Supplementary Information (SI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2024

Influence of Counterions on the Thermal and Solution Properties of Strong Polyelectrolytes

Théophile Pelras^a*, Julien Es Sayed^b, Jin Pierick^b, Andrea Giuntoli^c, Anton H. Hofman^b, Katja Loos^a and Marleen Kamperman^b*

^a Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands

^b Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands

^c Micromechanics, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands

Supporting Information

Table of Contents

Materials	3
Characterisation Techniques	4
Synthesis of homopolymers	7
Synthesis of polyelectrolytes	9
Synthesis of block copolymers	15
Supporting Figures	21
S1: Characterisation of hydrophobic homopolymers	21
S2: ¹ H NMR spectroscopy of the polyelectrolyte homopolymers	23
S3: ¹⁹ F-NMR spectroscopy of the polyelectrolyte homopolymers	29
S4: FTIR spectroscopy of deprotected polymers	
S5: Aqueous SEC on polyelectrolytes	
S6: Thermal characterisation of hydrophobic homopolymers	34
S7: Thermal characterisation of polylectrolytes	35
S8: Solubility tests on polylectrolytes	
S9: ¹ H NMR spectra of the block copolymers	
S10: Thermal characterisation of block copolymers	43
S11: DLS and ζ -potential on block copolymers in aqueous media	45
S12: TEM on block copolymers in aqueous media	47
S13: DLS on block copolymers in methanol	
S14: DLS on block copolymers in ethanol	53
S15: TEM on block copolymers in methanol	55
S16: TEM on block copolymers in ethanol	57
Supporting References	61

Materials

The monomer 3-isobutoxysulphopropyl methacrylate (BSPMA) was synthesised as reported before.[1] 2,2'-Azobis(2-methylpropionitrile) (AIBN, 98 %), 4-cyano-4-(thiobenzoylthio)pentanoic acid (CTBPA), *N*,*N*-dimethylformamide (DMF, 99+% anhydrous) and phenyltriethylammonium iodide (PTEAI, 97 %) were obtained from Sigma-Aldrich.

Diethyl ether (Et₂O, AR grade), *n*-hexane (AR grade) and methanol (absolute, AR grade) were obtained from Macron Fine Chemicals. Absolute ethanol (99.9 %) and dimethylsulphoxide (DMSO, 99.9 %) were purchased from J.T. Baker. Butyrylthiocholine iodide (BTCI, > 99.0 %), caesium iodide (CsI, > 99.0 %), 1-ethyl-3-methylimidazolium iodide (EMIMI, > 98.0 %), lithium iodide (LiI, > 97.0 %), tetramethylammonium iodide (TMA, > 98.0 %), 3-(trifluoromethyl)phenyltrimethylammonium iodide (FPTMAI, > 98.0 %) were purchased from TCI Chemicals. Sodium iodide (NaI, ACS reagent grade) was sourced from Acros Organics. Acetone (AR grade) and tetrahydrofuran (THF, AR grade, BHT stabilised) were obtained from Biosolve. Acetonitrile (ACN, > 99.9 %) was sourced from Honeywell.

AIBN was recrystallised twice from methanol. All other chemicals were used as received.

Characterisation Techniques

Proton nuclear magnetic resonance (¹**H NMR)** spectra were acquired on an Agilent 400-MR 400 MHz spectrometer at 298 K. Deuterated acetone (acetone- d_6 , 99.8 %), deuterated chloroform (CDCl₃, 99.8 %), deuterated dimethylsulphoxide (DMSO- d_6 , 99.9 %), deuterium oxide (D₂O, 99.9 %) deuterated ethanol (ethanol- d_6 , 99.8 %) and deuterated methanol (methanol- d_4 , 99.8 %) were purchased from Sigma-Aldrich. Samples were dissolved in an appropriate solvent or solvent mixture ($\approx 5 \text{ g L}^{-1}$) and measured with a pulse width of 45 µs, spectral width of 12/-2 ppm, recycle delay of 1 s and either 32 or 128 scans (conversion or purified samples, respectively). Spectra were analysed with MestReNova software version 14.1.

Fluorine nuclear magnetic resonance (¹⁹**F-NMR)** spectra were acquired on a Bruker Avance 600 MHz spectrometer at 298 K and measured with a pulse width of 45 µs, spectral width of -20/-120 ppm, recycle delay of 1 s and either 128 scans. Spectra were analysed with MestReNova software version 14.1.

DMF-based size-exclusion chromatography (DMF-SEC) was conducted on a GPCMax system from Viscotek equipped with a 302 TDA detector array and two columns in series (PolarGel L and M, both 8 μ m 30 cm) from Agilent Technologies. The columns and detector were kept at a temperature of 50 °C. *N*,*N'*-dimethylformamide (DMF) containing 0.01 M lithium bromide (LiBr) was used as eluent at a flow rate of 1 mL min⁻¹. Near monodisperse poly(methyl methacrylate) (PMMA) standards from Polymer Standard Services were used as calibrants. Samples were dissolved in the eluent at a concentration of \approx 3 g L⁻¹ and passed through a 0.45 or 0.22 μ m PTFE filter prior to injection. Data acquisition and calculations were performed using Viscotek Omnisec software version 5.0.

Aqueous size-exclusion chromatography (Aq-SEC) measurements were performed on a Vanquish system from ThermoScientific equipped with an ERC refractoMax520 RI detector and two columns in series (novemaMAx Linear M) from PSS. The columns and detector were kept at a temperature of 40 °C. Milli-Q water containing 0.1 M NaCl and 0.1 wt.% acetic acid was used at a flow rate of 1 mL min⁻¹. Near monodisperse pullulan (3 500 – 500 000 Da) standards from PSS were used as calibrants. Samples were dissolved in the eluent at a concentration of \approx 3 g L⁻¹ and passed through a 0.45 µm cellulose acetate filter prior to injection. Data analysis was conducted on PSS WinGPC UniChrom software version 8.40.

Attenuated total reflection–Fourier transform infrared (ATR-FTIR) spectra were acquired on a Bruker VERTEX 70 spectrometer mounted with an ATR diamond single reflection module. The spectra were recorded in transmittance within the range of 4000–400 cm⁻¹ with a spectral resolution of 2 cm⁻¹ and using 64 scans for each sample. Atmospheric compensation and baseline correction

(concave rubberband correction) were applied to the collected spectra using Bruker's OPUS spectroscopy software version 7.0.

