Supplementary Materials for: Mechanism and modelling of thermally initiated RAFT step-growth polymerization

Samantha Marie Clouthier,^a Joji Tanaka,^a* Wei You^a*

^aDepartment of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA

General considerations

Unless stated all reagents were purchased from commercial suppliers and used as received. Anhydrous dioxane was passed through activated basic aluminum oxide and discarded after several uses. All NMR spectrums were recorded on a Bruker 400 MHz spectrometer in CDCl₃. All NMR spectrums were processed using Mestrenova. Volumes of solvents (including initiator stock solution) were measured by weight based on densities reported by manufacturers. Initiator (AIBN) stock solution was prepared as 20 mg/ml in the solvent used for polymerization. For simplicity, molar concentration of the reacting species here is defined by moles of the reactants divided by the total volume of the solvent, without consideration for the volume taken up by non-solvent components. Experiments were carried out in either 3.7 ml scintillation vials with a diameter of 15 mm, or in 20 ml scintillation vials with a diameter of 28 mm. Reaction containers were sealed with a 14/20 rubber septum. Thermo Scientific digital baths (Digital Dry Baths/Block Heaters – PROMO, catalog number: 88870001) equipped with heat block (holds 15 x 16 mm diameter, catalog number: 88870106) were used to maintain constant temperature.

For kinetic analysis A 22-gauge, 4 inch hypodermic needle (air-tite product) was used to sample the reaction mixture under argon flow. Typically, a single needle and syringe was used to take sample for ¹H-NMR spectroscopy, by drawing out approximately 50 to 100 μ L and dropping a few drops into a vial for ¹H-NMR.

Procedure for A₂ + B₂ RAFT step-growth polymerization with maleimide monomer:

Bifunctional monomer, M_{2B} (250 mg, 0.698 mmol) was first charged into a 3.7 ml vial, followed by bifunctional CTA, **CTA**₂ (409.49 mg, 0.698 mmol). Next, 0.822 ml tetrachloroethane (TCE) and 0.911 ml AIBN stock solution (20 mg/ml in TCE) was added to target molar concentration of $[M_2]_0$:[CTA₂]₀:[AIBN]₀ = 0.5 : 0.5 : 0.05 M (without consideration for the volume taken up by non-solvent components). The vial was then equipped with a stir bar and rubber septum. The reaction vials were then purged with argon for 10 minutes and then placed inside the heat block at 70 °C.

Procedure for A₂ + B₂ RAFT step-growth polymerization with acrylate monomer:

Bifunctional monomer, M_{2F} (250 mg, 1.09 mmol) was first charged into a 3.7 ml vial, followed by bifunctional CTA, **CTA**₂ (642.03 mg, 1.10 mmol). Next, 0.397 ml 1,4-Dioxane and 0.464 ml AIBN stock solution (20 mg/ml in 1,4-dioxane) was added to target molar concentration of $[M_2]_0$:[CTA₂]_0:[AIBN]_0 = 1.0 : 1.0 : 0.05 M (without consideration for the volume taken up by non-solvent components). The vial was then equipped with a stir bar and rubber septum. The reaction vials were then purged with argon for 10 minutes and then placed inside the heat block at 70 °C.

Determining R_p for RAFT step-growth system

Equations 1-10 defined in the main text can be used to analytically solve for the rate of polymerization (R_p) . First consumption rates monomer and RAFT agent (equations 1 and 2) can be set equal, as shown below:

$$\frac{\mathrm{d}[\mathrm{M}]}{\mathrm{d}t} = \frac{\mathrm{d}[\mathrm{CTA}]}{\mathrm{d}t} \tag{S1}$$

$$-k_{i}[M][R] = -k_{add}[CTA][M] = -k_{frag}[CTA]$$
(S2)

Additionally, the steady state approximation can be invoked, allowing for equations 3-5 to 0, giving the following expression:

dt

$$R_{i} = R_{t} = 2k_{t}[M]^{2} + 2k_{t}[M][R] + 2k_{t}[M][CTA] + 2k_{t}[R]^{2} + 2k_{t}[R][CTA] + 2k_{t}[CTA]^{2}$$
(53)

