMR (125 MPa) spectrum of PE _{Ni2-100-E5} .	S14
Figure S22. ¹³ C NMR (125 MPa) spectrum of PE _{Ni2-60-E2} .	S14
Figure S23. ¹³ C NMR (125 MPa) spectrum of PE _{Ni1-60-E2} .	S15
Figure S24. ¹³ C NMR (125 MPa) spectrum of PE _{Ni3-60-E2} .	S15
Figure S25. ¹³ C NMR (125 MPa) spectrum of PE _{Ni4-60-E2} .	S16
Figure S26. ¹³ C NMR (125 MPa) spectrum of PE _{Ni5-60-E2} .	S16
Figure S27. ¹³ C NMR (125 MPa) spectrum of PE _{Ni6-60-E2} .	S17

Figure S28. ¹³ C NMR (125 MPa) spectrum of PE _{Ni7-60-E2} .	S17
Figure S29. ¹³ C NMR (125 MPa) spectrum of PE _{Ni8-60-E2} .	S18
Table S1. Crystal data and structure refinement of Ni2 and Ni3.	S19
Table S2. Peak assignments of ¹³ C NMR spectrum of the polyethylenes	S20
Table S3. Branching analysis of selected samples of polyethylenes.	S21
Table S4. Stress-strain properties of the selected polyethylene samples.	S22

Figure S2. ¹H NMR (400 MPa) spectrum of Ni1 (recorded in CDCl₃ at 25 °C).

Figure S3. ¹H NMR (400 MPa) spectrum of **Ni2** (recorded in CDCl₃ at 25 °C).

Figure S4. ¹H NMR (400 MPa) spectrum of **Ni3** (recorded in CDCl₃ at 25 °C).

S5

Figure S6. ¹H NMR (400 MPa) spectrum of **Ni5** (recorded in CDCl₃ at 25 °C).

Figure S7. ¹H NMR (500 MPa) spectrum of **Ni2** (recorded in $C_6D_4Cl_2$ at 25 °C).

Figure S8. ¹H NMR (500 MPa) spectrum of **Ni2** (recorded in $C_6D_4Cl_2$ at 40 °C).

Figure S9. ¹H NMR (500 MPa) spectrum of Ni2 (recorded in $C_6D_4Cl_2$ at 60 °C).

Figure S10. ¹H NMR (500 MPa) spectrum of **Ni2** (recorded in C₆D₄Cl₂ at 80 °C).

Figure S12. DSC spectrum of the polyethylenes obtained at different polymerization temperatures using MMAO or EASC as cocatalyst.

Figure S13. DSC spectrum of amorphous polyethylenes.

Figure S14. GPC traces of the polyethylenes produced by Ni2/EASC (Run 1-6, Table 3).

The stronger the skeleton rigidity, the lower the buried volume value

Rotation suppression of N-aryl group

Figure S15. The structures of Ni9, Ni8, Ni2 and Ni3 and their value of the buried volume (%V_{Bur}).

Figure S16. Topographical stereograms of Ni3 and Ni2.

Figure S17. ¹³C NMR (125 MPa) spectrum of $PE_{Ni2-60-M1}$ (recorded in 1,1,2,2-tetrachloroethane d_2 at 100 °C).

Figure S18. ¹³C NMR (125 MPa) spectrum of $PE_{Ni2-80-M1}$ (recorded in 1,1,2,2-tetrachloroethane d_2 at 100 °C).

Figure S19. ¹³C NMR (125 MPa) spectrum of $PE_{Ni2-60-E5}$ (recorded in 1,1,2,2-tetrachloroethane- d_2 at 100 °C).

Figure S20. ¹³C NMR (125 MPa) spectrum of $PE_{Ni2-80-E5}$ (recorded in 1,1,2,2-tetrachloroethane- d_2 at 100 °C).

Figure S22. ¹³C NMR (125 MPa) spectrum of $PE_{Ni2-60-E2}$ (recorded in 1,1,2,2-tetrachloroethane- d_2 at 100 °C).