Differential scanning calorimetry (DSC) measurements were recorded on a TA instruments DSCQ 1000 analyzer. The samples (~ 5 mg) were subjected to the following method: (i) equilibration at -80 °C, (ii) 5 min isotherm, (iii) ramp to 120 °C at 20 °C min⁻¹, (iv) 5 min isotherm, (v) ramp to -80 °C at 5 °C min⁻¹, (vi) 5 min isotherm and (vii) ramp to 120 °C at 20 °C min⁻¹. Data analysis was performed on the second heating cycle using TA Instruments TRIOS software.

Thermogravimetric analysis (TGA) measurements were recorded on a TA instruments TGA5500 analyzer. The samples (~ 3 mg) were heated from 40 °C to 700 °C at a rate of 10 °C min⁻¹ under a flow of nitrogen. When moisture content was high, a 20 minute isotherm at 120 °C was conducted prior to the measurements. The data acquisition and analysis were done using TA Instruments TRIOS software.

Dynamic light scattering (DLS) measurements were conducted on a Malvern Panalytical Zetasizer Ultra system, featuring a helium-neon laser (λ = 633 nm) and an Avalanche photodiode detector. The polymer micelles solutions were measured at 25 °C after a 120 s equilibration time and using 30 cumulative recordings. Back scattering mode was used for samples in water and ethanol, while side scattering mode was used for samples in ethanol. Measurements were done in triplicate. The results were analyzed with ZS Xplorer software.

ζ-potential measurements were performed on the same Malvern Panalytical Zetasizer Ultra system at 25 °C, while the acquisition times were determined automatically. Samples were recorded in triplicate and the results were analyzed with ZS Xplorer software.

Transmission electron microscopy (TEM) images were recorded on a Philips CM120 transmission electron microscope equipped with a LaB₆ cathode operated at an accelerating voltage of 120 kV and using a Gatan 4k CCD camera. TEM grids (carbon, 400 mesh with carbon support film) were glow-discharged (for aqueous samples only, 15 s at 50 mA and 300 V) prior to sample preparation. Specimens were prepared by deposition of 5 μ L of the polymer micelles dispersion (c ~ 1 g L⁻¹) onto the grid and adsorption for 1 min before blotting. Before the specimen was fully dried, 5 μ L of saturated 2 wt.% uranyl acetate staining solution was deposited onto the grid and immediately blotted, before a new 5 μ L drop of staining solution was deposited and left to adsorb for 1 min before blotting. TEM images were analysed using ImageJ software, employing brightness and contrast correction tools to enhance the general quality of the snapshots.

Solubility tests of polyelectrolytes were conducted by charging 5.0 mg of freeze-dried polymer into a 1.5 mL glass vial and adding 1 mL of solvent. The flasks were shaken and vortexed several times before visual assessment. All solvents were either deuterated ones or of AR/HPLC grade, as given above. THF (\geq 99.8 %, unstabilised, Ossum Chemicals) was passed through an MBraun MB SPS 800 system prior use.

Synthesis of homopolymers

Synthesis of poly(3-isobutoxysulphopropyl methacrylate) (PBSPMA₁₁₄)

CTBPA (1 eq, 30.2 mg, 108 µmol), BSPMA (119 eq, 3.41 g, 12.9 mmol), AIBN (0.1 eq, 2.00 mg, 12.2 µmol; 194 µL of a 20.6 mg AIBN in 2.00 mL DMF) and DMF (4.50 mL) were charged into a round bottom flask equipped with a stirring egg. An aliquot was withdrawn for ¹H NMR conversion analysis before the reaction mixture was deoxygenated via argon bubbling for 10 min and the flask immersed into a pre-heated oil bath at 70 °C. After 18 hours, the vessel was cooled down to room temperature and opened to air before withdrawal of an aliquot for ¹H NMR conversion analysis. The polymer was precipitated into cold 6:1 *n*-hexane:ethanol, redissolved in minimal THF and further precipitated into pure *n*-hexane twice. The polymer was later redissolved in minimal 1,4-dioxane and freeze-dried. Yield: 3.14 g. ¹H NMR: conversion = 96 %, DP = 114, M_{nNMR} = 30 400 Da. SEC: M_{nSEC} = 43 000 Da, D = 1.10.

Synthesis of poly(methyl methacrylate) (PMMA68)

CTBPA (1 eq, 60.1 mg, 215 μ mol), MMA (120 eq, 2.59 g, 25.9 mmol), AIBN (0.1 eq, 3.72 mg, 22.7 μ mol; 361 μ L of a 20.6 mg AIBN in 2.00 mL DMF) and DMF (9.00 mL) were charged into a round bottom flask equipped with a stirring egg. An aliquot was withdrawn for ¹H NMR conversion analysis before the reaction mixture was deoxygenated via argon bubbling for 10 min and the flask immersed into a pre-heated oil bath at 70 °C. After 18 hours, the vessel was cooled down to room temperature and opened to air before withdrawal of an aliquot for ¹H NMR conversion analysis. The polymer was precipitated into cold 6:1 *n*-hexane:ethanol, redissolved in minimal THF and further precipitated into

pure *n*-hexane twice. The polymer was later redissolved in minimal 1,4-dioxane and freeze-dried. Yield: 1.49 g. ¹H NMR: conversion = 60 %, DP_{NMR} = 72, $M_{n NMR}$ = 7 500 Da. SEC: $M_{n SEC}$ = 7 100 Da, DP_{SEC} = 68, Đ = 1.20.

Synthesis of polyelectrolytes

Synthesis of poly(3-sulphopropyl methacrylate) lithium salt (PSPMA-Li₁₁₄)

PBSPMA₁₁₄ (1 eq, 200 mg polymer, 0.758 mmol BSPMA), Lil (3 eq, 382 mg, 2.85 mmol) and 3 mL DMSO were charged into a glass vial equipped with a stirring bar before being immersed in a preheated oil bath at 70 °C. After 24 hours, the vial was removed and the polymer isolated via precipitation in 2:1 ethanol:*n*-hexane. After decanting the supernatant, the polymer was further washed with 2:1 ethanol:*n*-hexane several times and once more with pure *n*-hexane, before being redissolved in minimal DI water and freeze-dried to produce a brittle white solid. Yield: 143 mg. ¹H NMR: deprotection ≈ 100 %, $M_{n NMR} = 24$ 700 Da.