Equation S2 can be rearranged to give expressions for [M•] and [CTA•] (equations S4 and S5).

$$[M\cdot] = \frac{k_{i}[M][R\cdot]}{k_{add}[CTA]}$$
(S4)

$$[CTA] = \frac{k_{i}[M][R]}{k_{frag}}$$
(S5)

Equations S4 and S5 can be plugged into equation S3 to give the following expression for R_i:

$$R_{i} = \mathbf{k}_{t} \left(\frac{k[M][R]}{k_{add}[CTA]}\right)^{2} + \mathbf{k}_{t} \left(\frac{k_{i}[M][R]}{k_{add}[CTA]}\right) [R] + \mathbf{k}_{t} \left(\frac{k_{i}[M][R]}{k_{add}[CTA]}\right) \left(\frac{k_{i}[M][R]}{k_{frag}}\right) + 2k_{t}[R]^{2}$$
(S6)
$$+ 2k_{t}[R] \left(\frac{k_{i}[M][R]}{k_{frag}}\right) + 2k_{t} \left(\frac{k_{i}[M][R]}{k_{frag}}\right)$$

Equation S6 can then be rearranged in terms of [R•] to give equation S7, below:

(S7)

(02)

$$[R \cdot] = \frac{1}{k_{i}[M]} \sqrt{\frac{R_{i}}{2k_{t}}} \frac{1}{\sqrt{\frac{1}{(k_{add}[CTA])^{2}} + \frac{1}{k_{i}[M]k_{add}[CTA]} + \frac{1}{k_{add}[CTA]k_{frag}} + \frac{1}{(k_{i}[M])^{2} + \frac{1}{k_{i}[M]k_{frag}} + \frac{1}{(k_{frag})^{2}}}}$$

As R_p can be defined by equation S8, an expression for R_p for RAFT step-growth can be solved for by plugging equation S7 into equation S8 to give equation S9.

$$R_{\rm p} = -\frac{d[M]}{dt} = k_{\rm i}[M][R]$$
(S8)

$$R_{\rm p} = \sqrt{\frac{R_{\rm i}}{2k_{\rm t}}} \frac{1}{\sqrt{\frac{1}{(k_{\rm add}[{\rm CTA}])^2} + \frac{1}{k_{\rm i}[{\rm M}]k_{\rm add}[{\rm CTA}]} + \frac{1}{k_{\rm add}[{\rm CTA}]k_{\rm frag}} + \frac{1}{(k_{\rm i}[{\rm M}])^2} + \frac{1}{k_{\rm i}[{\rm M}]k_{\rm frag}} + \frac{1}{(k_{\rm frag})^2}}$$
(S9)

Apparent rate constants (k_{app}) for Cases 1-4

Case 1: k_{add} , $k_i >> k_{frag}$

$$k_{\rm app} = \sqrt{\frac{fk_{\rm d}[\rm I]}{k_{\rm t}}} \ (s_{\rm frag})$$
(S10)

Case 2: k_{add} , $k_{frag} >> k_i$

$$k_{\rm app} = \sqrt{\frac{fk_{\rm d}[I]}{k_{\rm t}}} (k_{\rm i})$$
(S11)

Case 3: k_{frag} , $k_{\text{i}} >> k_{\text{add}}$

$$k_{\rm app} = \sqrt{\frac{fk_{\rm d}[\rm I]}{k_{\rm t}}} \, (k_{\rm add}) \tag{S12}$$

Case 4: $k_{\text{frag}} \approx k_{\text{add}} \approx k_{\text{i}}$

$$k_{\rm app} = \sqrt{\frac{fk_{\rm d}[\rm I]}{k_{\rm t}}} (k_{\rm case4})$$
(S13)

