Electronic Supporting Information

Effect of Molar Mass of Poly(2-Oxazoline) Based Glycopolymers on Lectin Binding

Caitlin L A Nutting^a, James Lefley^a, Zivani Varanaraja,^a Gokhan Yilmaz^a, C. Remzi Becer^a* ^aDepartment of Chemistry, University of Warwick, Coventry, CV4 7AL, UK

Corresponding author: E-mail: remzi.becer@warwick.ac.uk

Website: www.becergroup.com

Table of Contents

Monomer Synthesis of 2-(3-butenyl-2-oxazoline)	2
Kinetic Information of the CROP of 2-(3-butenyl-2-oxazoline)	3
NMR, MALDI-ToF and GPC traces P1-P6	4
¹ H NMR, IR traces GPC traces GP1-GP5	10
SPR sensorgrams of negative control P6	20

Figure S1: The assigned ¹H NMR of step one of the synthesis of 2-(3-butenyl-2-oxaazoline) (CDCl₃, 400 MHz)

Figure S2: The assigned ¹H NMR of step two of the synthesis of 2-(3-butenyl-2-oxazoline) (CDCl₃, 400 MHz).

Figure S3: The assigned ¹H NMR of the purified 2-(3-butenyl-2-oxazoline) (CDCl₃, 400 MHz).

Figure S4: The kinetic plots of 2-(3-Butenyl-2-oxazoline) at 110 °C in acetonitrile. The plots demonstrate a linear first-order kinetic characteristic of living polymerisation. (A) Evolution of molecular weight and dispersity over conversion of the CROP reaction. (B) Semi-logarithmic plot of ButeneOx at 110 °C in acetonitrile. (C) Evolution of GPC traces over different time points measured (eluent: THF +2 % TEA +0.1 % BHT).

Figure S5: The assigned t_0 ¹H NMR spectrum of the stock solution used for each first block of **P1-P5** which include 2-(3-butenyl-2-oxaoline) and MeCN this was initiated with propargyl tosylate and after 22 mins EtOx was added in varying amounts depending on the chain length desired (CDCl₃, 400 MHz).

Figure S6: Example assigned t_1 ¹H NMR Spectrum of **P1** at the point before the addition of EtOx, (CDCl₃, 400 MHz).

Figure S7: The assigned t_f ¹H NMR Spectrum of P1 (CDCl₃, 400 MHz).

Figure S8: The assigned t_f ¹H NMR Spectrum of P2(CDCl₃, 400 MHz).

Figure S9: The assigned t_f ¹H NMR Spectrum of P3(CDCl₃, 400 MHz).

Figure S10: The assigned t_f ¹H NMR Spectrum of P5(CDCl₃, 400 MHz).

Figure S11: The assigned t_f ¹H NMR Spectrum of P6(CDCl₃, 400 MHz).

Figure S12: MALDI-Tof MS of P1. Confirming the telechelic structure.

Figure S13: GPC chromatogram of P1. The GPC was carried out in THF.

Figure S14: GPC chromatogram of **P2**. With the red trace showing the 1st block of the polymer and the black trace showing the addition of the 2nd block The GPC was carried out in THF.

Figure S15: GPC chromatogram of **P3**. With the red trace showing the 1st block of the polymer and the black trace showing the addition of the 2nd block. The GPC was carried out in THF.

Figure S16: GPC chromatogram of **P4**. With the red trace showing the 1st block of the polymer and the black trace showing the addition of the 2nd block. The GPC was carried out in THF.

Figure S17: GPC chromatogram of **P5**. With the red trace showing the 1st block of the polymer and the black trace showing the addition of the 2nd block. The GPC was carried out in THF.

Figure S18: GPC chromatogram of P6. The GPC was carried out in THF.

Figure S19: The assigned final ¹H NMR Spectrum of GP1 (D₂O 400 MHz).

Figure S20: The assigned final ¹H NMR Spectrum of GP2 (D₂O 400 MHz).

Figure S21: The assigned final ¹H NMR Spectrum of GP3 (D₂O 400 MHz).

Figure S22: The assigned final ¹H NMR Spectrum of GP5 (D₂O 400 MHz).

Figure S23: GPC chromatogram of the final GP1. The GPC was carried out in DMF.

Figure S24: GPC chromatogram of the final GP2. The GPC was carried out in DMF.

Figure S25: GPC chromatogram of the final GP3. The GPC was carried out in DMF.

Figure S26: GPC chromatogram of the final GP4. The GPC was carried out in DMF.

Figure S27: GPC chromatogram of the final GP5. The GPC was carried out in DMF.

Figure S28: FT-IR spectrum of GP1 before deacetylation.

Figure S29: FT-IR spectrum of GP2 before deacetylation.

Figure S30: FT-IR spectrum of GP3 before deacetylation.

Figure S31: FT-IR spectrum of GP4 before deacetylation.

Figure S32: FT-IR spectrum of GP1 after deacetylation.

Figure S33: FT-IR spectrum of GP2 after deacetylation.

Figure S34: FT-IR spectrum of GP3 after deacetylation.

Figure S35: FT-IR spectrum of GP4 after deacetylation.

Figure S36: FT-IR spectrum of GP5 after deacetylation.

Figure S37: SPR binding curves of the negative control P6 against the lectins DC-SIGN, MBL and Langerin.