Synthesis of poly(3-sulphopropyl methacrylate) sodium salt (PSPMA-Na₁₁₄)

PBSPMA₁₁₄ (1 eq, 201 mg polymer, 0.758 mmol BSPMA), NaI (3 eq, 390 mg, 2.60 mmol) and 3 mL DMSO were charged into a glass vial equipped with a stirring bar before being immersed in a preheated oil bath at 70 °C. After 24 hours, the vial was removed and the polymer isolated via precipitation in 2:1 ethanol:*n*-hexane. After decanting the supernatant, the polymer was further washed with 2:1 ethanol:*n*-hexane several times and once more with pure *n*-hexane, before being redissolved in minimal DI water and freeze-dried to produce a brittle white solid. Yield: 166 mg. ¹H NMR: deprotection \approx 100 %, *M_{nNMR}* = 26 500 Da. Synthesis of poly(3-sulphopropyl methacrylate) potassium salt (PSPMA-K₁₁₄)

PBSPMA₁₁₄ (1 eq, 200 mg polymer, 0.758 mmol BSPMA), KI (3 eq, 416 mg, 2.51 mmol) and 3 mL DMSO were charged into a glass vial equipped with a stirring bar before being immersed in a preheated oil bath at 70 °C. After 24 hours, the vial was removed and the polymer isolated via precipitation in 1:6 ethanol:*n*-hexane. After decanting the supernatant, the polymer was further washed with 1:6 ethanol:*n*-hexane several times_and once more with pure *n*-hexane, before being redissolved in minimal DI water and freeze-dried to produce a brittle yellow solid. Yield: 200 mg. ¹H NMR: deprotection ≈ 100 %, $M_{n NMR} = 28 300$ Da.

Synthesis of poly(3-sulphopropyl methacrylate) caesium salt (PSPMA-Cs114)

PBSPMA₁₁₄ (1 eq, 202 mg polymer, 0.765 mmol BSPMA), CsI (3 eq, 725 mg, 2.79 mmol) and 3 mL DMSO were charged into a glass vial equipped with a stirring bar before being immersed in a preheated oil bath at 70 °C. After 24 hours, the vial was removed and the polymer isolated via precipitation in 2:1 ethanol:*n*-hexane. After decanting the supernatant, the polymer was further washed with 2:1 ethanol:*n*-hexane several times and once more with pure *n*-hexane, before being redissolved in minimal DI water and freeze-dried to produce a brittle yellow solid. Yield: 455 mg. ¹H NMR: deprotection \approx 100 %, *M_{n NMR}* = 39 000 Da. Synthesis of poly(3-sulphopropyl methacrylate) trimethylammonium salt (PSPMA-TMA₁₁₄)

PBSPMA₁₁₄ (1 eq, 201 mg polymer, 0.761 mmol BSPMA), TMAI (3 eq, 511 mg, 2.54 mmol) and 3 mL DMSO were charged into a glass vial equipped with a stirring bar before being immersed in a pre-heated oil bath at 70 °C. After 24 hours, the vial was removed and the polymer isolated via precipitation in 2:1 ethanol:*n*-hexane. After decanting the supernatant, the polymer was dried, dissolved in 2 mL DI water and precipitated twice in acetone. The solid was washed with pure *n*-hexane, before being redissolved in minimal DI water and freeze-dried to produce a brittle white solid. Yield: 425 mg. ¹H NMR: deprotection \approx 100 %, *M_{n NMR}* = 32 300 Da.

Synthesis of poly(3-sulphopropyl methacrylate) triethylammonium salt (PSPMA-TEA₁₁₄)

PBSPMA₁₁₄ (1 eq, 202 mg polymer, 0.765 mmol BSPMA), TEAI (3 eq, 605 mg, 2.35 mmol) and 3 mL DMSO were charged into a glass vial equipped with a stirring bar before being immersed in a pre-heated oil bath at 70 °C. After 24 hours, the vial was removed and the polymer isolated via precipitation in 2:1 ethanol:*n*-hexane. After decanting the supernatant, the polymer was dried, dissolved in 2 mL DI water and precipitated twice in acetone. The solid was washed with pure *n*-hexane, before being redissolved in minimal DI water and freeze-dried to produce an off-white slightly sticky solid. Yield: 425 mg. ¹H NMR: deprotection \approx 100 %, *M_{nNMR}* = 38 700 Da.

Synthesis of poly(3-sulphopropyl methacrylate) tributylammonium salt (PSPMA-TBA₁₁₄)

PBSPMA₁₁₄ (1 eq, 200 mg polymer, 0.758 mmol BSPMA), TBAI (3 eq, 908 mg, 2.82 mmol) and 3 mL DMSO were charged into a glass vial equipped with a stirring bar before being immersed in a pre-heated oil bath at 70 °C. After 24 hours, the vial was removed and the polymer isolated via precipitation in 6:1 Et₂O:ethanol and subsequently washed with 6:1 Et₂O:ethanol. After decanting the supernatant, the polymer was dried, dissolved in 2 mL acetone and precipitated twice in Et₂O. The solid was washed with pure Et₂O, before being redissolved in minimal DI water and freeze-dried to produce an off-white brittle solid. Yield: 395 mg. ¹H NMR: deprotection ≈ 100 %, $M_{n NMR}$ = 51 800 Da.

Synthesis of poly(3-sulphopropyl methacrylate) 1-ethyl-3-methylimidazolium salt (PSPMA-EMIM₁₁₄)

PBSPMA₁₁₄ (1 eq, 201 mg polymer, 0.761 mmol BSPMA), EMIMI (3 eq, 654 mg, 2.75 mmol) and 3 mL DMSO were charged into a glass vial equipped with a stirring bar before being immersed in a pre-heated oil bath at 70 °C. After 24 hours, the vial was removed and the polymer isolated via precipitation in 1:6 ethanol:*n*-hexane and further washed with 1:6 ethanol:*n*-hexane several times. After decanting the supernatant, the polymer was dried, dissolved in 2 mL ethanol and precipitated into pure *n*-hexane, before being redissolved in minimal DI water and freeze-dried to produce a dark brown sticky solid. Yield: 257 mg. ¹H NMR: deprotection ≈ 100 %, $M_{n NMR}$ = 36 500 Da.

