Supplementary Information (SI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2025

Electronic supporting information for:

Polyglyoxylamide hydrogels for the traceless stimulus-mediated release of covalently-immobilized drugs

Jue Gong,[†] Burak Tavsanli,[†] and Elizabeth R. Gillies*^{†‡}

[†]Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario, Canada, N6A 5B7

[‡]Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario, Canada, N6A 5B9

Table of contents

1.	Additional experimental procedures	.S2
2.	Hydrogel formulation details	.S3
3.	¹ H NMR spectra	.S4
4.	¹³ C NMR spectra	.S13
5.	IR spectra	.S16
6.	SEC traces	.S20
7.	Photos of hydrogels	.S20
8.	Stress-strain curves	S21
9.	Calibration curve for Phe methyl ester using fluorescamine	. S21

Synthesis of TEG-N₃-30-PGAm. This polymer was synthesized by the same procedure as TEG-N₃-40-PGAm. It was prepared from: PEtG (200 mg, 2.0 mmol of pendent ester, 1.0 equiv.), 2-azidoethylamine (95 mg 1.1 mmol, 0.56 equiv.), dry 1,4-dioxane (5 mL) and TEG-amine (1120 mg, 5.9 mmol, 5.0 equiv.). A tacky solid was obtained. Yield: 92%. ¹H NMR (CDCl₃, 400 MHz): δ 8.66 – 7.73 (br s, 0.9H), 5.71 (br s, 1.0H), 3.76 – 3.50 (m, 9.4H), 3.43 (s, 1.4H), 3.37 (s, 2.4H). ¹³C {¹H} NMR (CDCl₃, 400 MHz): δ 167.2, 96.6, 71.9, 70.5, 69.1, 58.9, 39.3. FT-IR: 3516-3148, 2870, 2099, 1674, 1545 cm⁻¹. SEC (DMF, PMMA): $M_n = 56$ kg/mol, $M_w = 90$ kg/mol, D = 1.61.

Synthesis of *o*NB-TEG-N₃-20-PGAm. The synthetic procedure was same as *o*NB-TEG-N₃-30-PGAm. The copolymer was prepared from: TEG-N₃-30-PGAm (100 mg, 0.15 mmol of azide, 1.0 equiv.), alkyne-functionalized *o*-nitrobenzyl alcohol (11.9 mg, 0.051 mmol, 0.33 equiv.), sodium ascorbate (10.1 mg, 0.051 mmol, 0.33 equiv.) and copper sulfate (8.14 mg, 0.051 mmol, 0.33 equiv.) A yellow tacky solid was obtained. Yield: 89%. ¹H NMR (DMSO-*d*₆, 400 MHz): δ 8.60 – 7.79 (m, 1.5H), 5.56 (br s, 1.0H), 4.89 (br s, 0.2H), 4.47 (br s, 0.4H), 3.82-3.38 (m, 8.7H), 3.24 (s, 2.2H). FT-IR: 3533-3115, 2902, 2101, 1624, 1524 cm⁻¹.

Synthesis of Phe-*o*NB-TEG-N₃-20-PGAm. The conjugation of Phe methyl ester to the 20% azide-functionalized copolymer followed the same procedure as for the preparation of Phe-*o*NB-TEG-N₃-30-PGAm except that *o*NB-TEG-N₃-20-PGAm (115 mg, 0.052 mmol of *o*NB linker, 1.0 equiv.), CDI (84 mg, 0.52 mmol, 10 equiv.) and Phe methyl ester (26 mg, 0.14 mmol, 3.0 equiv.) were used. Yield: 49% ¹H NMR (DMSO-*d*₆, 400 MHz): δ 8.84 – 7.87 (m, 1.7H), 7.46 –7.02 (m, 0.5H), 5.56 (br s, 1H), 4.88 (br s, 0.2H), 4.63 – 4.25 (m, 0.4H), 3.87 – 2.87 (m, 15H).

Table S1. The formulations of hydrogels containing 4-arm-PEG-alkyne and phenylalanine conjugated PGAm copolymer in 300 μ L DMF/water (v/v = 4/1).

