Supplementary Information (SI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Effects of Crosslink Density and Plasticizer on Thermorheological Properties of Dissociative Guanidinebased Covalent Adaptable Networks

Adelle L. Koenig,¹ Kelsey M. Allis,² John S. Lehr,² Michael B. Larsen^{1*}

*Corresponding author: mike.larsen@wwu.edu

¹Department of Chemistry, Western Washington University, Bellingham, WA, USA 98225

²Department of Engineering and Design, Western Washington University, Bellingham, WA, USA 98225

Figure S1. ¹H NMR spectrum (500 MHz, CDCl₃) of multifunctional carbodiimide oligomer. $*H_2O$ from CDCl₃. Degree of polymerization (*n*) was calculated via endgroup analysis by integration of the peak at 2.33 ppm to 6.00 and division by 2 of the resultant integration of the peak at 3.93 ppm.

Figure S2. ATR FT-IR spectrum of multifunctional carbodiimide oligomer.

Figure S3. ATR FT-IR spectrum of CAN A₀.

Figure S4. ATR FT-IR spectrum of CAN A₅.

Figure S5. ATR FT-IR spectrum of CAN B₅.

Figure S6. ATR FT-IR spectrum of CAN C₅.

Figure S7. ATR FT-IR spectrum of CAN A₁₀.

Figure S8. ATR FT-IR spectrum of CAN B₁₀.

Figure S9. ATR FT-IR spectrum of CAN C₁₀.

Table S1. Mean and standard error of gel fractions for all CAN compositions.

CAN Composition	Gel Fraction
CAN A ₀	99.3%
CAN A ₅	94.0 ± 3.0%ª
CAN A ₁₀	88.8 ± 0.8% ^b
CAN B ₅	88.9 ± 1.2%ª
CAN B ₁₀	85.0 ± 1.3% ^b
CAN C ₅	74.2 ± 2.3%ª
CAN C ₁₀	77.3 ± 6.7% ^b

^aData from three individual samples. ^bData from two individual samples.

Figure S10. TGA thermogram of CAN A_0 (10 °C/min, N_2 atmosphere). $T_{d,5\%}$ = 212 °C.

Figure S11. TGA thermogram of CAN A₅ (10 °C/min, N₂ atmosphere). $T_{d,5\%}$ = 183 °C.

Figure S12. TGA thermogram of CAN B₅ (10 °C/min, N₂ atmosphere). $T_{d,5\%}$ = 173 °C.

Figure S13. TGA thermogram of CAN C₅ (10 °C/min, N₂ atmosphere). $T_{d,5\%}$ = 191 °C.

Figure S14. TGA thermogram of CAN A₁₀ (10 °C/min, N₂ atmosphere). $T_{d,5\%}$ = 212 °C.

Figure S15. TGA thermogram of CAN B_{10} (10 °C/min, N_2 atmosphere). $T_{d,5\%}$ = 198 °C.

Figure S16. TGA thermogram of CAN C₁₀ (10 °C/min, N₂ atmosphere). $T_{d,5\%}$ = 204 °C.

Figure S17. DMA thermogram of storage modulus versus temperature for representative sample of CAN A₀.

Figure S18. DMA thermogram of storage modulus versus temperature for representative sample of CAN A₅.

Figure S19. DMA thermogram of storage modulus versus temperature for representative sample of CAN B_5 .

Figure S20. DMA thermogram of storage modulus versus temperature for representative sample of CAN C_5 .

Figure S21. DMA thermogram of storage modulus versus temperature for representative sample of CAN A_{10} .

Figure S22. DMA thermogram of storage modulus versus temperature for representative sample of CAN B_{10} .

Figure S23. DMA thermogram of storage modulus versus temperature for representative sample of CAN C_{10} .

Figure S24. DMA thermogram of tan δ versus temperature for representative sample of CAN A₀. T_g is taken as the peak of tan δ ; $T_g = 176$ °C.

Figure S25. DMA thermogram of tan δ versus temperature for representative sample of CAN A₅. T_g is taken as the peak of tan δ ; T_g = 130 °C.