^	∽₅┸₅Ҳ╻ᢩ	هُلْمَ الْمَعْمَةُ الْمَعْمَةُ الْمَعْمَةُ الْمَعْمَةُ الْمَعْمَةُ الْمَعْمَةُ الْمَعْمَةُ الْمَعْمَةُ الْمُ		$\frac{N, 70 ^{\circ}C}{TCE} \qquad \qquad$	Yo~~~o ² y ^s ~~ t-CTA₂)
-	Case	k _{app} (t0-1.0 hr)	<i>R</i> ² (t0-1.0 hr)	k _{app} (t0-2.0 hr)	<i>R</i> ² (t0-2.0 hr)
-	1	-1.97 ± 0.37 (M hr ⁻¹)	0.90	-1.44 \pm 0.30 (M hr ⁻¹)	0.57
	2&3	3.01 ± 0.20 (hr ⁻¹)	0.99	2.27 ± 0.25 (hr ⁻¹)	0.96
	4	6.63 ± 0.58 ((1-M ⁻²) M hr ⁻¹)	0.99	4.64 ± 0.68 (M (1+M) ⁻¹ hr ⁻¹)	0.94

Table S1: Kinetic analysis of A_2+B_2 RAFT step-growth polymerization of M_{2B} with CTA $\frac{1}{2}$

Table S2: Kinetic analysis of A2+B2 RAFT step-growth polymerization of M2F with CTA2 for various cases²

Figure S1: Kinetic analysis of A_2+B_2 RAFT step-growth polymerization of M_{2F} for various fittings cases (**left** Case 1, **middle** Case 2 and 3, and **left** Case 4).²

Table S3: Kinetic analysis of A₂+B₂ RAFT step-growth polymerization of M_{2B} with CTA₂

Time (hr) ^a	р ь
0	0
0.09	0.142
0.17	0.341
0.25	0.512
0.5	0.782
0.75	0.872
1.0	0.918
1.25	0.943
1.5	0.953
1.75	0.964
2.0	0.971
2.25	0.975
2.5	0.976
2.75	0.977
3.0	0.980
4.0	0.986

^a Duration of the polymerization. ^b Monomer conversion determined by ¹H-NMR.

Figure S2: ¹H-NMR (CDCl₃, 400 MHz) analysis of A_2+B_2 RAFT-iniferter step-growth polymerization with M_{2B} and CTA₂. The numbers correspond to relative integral of the monomer peak (green region) with respect to the Z-group CH₃ (grey region) as 3 for reference.

$\overset{H}{} \overset{L}{} \overset{O}{} \overset{O}$	AIBN, 70 °C Dioxane	s ≤ ↓ U 0 0
	Time (hr) ^a	р ь
	0	0
	0.09	0.057
	0.17	0.153
	0.25	0.217
	0.5	0.380
	0.75	0.540
	1.0	0.640
	1.25	0.721
	1.75	0.840
	2.0	0.873
	2.25	0.897
	2.5	0.914
	2.75	0.929
	3.0	0.950
	4.0	0.976

Table S4: Kinetic analysis of A2+B2 RAFT step-growth polymerization of M2F with CTA2

^a Duration of the polymerization. ^b Monomer conversion determined by ¹H-NMR.

Figure S3: ¹H-NMR (CDCl₃, 400 MHz) analysis of A_2+B_2 PET-RAFT step-growth polymerization with M_{2F} and CTA₂. The numbers correspond to relative integral of the monomer peak (green region) with respect to the Z-group CH₃ (grey region) as 3 for reference.

Table S5: Kinetic analysis of A2+B2 RAFT step-growth polymerization of M2B and M2F with CTA2

MM z ^L s ^{RR} s		s z ¹ s,		s= ^z
Monomer	k _{app} (t0-2.0 hr) (hr ⁻¹)	<i>R</i> ² (t0-2.0 hr)	k _{app} (t0-4.0 hr) (hr ⁻¹)	<i>R</i> ² (t0-4.0 hr)
M _{2B}	2.65 <u>+</u> 0.08	1.00	2.04 ± 0.10	0.98
M_{2F}	1.03 ± 0.01	1.00	0.98 ± 0.01	1.00

Figure S4: Kinetic analysis of A_2+B_2 RAFT step-growth polymerization (**left** M_{2B} with CTA₂, **right** M_{2F} with CTA₂).