Synthesis of poly(3-sulphopropyl methacrylate) phenyltriethylammonium salt (PSPMA-PhTEA₁₁₄)

PBSPMA₁₁₄ (1 eq, 201 mg polymer, 0.761 mmol BSPMA), PhTEAI (3 eq, 755 mg, 2.48 mmol) and 3 mL DMSO were charged into a glass vial equipped with a stirring bar before being immersed in a pre-heated oil bath at 70 °C. After 24 hours, the vial was removed and the polymer isolated via precipitation in 1:6 ethanol:*n*-hexane and further washed with 1:6 ethanol:*n*-hexane several times. After decanting the supernatant, the polymer was dried, dissolved in 2 mL ethanol and precipitated into pure *n*-hexane, before being redissolved in minimal DI water and freeze-dried to produce a dark brown sticky solid. Yield: 320 mg. ¹H NMR: deprotection ≈ 100 %, $M_{n NMR}$ = 44 200 Da.

Synthesis of poly(3-sulphopropyl methacrylate) 3-(trifluoromethyl)phenyltrimethyl ammonium salt (PSPMA-FPhTMA₁₁₄)

PBSPMA₁₁₄ (1 eq, 200 mg polymer, 0.758 mmol BSPMA), FPhTMAI (3 eq, 813 mg, 2.46 mmol) and 3 mL DMSO were charged into a glass vial equipped with a stirring bar before being immersed in a pre-heated oil bath at 70 °C. After 24 hours, the vial was removed and the polymer isolated via precipitation in 1:6 ethanol:*n*-hexane and further washed with 1:6 ethanol:*n*-hexane several times. After decanting the supernatant, the polymer was dried, dissolved in 2 mL DI water and precipitated into pure acetone, before being redissolved in minimal DI water and freeze-dried to produce a white slightly sticky solid. Yield: 301 mg. ¹H NMR: deprotection \approx 100 %, *M_{nNMR}* = 47 100 Da.

Synthesis of poly(3-sulphopropyl methacrylate) butyrylthiocholine salt (PSPMA-BTC114)

PBSPMA₁₁₄ (1 eq, 200 mg polymer, 0.758 mmol BSPMA), BTCI (3 eq, 803 mg, 2.53 mmol) and 3 mL DMSO were charged into a glass vial equipped with a stirring bar before being immersed in a pre-heated oil bath at 70 °C. After 24 hours, the vial was removed and the polymer isolated via precipitation in 1:6 ethanol:*n*-hexane and further washed with 1:6 ethanol:*n*-hexane several times. After decanting the supernatant, the polymer was dried, dissolved in 2 mL ethanol and precipitated into pure *n*-hexane, before being redissolved in minimal DI water and freeze-dried to produce a yellow brittle solid. Yield: 560 mg. ¹H NMR: deprotection ≈ 100 %, $M_{n NMR}$ = 45 300 Da.

Synthesis of block copolymers

Synthesis of poly(methyl methacrylate) (PMMA₁₁₄)

The synthesis of PMMA₁₁₄ was performed as described elswhere.[1] In a nutshell, CPP-TTC, MMA, AIBN and DMF were charged into a round bottom flask equipped with a stirring egg and deoxygenated via nitrogen bubbling. After 21 hours at 70 °C, the reaction was stopped and the polymer was precipitated into 2:1 *n*-hexane:ethanol and washed with pure *n*-hexane, before drying *in vacuo*. ¹H NMR: conversion = 77 %. SEC: $M_{n SEC}$ = 11 400 Da, DP_{SEC} = 114, Đ = 1.27. Note that the DP of 114 was kept for further use, as determined by SEC through calibration against PMMA standards.

Synthesis of poly(methyl methacrylate)-*block*-poly(3-isobutoxysulphopropyl methacrylate) (PMMA₁₁₄-*b*-PBSPMA₁₂₆)

The synthesis of PMMA₁₁₄-*b*-PBSPMA₁₂₆ was performed as described elsewhere.[1] In a nutshell, PMMA₁₁₄, BSPMA, AIBN and DMF were charged into a round bottom flask equipped with a stirring egg and deoxygenated via nitrogen bubbling. After 17 hours at 70 °C, the reaction was stopped, diluted with acetone and the polymer was precipitated into 5:1 *n*-hexane:ethanol, washed with 5:1 *n*-hexane:ethanol and then with pure *n*-hexane, before drying *in vacuo*. ¹H NMR: conversion = 98 %, DP_{NMR} = 114-*b*-126. SEC: M_n sec+NMR = 44 800 Da, D = 1.18.

Synthesis of poly(methyl methacrylate)-*block*-poly(3-sulphopropyl methacrylate) sodium salt (PMMA₁₁₄-*b*-PSPMA-Na₁₂₆)

The synthesis of PMMA₁₁₄-*b*-PSPMA-Na₁₂₆ was performed for a previous study.[1] In a nutshell, PMMA₁₁₄-*b*-PBSPMA₁₂₆, NaI and DMSO were charged into a round bottom flask equipped with a stirring egg. After 22 hours at 70 °C, the reaction was stopped and the polymer was precipitated into 1:1 *n*-hexane:ethanol, washed with 1:1 *n*-hexane:ethanol and once more with pure *n*-hexane, before drying *in vacuo* to produce a brittle white solid. ¹H NMR: deprotection \approx 100 %: $M_n \text{ sec+NMR} = 40 400$ Da.