Figure S26. DMA thermogram of tan δ versus temperature for representative sample of CAN B₅. T_g is taken as the peak of tan δ ; $T_g = 116$ °C.

Figure S27. DMA thermogram of tan δ versus temperature for representative sample of CAN C₅. T_g is taken as the peak of tan δ ; $T_g = 114$ °C.

Figure S28. DMA thermogram of tan δ versus temperature for representative sample of CAN A₁₀. T_g is taken as the peak of tan δ ; T_g = 120 °C.

Figure S29. DMA thermogram of tan δ versus temperature for representative sample of CAN B₁₀. T_g is taken as the peak of tan δ ; T_g = 112 °C.

Figure S30. DMA thermogram of tan δ versus temperature for representative sample of CAN C₁₀. T_g is taken as the peak of tan δ ; T_g = 96 °C.

Figure S31. Strain sweep data for a representative sample of CAN A₅.

Figure S32. Frequency sweep performed at 175 °C for a representative sample of CAN A₅. τ^*_{cross} = 146 s.

Figure S33. Frequency sweep performed at 175 °C for a representative sample of CAN B₅. τ^*_{cross} = 104 s.

Figure S34. Frequency sweep performed at 175 °C for a representative sample of CAN C₅. τ^*_{cross} = 36 s.

Figure S35. Frequency sweep performed at 175 °C for a representative sample of CAN A₁₀. τ^*_{cross} = 152 s.

Figure S36. Frequency sweep performed at 175 °C for a representative sample of CAN B₁₀. τ^*_{cross} = 90 s.

Figure S37. Frequency sweep performed at 175 °C for a representative sample of CAN C₁₀. τ^*_{cross} = 57 s.

Figure S38. Stress relaxation and calculated continuous relaxation spectrum at 175 °C for a representative sample of CAN A₅. τ^*_{SR} = 167 s.

Figure S39. Stress relaxation and calculated continuous relaxation spectrum at 175 °C for a representative sample of CAN B₅. τ^*_{SR} = 96 s.

Figure S40. Stress relaxation and calculated continuous relaxation spectrum at 175 °C for a representative sample of CAN C₅. τ^*_{SR} = 40 s.

Figure S41. Stress relaxation and calculated continuous relaxation spectrum at 175 °C for a representative sample of CAN A₁₀. τ^*_{SR} = 113 s.

Figure S42. Stress relaxation and calculated continuous relaxation spectrum at 175 °C for a representative sample of CAN B₁₀. τ^*_{SR} = 48 s.

Figure S43. Stress relaxation and calculated continuous relaxation spectrum at 175 °C for a representative sample of CAN C_{10} . τ^*_{SR} = 29 s.

Figure S44. (a) Reduced van Gurp-Palmen plot of a sample of CAN A₅. (b) Unshifted frequency sweep data of a sample of CAN A₅. (c) Master curve of frequency sweep data constructed via TTS of a sample of CAN A₅. (d) Unshifted stress relaxation data of a sample of CAN A₅. (e) Master curve of stress relaxation constructed from TTS of a sample of CAN A₅. (f) Arrhenius analysis of horizontal shift factors for all CAN A₅ samples. Filled circles are from frequency sweep data and empty circles from stress relaxation; each color is a single sample. Dashed line is line of best fit. T_{ref} = 175 °C for all analyses.

Figure S45. (a) Reduced van Gurp-Palmen plot of a sample of CAN B₅. (b) Unshifted frequency sweep data of a sample of CAN B₅. (c) Master curve of frequency sweep data constructed via TTS of a sample of CAN B₅. (d) Unshifted stress relaxation data of a sample of CAN B₅. (e) Master curve of stress relaxation constructed from TTS of a sample of CAN B₅. (f) Arrhenius analysis of horizontal shift factors for all CAN B₅ samples. Filled circles are from frequency sweep data and empty circles from stress relaxation; each color is a single sample. Dashed line is line of best fit. $T_{ref} = 175$ °C for all analyses.