Table S6: Kinetic analysis of AB RAFT step-growth polymerization of MCTA, where $[MCTA]_0/[AIBN]_0 = 20^3$

Ju ~ of st	,s AIBN, 70 °C Dioxane	Sn-(o-		x s s s
Concentration (M)	k _{app} (t0-1.0 hr) (hr ⁻¹)	<i>R</i> ² (t0-1.0 hr)	k _{app} (t0-2.0 hr) (hr ⁻¹)	<i>R</i> ² (t0-2.0 hr)
0.25	0.55 ± 0.03	1.00	0.45 ± 0.03	0.98
0.5	0.98 ± 0.02	1.00	0.91 ± 0.02	1.00
1.0	1.63 ± 0.04	1.00	1.50 ± 0.05	1.00
2.0	3.00 ± 0.01	1.00	2.37 ± 0.20	0.98

Figure S5: Kinetic analysis of AB RAFT step-growth polymerization of MCTA at various monomer concentrations (**top left** $[MCTA]_0 = 0.25 \text{ M}$, **top right** $[MCTA]_0 = 0.5 \text{ M}$, **bottom left** $[MCTA]_0 = 1.0 \text{ M}$, **bottom right** $[MCTA]_0 = 2.0 \text{ M}$), where $[MCTA]_0/[AIBN]_0 = 20.^3$

J ^N J ^S	AIBN, 70 °C → Dioxane	Sn-fo		× s s
Concentration (M)	k _{app} (t0-1.0 hr) (hr ⁻¹)	<i>R</i> ² (t0-1.0 hr)	k _{app} (t0-2.0 hr) (hr ⁻¹)	<i>R</i> ² (t0-2.0 hr)
0.25	1.24 ± 0.01	1.00	0.45 ± 0.03	0.99
0.5	1.42 ± 0.01	1.00	1.26 ± 0.05	1.00
1.0	1.63 ± 0.04	1.00	1.50 ± 0.05	1.00
2.0	2.07 ± 0.07	1.00	1.83 ± 0.08	0.99

Table S7: Kinetic analysis of AB RAFT step-growth polymerization of MCTA, where [AIBN]₀ = 0.05 M³

Figure S6: Kinetic analysis of AB RAFT step-growth polymerization of MCTA at various monomer concentrations (**top left** $[MCTA]_0 = 0.25 \text{ M}$, **top right** $[MCTA]_0 = 0.5 \text{ M}$, **bottom left** $[MCTA]_0 = 1.0 \text{ M}$, **bottom right** $[MCTA]_0 = 2.0 \text{ M}$), where $[AIBN]_0 = 0.05 \text{ M}$.³

AIBN, 70 °C \mathbf{M}_{2F} Dioxane CTA₂ P(M2F-alt-CTA2) R^2 k_{app} (hr⁻¹) Concentration (M) 0.34 ± 0.05 0.25 1.00 0.50 ± 0.01 0.5 1.00 0.69 ± 0.02 1.0 1.00 2.0 0.98 ± 0.01 1.00

Table S8: Kinetic analysis of A_2+B_2 RAFT step-growth polymerization of M_{2F} with CTA₂ for various concentrations, where $[CTA]_0/[AIBN]_0 = 40^2$

Figure S7: Kinetic analysis of A_2+B_2 RAFT step-growth polymerization of M_{2F} at various monomer concentrations (**top left** [MCTA]₀ = 0.25 M, **top right** [MCTA]₀ = 0.5 M, **bottom left** [MCTA]₀ = 1.0 M, **bottom right** [MCTA]₀ = 2.0 M), where [CTA]₀/[AIBN]₀ = 40.²

Table S9: Kinetic analysis of A_2+B_2 RAFT step-growth polymerization of M_{2F} with CTA₂ for various concentrations, where [AIBN]₀ = 0.05 M²