Figure S24. ¹³C NMR (125 MPa) spectrum of $PE_{Ni3-60-E2}$ (recorded in 1,1,2,2-tetrachloroethane- d_2 at 100 °C).

Figure S25. ¹³C NMR (125 MPa) spectrum of $PE_{Ni4-60-E2}$ (recorded in 1,1,2,2-tetrachloroethane- d_2 at 100 °C).

Figure S26. ¹³C NMR (125 MPa) spectrum of $PE_{Ni5-60-E2}$ (recorded in 1,1,2,2-tetrachloroethane- d_2 at 100 °C).

Figure S28. ¹³C NMR (125 MPa) spectrum of $PE_{Ni7-60-E2}$ (recorded in 1,1,2,2-tetrachloroethane- d_2 at 100 °C).

at 100 °C).

	Ni2	Ni3
CCDC number	2331173	2331174
Empirical formula	$C_{38}H_{36}Br_2N_2Ni$	$C_{84}H_{88}Br_4N_4Ni_2$
Formula weight	739.22	1590.64
Temperature/K	169.96(13)	169.98(11)
Crystal system	monoclinic	triclinic
Space group	P2 ₁ /n	P-1
a/Å	12.9593(8)	10.1206(4)
b/Å	15.7707(6)	11.7415(6)
c/Å	17.4731(10)	18.2647(5)
α/°	90	100.897(3)
β/°	110.829(7)	90.722(3)
γ/°	90	104.200(4)
Volume/Å ³	3337.7(3)	2062.19(15)
Z	4	1
$\rho_{calc} g/cm^3$	1.471	1.281
µ/mm⁻¹	3.852	3.153
F(000)	1504.0	816.0
Crystal size/mm ³	$0.1 \times 0.06 \times 0.05$	$0.15 \times 0.08 \times 0.05$
Radiation	Cu Kα (λ = 1.54184)	Cu Kα (λ = 1.54184)
20 range for data collection/°	7.794 to 152.49	7.924 to 151.494
Index ranges	-16 ≤ h ≤ 16, -18 ≤ k ≤ 19, -20 ≤ l ≤	-12 ≤ h ≤ 12, -14 ≤ k ≤ 13, -22 ≤ l ≤
	20	22
Reflections collected	23084	24318
Independent reflections	6489 [R _{int} = 0.0513,	8177 [R _{int} = 0.0618,
	R _{sigma} = 0.0368]	R _{sigma} = 0.0563]
Data/restraints/parameters	6489/751/578	8177/0/432
Goodness-of-fit on F ²	1.094	1.033
Final R indexes $[I \ge 2\sigma(I)]$	R ₁ = 0.1258, wR ₂ = 0.2328	R ₁ = 0.0723, wR ₂ = 0.1817
Final R indexes [all data]	$R_1 = 0.1349$, $wR_2 = 0.2363$	R ₁ = 0.0866, wR ₂ = 0.1975
Largest diff. peak/hole / e Å ⁻³	1.29/-0.90	1.89/-0.96

Table S1. Crystal data and structure refinement of Ni2 and Ni3.

Peak	Attribution	Peak	Attribution	Peak	Attribution
1	1B ₂	12	βB ₁ 1,4-βB ₁	23	1.4-brB1
	2		1,5-βB ₁ 1,6-βB ₁ 4B ₅		-, 1
2	$1B_4 1B_5 1B_n$	13	1,6-β'B ₁	24	αB_2
3	1B ₃	14	3B ₄	25	4B ₄
4	10 1 5 0 1 6 0	15	40	26	$\alpha B_{3-5} 5B_5 nB_n \alpha B_n$
4	тв ₁ 1,3-в ₁ 1,0-в ₁	15	40 _n	20	1,4-αB _n 1,4-nB _n
5	1,4-1B ₁	16	δB_{1-n}	27	1,4-α'B ₁
C	20	47	$\gamma B_1 1,4-\gamma B_1$	20	20
D	2B ₃	17	1,5-γB ₁ 1,6-γB ₁	28	3B3
7		10	γB_{2-5} 1,4- γB_n	20	$\alpha B_1 1,4-\alpha B_1 1,5-\alpha B_1$
/	285 28n 1,4-28n	18	1,4-(n-2)B _n γB _n	29	1,6-αB ₁ 1,6-a'B ₁
8	2B ₄₋₈	19	1,4-α'B _n	30	$brB_3 1,5-\alpha'B_1$
9	1,5-β'B ₁	20	3B _n 1,4-3B _n	31	brB _{4,5,n}
10	2B ₂	21	3B ₅	32	1,4-brB _n
	$\beta B_{2-5} \beta B_n (n-1) B_n$	22		22	k.D
11	1,4-βB _n 1,4-(n-1)B _n	22	огв ₁ 1,5-огв ₁ 1,6-огВ ₁	33	DrB2