Synthesis of poly(methyl methacrylate)-*block*-poly(3-sulphopropyl methacrylate) tetramethylammonium salt (PMMA₁₁₄-*b*-PSPMA-TMA₁₂₆)

PMMA₁₁₄-*b*-PBSPMA₁₂₆, (1 eq, 105 mg BCP, 78 mg BSPMA, 0.294 mmol BSPMA), TMAI (3 eq, 192 mg, 0.955 mmol) and 2 mL DMSO were charged into a round bottom flask equipped with a stirring egg before being immersed in a pre-heated oil bath at 70 °C. After 24 hours, the reaction was stopped and the polymer was precipitated into 6:1 ethanol:*n*-hexane. The solid was redissolved in 1 mL DMSO and precipitated once more with 6:1 ethanol:*n*-hexane, before one wash with 6:1 ethanol:*n*-hexane. A final wash with pure *n*-hexane was done, followed by drying *in vac uo* to produce a soft yellow solid. Yield: 276 mg. ¹H NMR: deprotection ≈ 100 %: $M_n \text{ SEC+NMR} = 46\ 800\ Da$.

Synthesis of poly(methyl methacrylate)-*block*-poly(3-sulphopropyl methacrylate) tetraethylammonium salt (PMMA₁₁₄-*b*-PSPMA-TEA₁₂₆)

PMMA₁₁₄-*b*-PBSPMA₁₂₆, (1 eq, 105 mg BCP, 78 mg BSPMA, 0.294 mmol BSPMA), TEAI (3 eq, 234 mg, 0.911 mmol) and 2 mL DMSO were charged into a round bottom flask equipped with a stirring egg before being immersed in a pre-heated oil bath at 70 °C. After 24 hours, the reaction was stopped and the polymer was precipitated into 6:1 ethanol:*n*-hexane. The solid was redissolved in 1 mL DMSO and precipitated once more in 6:1 ethanol:*n*-hexane, before one wash with 6:1 ethanol:*n*-hexane. A final wash with pure *n*-hexane was done, followed by drying *in vacuo* to produce a sticky brown solid. Yield: 264 mg. ¹H NMR: deprotection \approx 100 %: *M_{n* SEC+NMR = 45 300 Da.}

Synthesis of poly(methyl methacrylate)-*block*-poly(3-sulphopropyl methacrylate) tetrabutylammonium salt (PMMA₁₁₄-*b*-PSPMA-TBA₁₂₆)

PMMA₁₁₄-*b*-PBSPMA₁₂₆, (1 eq, 101 mg BCP, 75 mg BSPMA, 0.283 mmol BSPMA), TBAI (3 eq, 342 mg, 0.927 mmol) and 2 mL DMSO were charged into a round bottom flask equipped with a stirring egg before being immersed in a pre-heated oil bath at 70 °C. After 24 hours, the reaction was stopped and the polymer was precipitated into 6:1 ethanol:*n*-hexane. The solid was redissolved in 1 mL DMSO and precipitated once more into 6:1 ethanol:*n*-hexane, before one wash with 6:1

ethanol:*n*-hexane. A final wash with pure Et₂O was done, followed by drying *in vacuo* to produce a sticky yellowish solid. Yield: 166 mg. ¹H NMR: deprotection \approx 100 %: $M_{n \text{ SEC+NMR}} = 54\ 800\ Da$.

Synthesis of poly(methyl methacrylate)-*block*-poly(3-sulphopropyl methacrylate) 1-ethyl-3methylimidazolium salt (PMMA₁₁₄-*b*-PSPMA-EMIM₁₂₆)

PMMA₁₁₄-*b*-PBSPMA₁₂₆, (1 eq, 102 mg BCP, 76 mg BSPMA, 0.286 mmol BSPMA), EMIMI (4 eq, 270 mg, 1.13 mmol) and 2 mL DMSO were charged into a round bottom flask equipped with a stirring egg before being immersed in a pre-heated oil bath at 70 °C. After 24 hours, the reaction was stopped and the polymer was precipitated into 6:1 ethanol:*n*-hexane. The solid was redissolved in 1 mL DMSO and precipitated once more into 6:1 ethanol:*n*-hexane, washed once with 6:1 ethanol:*n*-hexane and once with pure *n*-hexane, followed by drying *in vacuo* to produce a sticky brown solid. Yield: 148 mg. ¹H NMR: deprotection \approx 100 %: *M_{n SEC+NMR}* = 51 500 Da.

Synthesis of poly(methyl methacrylate)-*block*-poly(3-sulphopropyl methacrylate) phenyltriethylammonium salt (PMMA₁₁₄-*b*-PSPMA-PhTEA₁₂₆)

PMMA₁₁₄-*b*-PBSPMA₁₂₆, (1 eq, 103 mg BCP, 76 mg BSPMA, 0.289 mmol BSPMA), PhTEAI (4 eq, 289 mg, 0.948 mmol) and 2 mL DMSO were charged into a round bottom flask equipped with a stirring egg before being immersed in a pre-heated oil bath at 70 °C. After 24 hours, the reaction

was stopped and the polymer was precipitated into 6:1 ethanol:*n*-hexane. The solid was redissolved in 1 mL DMSO and precipitated once more in 6:1 ethanol:*n*-hexane, washed once with 6:1 ethanol:*n*hexane and once with pure *n*-hexane, followed by drying *in vacuo* to produce a sticky yellow solid. Yield: 168 mg. ¹H NMR: deprotection \approx 100 %: $M_{n \text{ SEC+NMR}} = 59 900 \text{ Da}.$

Synthesis of poly(methyl methacrylate)-*block*-poly(3-sulphopropyl methacrylate) 3-(trifluoromethyl)phenyltrimethyl ammonium salt (PMMA₁₁₄-*b*-PSPMA-FPhTMA₁₂₆)

PMMA₁₁₄-*b*-PBSPMA₁₂₆, (1 eq, 102 mg BCP, 76 mg BSPMA, 0.286 mmol BSPMA), FPhTMAI (4 eq, 332 mg, 1.00 mmol) and 2 mL DMSO were charged into a round bottom flask equipped with a stirring egg before being immersed in a pre-heated oil bath at 70 °C. After 24 hours, the reaction was stopped and the polymer was precipitated into 6:1 ethanol:*n*-hexane. The solid was redissolved in 1 mL DMSO and precipitated once more in 6:1 ethanol:*n*-hexane, before one wash with 6:1 ethanol:*n*-hexane. A final wash with pure *n*-hexane was done, followed by drying *in vacuo* to produce a soft off-white solid. Yield: 320 mg. ¹H NMR: deprotection \approx 100 %: *M_{n* SEC+NMR = 63 200 Da.}