15% w/v Hydrogels							
	4-arm-PEG-alkyne	Phe- <i>o</i> NB-TEG-N ₃ -PGAm	CuSO ₄	Sodium ascorbate			
Mass (mg)							
20% azide	23	22	2.7	3.3			
30% azide	27	17	3.5	4.3			

Figure S1. ¹H NMR spectrum of 30 kg/mol PEtG (CDCl₃, 400 MHz). A DP_n of \sim 335 was determined based on the relative integrals of the methyl CH₃ peak at 0.9 ppm compared to the backbone methine peak at 5.6 ppm.

Figure S2. Conversion of 40% of the pendent esters of **PEtG** to pendent 2-azidoethylamides in the synthesis of **TEG-N₃-40-PGAm**. The reaction was monitored by ¹H NMR spectroscopy. The percent functionalization was determined by comparing the integral of the -CH (methine) peak from the polymer backbone at 5.66 ppm with that of the -CH₂ peak from the pendent ester groups at 4.25 ppm. The reaction was stopped when the integral of -CH₂ peak at 4.25 ppm was ~1.20, indicating ~40% azide functionalization was achieved.

Figure S3. Conversion of 30% of the pendent esters of PEtG to pendent 2-azidoethylamides in the synthesis of TEG-N₃-30-PGAm. The reaction was monitored by ¹H NMR spectroscopy. The percent functionalization was determined by comparing the integral of the -CH (methine) peak from the polymer backbone at 5.66 ppm with that of the -CH₂ peak from the pendent ester groups at 4.25 ppm. The reaction was stopped when the integral of -CH₂ peak at 4.25 ppm was ~1.40, indicating ~30% azide functionalization was achieved.

Figure S4. ¹H NMR spectrum of TEG-N₃-40-PGAm (CDCl₃, 400 MHz).

Figure S5. ¹H NMR spectrum of TEG-N₃-30-PGAm (CDCl₃, 400 MHz).

Figure S6. ¹H NMR spectrum of *o*NB-TEG-N₃-30-PGAm (DMSO-*d*₆, 400 MHz).

Figure S7. ¹H NMR spectrum of *o*NB-TEG-N₃-20-PGAm (DMSO-*d*₆, 400 MHz).

Figure S8. ¹H NMR spectrum of Phe-*o*NB-TEG-N₃-30-PGAm (DMSO-*d*₆, 400 MHz).

Figure S9. ¹H NMR spectrum of Phe-*o*NB-TEG-N₃-20-PGAm (DMSO-*d*₆, 400 MHz).

Figure S10. ${}^{13}C{}^{1}H$ NMR spectrum of PEtG (CDCl₃, 100 MHz). Note that end-cap peaks are not observed in the spectrum due to the high molar mass.

Figure S11. ${}^{13}C{}^{1}H$ NMR spectrum of TEG-N₃-40-PGAm (CDCl₃, 100 MHz).

Figure S12. ${}^{13}C{}^{1}H$ NMR spectrum of TEG-N₃-30-PGAm (CDCl₃, 100 MHz).

Figure S13. FT-IR spectrum of PEtG.

Figure S14. FT-IR spectrum of TEG-N₃-40-PGAm.

Figure S15. FT-IR spectrum of TEG-N₃-30-PGAm.

Figure S16. FT-IR spectrum of *o*NB-TEG-N₃-30-PGAm.

Figure S17. FT-IR spectrum of *o*NB-TEG-N₃-20-PGAm.

Figure S18. Overlay of the FT-IR spectra of 4-arm-PEG-alkyne, Phe-*o*NB-TEG-N₃-30-PGAm and the corresponding hydrogel.

Figure S19. Photos of the 15% w/v **Phe**-*o***NB-TEG-N₃-30-PGAm** hydrogel a) immediately after gelation and b) after removal of copper and the DMF.

Figure S20. Cyclic loading (compression) and unloading (relaxation) stress-strain curves of a representative **Phe**-*o***NB-TEG-N₃-30-PGAm** 15% w/v hydrogel, measured in PBS.

Figure S21. The calibration curve for the fluorescamine assay for Phe methyl ester showing the intensity of fluorescence at 470 nm versus Phe methyl ester concentration.