Table S2. Peak assignments of ¹³C NMR spectrum of the polyethylenes ^a

^{a 13}C NMR spectrum of the polyethylenes (PE_{Ni3-60-E2}) was shown in Figure 12 in manuscript.

Samples	Branches /1000 C's	Methyl branches/%	Ethyl branches/ %	Propyl branches/%	Butyl branches/%	Amyl branches/ %	Long branches/ %	Details
РЕ _{Ni2-60-M1}	81	93.30	0.36	0.72	1.27	1.09	3.26	Run 2, Table 2
РЕ _{Ni2-80-M1}	83	84.36	0.62	0.74	2.41	2.60	9.27	Run 4, Table 2
PE _{Ni2-60-E5}	122	81.22	1.99	1.75	5.67	1.40	8.07	Run 2, Table 3
PE _{Ni2-80-E5}	167	83.12	1.41	3.10	6.06	1.71	4.60	Run 4, Table 3
PE _{Ni2-100-E5}	119	69.76	0.09	3.05	9.22	3.60	14.27	Run 6, Table 3
PE _{Ni1-60-E2}	65	64.58	0.44	1.15	5.73	8.11	20.00	Run 8, Table 3
PE _{Ni2-60-E2}	123	65.31	0.55	2.22	10.93	4.53	16.47	Run 12, Table 3
PE _{Ni3-60-E2}	185	76.22	4.83	2.46	7.10	2.00	7.39	Run 13, Table 3
PE _{Ni4-60-E2}	48	85.29	2.55	2.60	4.30	0.16	5.10	Run 14, Table 3
PE _{Ni5-60-E2}	97	83.67	2.19	1.77	4.52	1.07	6.78	Run15, Table 3
PE _{Ni6-60-E2}	30	85.68	1.98	2.31	3.99	0.62	5.41	Run16, Table 3
PE _{Ni7-60-E2}	74	82.47	0.32	0.82	5.81	1.72	8.85	Run17, Table 3
PE _{Ni8-60-E2}	180	74.89	3.37	3.15	8.46	2.18	7.95	Run19, Table 3
а	Data	determined	d fror	n th	e ¹³ 0	C NM	R sp	ectrum.

Table S3. Branching analysis of selected samples of polyethylenes. ^a

Samples	Maximum load /N	Modulus of elasticity /%	Rupture Stress /MPa	Rupture Strain /%
РЕ _{Ni2-60-M1}	99.68566	31.16010	20.86127	989.17561
РЕ _{Ni2-80-M1}	121.83333	25.94073	26.47687	1407.09152
PE _{Ni1-60-M3}	35.26493	231.10084	5.11201	441.05134
РЕ _{Ni3-60-M3}	34.90348	3.92895	7.15527	945.84150
РЕ _{Ni4-60-M3}	63.21949	327.03846	10.63216	1357.50637
PE _{Ni5-60-M3}	98.77724	25.40926	22.83357	1008.34370
PE _{Ni2-60-E5}	55.29499	14.95573	12.10514	1189.17704
PE _{Ni2-80-E5}	43.55141	9.05498	10.36686	2019.59190

Table S4. Stress-strain properties of the selected polyethylene samples.