Figure S46. (a) Reduced van Gurp-Palmen plot of a sample of CAN C₅. (b) Unshifted frequency sweep data of a sample of CAN C₅. (c) Master curve of frequency sweep data constructed via TTS of a sample of CAN C₅. (d) Unshifted stress relaxation data of a sample of CAN C₅. (e) Master curve of stress relaxation constructed from TTS of a sample of CAN C₅. (f) Arrhenius analysis of horizontal shift factors for all CAN C₅ samples. Filled circles are from frequency sweep data and empty circles from stress relaxation; each color is a single sample. Dashed line is line of best fit. $T_{ref} = 175$ °C for all analyses. Figures a, c, e, and f are identical to main text Figure 4.

Figure S47. (a) Reduced van Gurp-Palmen plot of a sample of CAN A₁₀. (b) Unshifted frequency sweep data of a sample of CAN A₁₀. (c) Master curve of frequency sweep data constructed via TTS of a sample of CAN A₁₀. (d) Unshifted stress relaxation data of a sample of CAN A₁₀. (e) Master curve of stress relaxation constructed from TTS of a sample of CAN A₁₀. (f) Arrhenius analysis of horizontal shift factors for all CAN A₁₀ samples. Filled circles are from frequency sweep data and empty circles from stress relaxation; each color is a single sample. Dashed line is line of best fit. $T_{ref} = 175$ °C for all analyses.

Figure S48. (a) Reduced van Gurp-Palmen plot of a sample of CAN B₁₀. (b) Unshifted frequency sweep data of a sample of CAN B₁₀. (c) Master curve of frequency sweep data constructed via TTS of a sample of CAN B₁₀. (d) Unshifted stress relaxation data of a sample of CAN B₁₀. (e) Master curve of stress relaxation constructed from TTS of a sample of CAN B₁₀. (f) Arrhenius analysis of horizontal shift factors for all CAN B₁₀ samples. Filled circles are from frequency sweep data and empty circles from stress relaxation; each color is a single sample. Dashed line is line of best fit. $T_{ref} = 175$ °C for all analyses.

Figure S49. (a) Reduced van Gurp-Palmen plot of a sample of CAN C_{10} . (b) Unshifted frequency sweep data of a sample of CAN C_{10} . (c) Master curve of frequency sweep data constructed via TTS of a sample of CAN C_{10} . (d) Unshifted stress relaxation data of a sample of CAN C_{10} . (e) Master curve of stress relaxation constructed from TTS of a sample of CAN C_{10} . (f) Arrhenius analysis of horizontal shift factors for all CAN C_{10} samples. Filled circles are from frequency sweep data and empty circles from stress relaxation; each color is a single sample. Dashed line is line of best fit. $T_{ref} = 175$ °C for all analyses.

Figure S50. Arrhenius analysis of vertical shift factors for CAN samples. (a) CAN A₅; (b) CAN B₅; (c) CAN C₅; (d) CAN A₁₀; (e) CANB₁₀; (f) CAN C₁₀. Filled circles are from frequency sweep data and empty circles from stress relaxation; each color is a single sample. T_{ref} = 175 °C for all analyses.

Figure S51. ATR FT-IR spectra of a sample of CAN A₅ before (top) and after (bottom) rheological analysis.

Discussion of the sticky Rouse model for unentangled CANs. The terminal relaxation time (τ_{term}) in this model is expressed as

$$\tau_{term} = \tau_{xl} N_{xl}^2$$

where τ_{xl} is the crosslink lifetime and N_{xl} is the number of crosslinks per chain. While our systems do not achieve terminal relaxation in the experimental conditions, the longest relaxation times we observe (i.e., τ^*) still follow this trend. τ_{xl} can be further described as

$$\tau_{xl} = \sigma \tau_0 \exp\left(\frac{E_a^{sm}}{RT}\right)$$

where σ describes the mobility of the exchanging functional group, τ_0 is the Rouse segmental relaxation time, and E_a^{sm} is the activation energy of the crosslink exchange reaction. Thus, if σ is relatively constant under the experimental conditions, the temperature dependence of τ_{xl} (i.e., the flow E_a measured by rheometry) will only be dependent on E_a^{sm} and τ_0 . For additional discussion and comparison to other models of CAN dynamics, see main text refs. 52 and 54.