Figure S8: Kinetic analysis of A_2+B_2 RAFT step-growth polymerization of M_{2F} at various monomer concentrations (**top left** [MCTA]₀ = 0.25 M, **top right** [MCTA]₀ = 0.5 M, **bottom left** [MCTA]₀ = 1.0 M, **bottom right** [MCTA]₀ = 2.0 M), where [AIBN]₀ = 0.05 M.²

Z ^S RR _S ^S Z	AIBN, 700	z s s s s s s s s s s s s s s s s s s s		s s s s s s s s s s s s s s s s s s s
Monomer	k _{арр} (t0-1.0 hr) (hr ⁻¹)	<i>R</i> ² (t0-1.0 hr)	<i>k</i> _{app} (t0-2.0 hr) (hr⁻¹)	<i>R</i> ² (t0-2.0 hr)
M _{2A}	2.06 ± 0.03	1.00	1.96 ± 0.04	1.00
M _{2B}	3.01 ± 0.20	0.99	2.27 ± 0.25	0.96
M _{2C}	0.66 ± 0.02	1.00	0.53 ± 0.04	0.98
M _{2D}	3.31 ± 0.27	0.99	2.68 ± 0.23	0.98
M _{2E}	1.64 ± 0.04	1.00	1.51 ± 0.05	1.00

Table S10: Kinetic analysis of A2+B2 RAFT step-growth polymerization with maleimide monomers^{1, 3}

Table S11: Kinetic analysis of A₂+B₂ RAFT step-growth polymerization with various diacrylate monomers²

Figure S9: Kinetic analysis of RAFT-SUMI of *N*-ethyl maleimide (MA) with BDMAT (CTA_{1C}).³

Figure S10: Kinetic analysis of RAFT-SUMI of butyl acrylate (BA) with BDMAT (CTA_{1C}).²

Monomer	k _{app} (t0-2.0 hr) (hr ⁻¹)	<i>R</i> ² (t0-2.0 hr)	k _{app} (t0-4.0 hr) (hr ⁻¹)	<i>R</i> ² (t0-4.0 hr)
MA	1.27 ± 0.06	0.99	0.97 ± 0.09	0.97
BA	0.58 ± 0.01	1.00		

Table S12: Kinetic analysis of RAFT-SUMI with various monomers (MA and BA) with CTA1c^{2, 3}

Figure S11: Kinetic analysis of A_2+B_2 RAFT step-growth polymerization of various monomers with RAFT Agent CTA_{2SS} (left M_{2B}, middle M_{2F}, left M_{2J}).^{2, 4, 5}

Z ^S RR _S ^S Z	AIBN, 700	z S S S S S S S S S S S S S S S S S S S		s s s s s s s s s s s s s s s s s s s
Monomer	k _{app} (t0-1.0 hr) (hr ⁻¹)	<i>R</i> ² (t0-1.0 hr)	k _{app} (t0-2.0 hr) (hr ⁻¹)	<i>R</i> ² (t0-2.0 hr)
M _{2B}	2.47 ± 0.06	1.00	1.99 ± 0.16	0.98
M _{2F} ^a			0.97 ± 0.02	1.00
M ^{°a} _{2J}			0.69 ± 0.03	0.99

Table S12: Kinetic analysis of A_2+B_2 RAFT step-growth polymerization for diacrylate and maleimide monomers with various $CTA_{2SS}^{2, 4, 5}$

^a Fitting from 0 hr to 4.0 hr.

- 1. P. Boeck, N. Archer, J. Tanaka and W. You, *Polym. Chem.*, 2022, **13**, 2589-2594.
- 2. N. E. Archer, P. T. Boeck, Y. Ajirniar, J. Tanaka and W. You, *ACS Macro Letters*, 2022, **11**, 1079-1084.
- 3. J. Tanaka, N. E. Archer, M. J. Grant and W. You, *J. Am. Chem. Soc.*, 2021, **143**, 15918-15923.
- 4. O. R. Courtney, S. M. Clouthier, S. Perrier, J. Tanaka and W. You, *ACS Macro Lett*, 2023, **12**, 1306-1310.
- 5. S. M. Clouthier, J. Li, J. Tanaka and W. You, *Polymer Chemistry*, 2024, **15**, 17-21.