Synthesis of poly(methyl methacrylate)-*block*-poly(sulphopropyl methacrylate) butyrylthiocholine salt (PMMA₁₁₄-*b*-PSPMA-BTC₁₂₆)

PMMA₁₁₄-*b*-PBSPMA₁₂₆, (1 eq, 101 mg BCP, 75 mg BSPMA, 0.283 mmol BSPMA), BTCI (4 eq, 281 mg, 0.886 mmol) and 2 mL DMSO were charged into a round bottom flask equipped with a stirring egg before being immersed in a pre-heated oil bath at 70 °C. After 24 hours, the reaction was stopped and the polymer was precipitated into 6:1 ethanol:*n*-hexane. The solid was redissolved in 1 mL DMSO and precipitated once more in 6:1 ethanol:*n*-hexane, washed once with 6:1 ethanol:*n*-hexane and once with pure *n*-hexane, followed by drying *in vacuo* to produce a sticky yellow solid. Yield: 167 mg. ¹H NMR: deprotection \approx 100 %: *M_{n SEC+NMR}* = 61 400 Da.

Supporting Figures

S1: Characterisation of hydrophobic homopolymers

Figure S1-1: (A) ¹H NMR spectrum recorded in CDCl₃ and (B) SEC elugram of a PBSPMA₁₁₄ homopolymer measured in DMF with 0.01 M LiBr. Integration of the NMR signals (numbers in A, reference set as 2H for e) evidences the absence of unwanted deprotection during the polymerisation.

Figure S1-2: (A) ¹H NMR spectrum recorded in $CDCI_3$ and (B) SEC elugram measured in DMF with 0.01 M LiBr of a PMMA₆₈ homopolymer.

Table S1: Characteristics of the poly(3-isobutoxysulphopropyl methacrylate) homopolymer and its poly(methyl methacrylate) analogue.

Polymer	[CTA]:[M]	<i>t</i> (h)	conv. [‡] (%)	DP [‡]	M _{n NMR} ‡ (Da)	M _{n SEC} ⁺ (Da)
PBSPMA ₁₁₄	119	18	96	114	30 400	43 000
PMMA ₆₈	120	18	60	72	7 500	7 100

[CTA]:[M]: chain transfer agent-to-monomer ratio. *t*. reaction time. [‡] Determined by ¹H NMR using conversion samples. [±] Determined from SEC data in DMF with 0.01 M LiBr and calibrated against near-monodisperse PMMA standards.

S2: ¹H NMR spectroscopy of the polyelectrolyte homopolymers

Figure S2-1: Comparative ¹H NMR spectra (400 MHz) of PSPMA-Li₁₁₄ in (A) D₂O, (B) 91:9 vol.% DMSO- d_6 :D₂O and (C) 91:9 vol.% methanol- d_4 :D₂O.

Figure S2-2: ¹H NMR spectrum (400 MHz, D₂O) of PSPMA-K₁₁₄. *: residual DMSO.

Figure S2-3: Comparative ¹H NMR spectra (400 MHz) of PSPMA-Na₁₁₄ in (A) D₂O and (B) 91:9 vol.% DMSO- d_6 :D₂O.

Figure S2-4: Comparative ¹H NMR spectra (400 MHz) of PSPMA-Cs₁₁₄ in (A) D₂O and (B) 91:9 vol.% DMSO- d_6 :D₂O.

Figure S2-5: Comparative ¹H NMR spectra (400 MHz) of PSPMA-TMA₁₁₄ in (A) D₂O, (B) 91:9 vol.% DMSO- d_6 :D₂O and (C) 91:9 vol.% methanol- d_4 :D₂O.

Figure S2-6: Comparative ¹H NMR spectra (400 MHz) of PSPMA-TEA₁₁₄ in (A) D₂O, (B) 91:9 vol.% DMSO- d_6 :D₂O, (C) 91:9 vol.% methanol- d_4 :D₂O 91:9 and (D) neat ethanol- d_6 .

Figure S2-7: Comparative ¹H NMR spectra (400 MHz) of PSPMA-TBA₁₁₄ in (A) D₂O, (B) 91:9 vol.% DMSO- d_6 :D₂O, (C) 91:9 vol.% methanol- d_4 :D₂O, (D) neat ethanol- d_6 and (E) neat acetone- d_6 . Note that only signals of TBA⁺ are visible in acetone- d_6 , albeit the solution being fully transparent, suggesting an aggregation of the PSPMA⁻ chains surrounded by TBA⁺ counterions acting as stabilisers.

Figure S2-8: Comparative ¹H NMR spectra (400 MHz) of PSPMA-EMIM₁₁₄ in (A) D_2O , (B) neat DMSO- d_6 , (C) neat methanol- d_4 and (D) neat ethanol- d_4 .

Figure S2-9: Comparative ¹H NMR spectra (400 MHz) of PSPMA-PhTEA₁₁₄ in (A) D₂O, (B) neat DMSO- d_6 , (C) neat methanol- d_4 and (D) neat ethanol- d_4 .

Figure S2-10: Comparative ¹H NMR spectra (400 MHz) of PSPMA-FPhTMA₁₁₄ in (A) D₂O, (B) neat DMSO- d_6 , (C) neat methanol- d_4 and (D) 88:12 vol.% ethanol- d_4 :D₂O.

Figure S2-11: Comparative ¹H NMR spectra (400 MHz) of PSPMA-BTC₁₁₄ in (A) D₂O, (B) neat DMSO- d_6 , (C) neat methanol- d_4 and (D) 88:12 vol.% ethanol- d_4 :D₂O.

S3: ¹⁹F-NMR spectroscopy of the polyelectrolyte homopolymers

Figure S3: Comparative ¹⁹F-NMR spectra (600 MHz) of 3-trifluoromethyl)phenyltrimethylammonium iodide salt (pink, D₂O), PSPMA-FPhTMA₁₁₄ homopolymer (purple, D₂O) and PMMA₁₁₄-*b*-PSPMA-FPhTMA₁₂₆ block copolymer (black, DMSO-*d*₆).

