Supplementary Information (SI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2024

Supplementary information

An efficient and economical degradation strategy for epoxy thermoset based on low cost transesterification catalyst

Zhijun Yang, ^a Shuhan Zhang ^a, Huan Liang ^a, Enjian He ^a, Yixuan Wang ^a, Ting Lei ^b, Zhicheng Wu^c, Qiulin Chen ^d, Fusheng Zhou ^d, Yen Wei, *^a and Yan Ji *^a

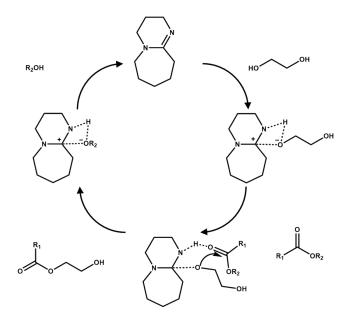
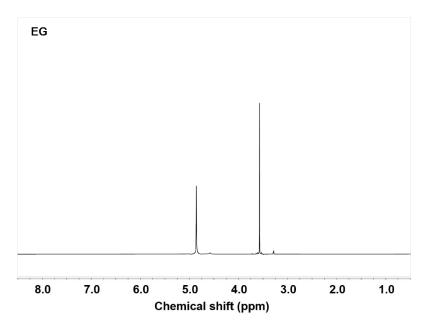
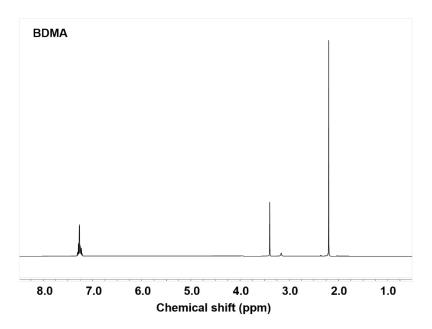
^a. The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry,

Tsinghua University, Beijing 100084, China.

^{b.} Department of Electrical Engineering, Tsinghua University, Beijing 100084, China.

^c State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.

^d 3Electric Power Research Institute, China Southern Power Grid Co. Ltd, Guangzhou 510623, China.

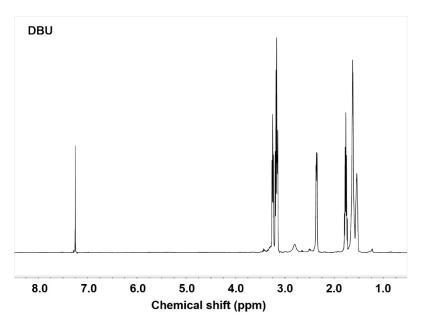

Figure S1. The proposed catalytic mechanism of alcoholysis reaction between ester and alcohol using DBU catalyst.

Figure S2. ¹H NMR spectrum of ethylene glycol (EG). ¹H NMR (400 MHz, Methanol- d_4) δ 4.58 (s, 4H), 3.57 (s, 3H).

Figure S3. ¹H NMR spectrum of BDMA. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 – 7.18 (m, 3H), 3.40 (s, 1H), 2.20 (s, 3H).

Figure S4. ¹H NMR spectrum of DBU. ¹H NMR (400 MHz, Chloroform-*d*) δ 3.25 (t, *J* = 5.6 Hz, 1H), 3.17 (dt, *J* = 9.0, 5.2 Hz, 2H), 2.39 – 2.32 (m, 1H), 1.77 (p, *J* = 6.0 Hz, 1H), 1.64 (dd, *J* = 7.3, 5.2 Hz, 1H), 1.54 (q, *J* = 5.0, 3.7 Hz, 1H).