S4: FTIR spectroscopy of deprotected polymers

Figure S4-1: Reference FTIR spectra of PBSPMA₁₁₄. Assigned signals are: (A) C-H stretching of backbone (\approx 2960 cm⁻¹), (B) C=O stretching of acrylate (1726 cm⁻¹), (C) C-H bending of backbone (1436 cm⁻¹), (D) S=O bending of sulphonate (1347 cm⁻¹) and (E) S-O-R sulfonic ester (941 cm⁻¹).

Figure S4-2: Comparative FTIR spectra of polyelectrolyte homopolymers featuring inorganic counterions: PSPMA-Li₁₁₄ (red), PSPMA-Na₁₁₄ (orange), PSPMA-K₁₁₄ (green) and PSPMA-Cs₁₁₄ (blue). Assigned signals are: (A) C-H stretching of backbone (\approx 2960 cm⁻¹), (B) C=O stretching of acrylate (1726 cm⁻¹), (C) S=O stretching (1192 cm⁻¹), (D) C-O stretching of acrylate (1156 cm⁻¹) and (E) S=O stretching (1045 cm⁻¹).

Figure S4-3: Comparative FTIR spectra of polyelectrolyte homopolymers featuring quaternary ammonium counterions: PSPMA-TMA₁₁₄ (red), PSPMA-TEA₁₁₄ (orange) and PSPMA-TBA₁₁₄ (green). Assigned signals are: (A) C-H stretching of backbone (\approx 2960 cm⁻¹), (B) C=O stretching of acrylate (1726 cm⁻¹), (C) S=O stretching (1192 cm⁻¹), (D) -C-O stretching of acrylate (1156 cm⁻¹) and (E) S=O stretching (1045 cm⁻¹).

Figure S4-4: Comparative FTIR spectra of polyelectrolyte homopolymers featuring organic counterions: PSPMA-EMIM₁₁₄ (red), PSPMA-PhTEA₁₁₄ (orange), PSPMA-FPhTMA₁₁₄ (green) and PSPMA-BTC₁₁₄ (blue). Grey boxes apply to all, colour-specific boxes apply to individual samples. Assigned signals are: (A) C-H stretching of backbone and N-H stretching of amine salt (\approx 2960 cm⁻¹), (B) C=O stretching of acrylate (1726 cm⁻¹), (C) C=O stretching of BTC ketone (1699 cm⁻¹), (D) C-F stretching of FPhTMA (1324 cm⁻¹), (E) C-N stretching of EMIM aromatic amine (\approx 1200 cm⁻¹), (F) S=O stretching (1192 cm⁻¹), (G) -C-O stretching of acrylate (1756 cm⁻¹) and (H) S=O stretching (1045 cm⁻¹).

Figure S5: Aqueous SEC elugrams of polyelectrolyte homopolymers with varying counterions. (A) Elugrams of PSPMA-Li₁₁₄ (red), PSPMA-Na₁₁₄ (orange), PSPMA-K₁₁₄ (green) and PSPMA-Cs₁₁₄ (blue). (B) Elugrams of PSPMA-TMA₁₁₄ (red), PSPMA-TEA₁₁₄ (orange) and PSPMA-TBA₁₁₄ (green). (C) Elugrams of PSPMA-EMIM (red), PSPMA-PhTEA₁₁₄ (orange), PSPMA-FPhTMA₁₁₄ (green) and PSPMA-BTC₁₁₄ (blue). (D) Comparative elugrams of inorganic and organic systems: PSPMA-Na₁₁₄ (green), PSPMA-TMA₁₁₄ (blue) and PSPMA-PhTEA₁₁₄ (purple). The should of PSPMA-FPhTMA₁₁₄ suggests an interaction between the polymer coils and the column material.

Table S2: Characteristics of the polyelectrolytes as measured by aqueous SEC.

Polyelectrolyte	<i>M</i> _n (Da)	<i>М</i> _р (Da)	Ð
PSPMA-Li	77 600	88 700	1.13
PSPMA-Na	73 300	89 600	1.20
PSPMA-K	76 400	88 700	1.19
PSPMA-Cs	74 200	88 700	1.16
PSPMA-TMA	79 700	88 500	1.10
PSPMA-TEA	75 100	90 700	1.27
PSPMA-TBA	77 400	89 100	1.12
PSPMA-EMIM	81 200	88 700	1.08
PSPMA-PhTEA	76 300	88 200	1.13

Determined from SEC data in Milli-Q water containing 0.1 M NaCl and 0.1 wt.% acetic acid was used at a flow rate of 1 mL min⁻¹ and calibrated against near-monodisperse pullulan standards.

S6: Thermal characterisation of hydrophobic homopolymers

Figure S6-1: Comparative thermogravimetric analyses of PMMA₆₈ (black) and PBSPMA₁₁₄ (red) homopolymers.

Figure S6-2: Comparative differential scanning calorimetry analyses of PMMA₆₈ (black) and PBSPMA₁₁₄ (red) homopolymers.

Table S3: Comparative differential scanning calorimetry and thermogravimetric analyses of PMMA₆₈ and PBSPMA₁₁₄ homopolymers.

Polymer	<i>Τ</i> [*] (°C)	7 _{deg 1} ‡ (°C)	W _{deg 1} ± (%)	<i>T</i> _{deg 2} ‡ (°C)	W _{deg 2} ± (%)
PBSPMA ₁₁₄	16.7	195	72.3	439	25.4
PMMA ₆₈	108	352+397	96.2	n.a.	n.a.

^{*} Determined from DSC using a 20 °C min⁻¹ heating rate. [‡] Temperature corresponding to a maximal rate of degradation (*i.e.* decomposition temperature) and [±] corresponding weight loss at T_{deg} , both determined from TGA using a 10 °C min⁻¹ heating rate under nitrogen flow.

S7: Thermal characterisation of polylectrolytes

Figure S7: Comparative thermogravimetric analyses of various polyelectrolyte homopolymers: PSPMA-Na114 (green), PSPMA-TMA114 (blue) and PSPMA-EMIM114 (red).

Polyelectrolyte	<i>T</i> g [★] (°C)	<i>T</i> _{deg 1} ‡ (°C)	W _{deg 1} ‡ (%)	<i>T</i> _{deg 2} ‡ (°C)	W _{deg 2} ‡ (%)
PSPMA-Li	n.a.	295	17.0	391	49.6
PSPMA-Na	n.a.	354	39.0	432	21.8
PSPMA-K	n.a.	242	4.2	368	53.0
PSPMA-Cs	n.a.	361	18.6	>700	24.5
PSPMA-TMA	n.a.	321	82.8	425	14.7
PSPMA-TEA	-12.6	301	70.4	399	22.0
PSPMA-TBA	2.7	230	88.0	409	9.0
PSPMA-EMIM	~50	345	91.6	n.a.	n.a.
PSPMA-PhTEA	11.7	174	40.3	258+421	41.3+14.0
PSPMA-FPhTMA	55.1	268	77.7	490	18.2
PSPMA-BTC	53.9	251	84.4	425	11.2

Table S4: Comparative differential scanning calorimetry and thermogravimetric analyses of polyelectrolyte homopolymers

* Determined from DSC using a 20 °C min⁻¹ heating rate. [‡] Temperature corresponding to the maximal rate of degradation (*i.e.* decomposition temperature) and [±] corresponding weight loss at T_{deg} , both determined from TGA using a 10 °C min⁻¹ heating rate under nitrogen flow.

Figure S8-1: Photographs of polyelectrolyte homopolymer solutions in various neat solvents.

Figure S8-2: Photographs of polyelectrolyte homopolymer solutions in neat and 'wet' DMSO.

Figure S9-1: (A) ¹H NMR spectra of PMMA₁₁₄ macro-CTA (black, CDCl₃) and PMMA₁₁₄-*b*-PBSPMA₁₂₆ (red, CDCl₃) protected block copolymer and (B) corresponding SEC elugrams measured in DMF with/containing 0.01 M LiBr.

Figure S9-2: ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of PMMA₁₁₄-*b*-PSPMA-Na₁₂₆.

Figure S9-3: ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of PMMA₁₁₄-*b*-PSPMA-TMA₁₂₆.

Figure S9-4: ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of PMMA₁₁₄-*b*-PSPMA-TBA₁₂₆.

Figure S9-5: ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of PMMA₁₁₄-*b*-PSPMA-TBA₁₂₆.

Figure S9-6: ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of PMMA₁₁₄-*b*-PSPMA-EMIM₁₂₆.

Figure S9-7: ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of PMMA₁₁₄-*b*-PSPMA-PhTEA₁₂₆.

Figure S9-8: ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of PMMA₁₁₄-*b*-PSPMA-FPhTMA₁₂₆.

Figure S9-9: ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of PMMA₁₁₄-*b*-PSPMA-BTC₁₂₆.

S10: Thermal characterisation of block copolymers

Figure S10: Comparative DSC thermograms of PMMA₁₁₄ macro-CTA (black), PMMA₁₁₄-*b*-PSPMA-R₁₂₆ block copolymers (green, blue or violet) and their corresponding PSPMA-R₁₂₆ homopolymers analogues (grey). Counterions are (A) Na⁺, (B) TMA⁺, (C) TEA⁺, (D) TBA⁺, (E) EMIM⁺, (F) PhTEA⁺, (G) FPhTMA⁺ and (H) BTC⁺.

Table S5: Glass transition temperatures of the amphiphilic block copolymers.

block copolymer	T _g (°C)
PMMA ₁₁₄	118
PMMA ₁₁₄ - <i>b</i> -PBSPMA ₁₂₆	18.1
PMMA ₁₁₄ -b-PSPMA-Na ₁₂₆	n.a.
PMMA ₁₁₄ - <i>b</i> -PSPMA-TMA ₁₂₆	n.a.
PMMA114- <i>b</i> -PSPMA-TEA126	71.7
PMMA ₁₁₄ - <i>b</i> -PSPMA-TBA ₁₂₆	64.4
PMMA ₁₁₄ - <i>b</i> -PSPMA-EMIM ₁₂₆	18.6
PMMA ₁₁₄ - <i>b</i> -PSPMA-PhTEA ₁₂₆	68.6
Determined from DSC using a 20 °C min ⁻¹	heating rate.

S11: DLS and ζ -potential on block copolymers in aqueous media

Figure S11: Comparative DLS intensity plots (bars) and correlograms (solid lines) of (A) PMMA₁₁₄*b*-PSPMA-Na₁₂₆, (B) PMMA₁₁₄-*b*-PSPMA-TMA₁₂₆, (C) PMMA₁₁₄-*b*-PSPMA-TEA₁₂₆, (D) PMMA₁₁₄-*b*-PSPMA-TBA₁₂₆, (E) PMMA₁₁₄-*b*-PSPMA-EMIM₁₂₆, (F) PMMA₁₁₄-*b*-PSPMA-PhTEA₁₂₆, (G) PMMA₁₁₄*b*-PSPMA-FPhTMA₁₂₆, and (H) PMMA₁₁₄-*b*-PSPMA-BTC₁₂₆.

Table S6: Characteristics of the micelles obtained after self-assembly of the PMMA₁₁₄-*b*-PSPMA-R₁₁₆ BCPs in aqueous media.

	D _h (nm)	PDI	ζ (mV)
PMMA ₁₁₄ -b-PSPMA-Na ₁₂₆	60 ± 4	0.215 ± 0.071	-47.5 ± 1.4
PMMA114-b-PSPMA-TMA126	75 ± 1	0.244 ± 0.007	-42.0 ± 1.0
PMMA ₁₁₄ - <i>b</i> -PSPMA-TEA ₁₂₆	68 ± 1	0.218 ± 0.009	-41.6 ± 1.2
PMMA ₁₁₄ - <i>b</i> -PSPMA-TBA ₁₂₆	59 ± 1	0.268 ± 0.040	-36.2 ± 2.6
PMMA ₁₁₄ -b-PSPMA-EMIM ₁₂₆	64 ± 1	0.246 ± 0.002	-40.0 ± 2.4
PMMA ₁₁₄ - <i>b</i> -PSPMA-PhTEA ₁₂₆	63 ± 1	0.265 ± 0.003	-37.2 ± 1.5
PMMA114-b-PSPMA-FPhTMA126	95 ± 1	0.383 ± 0.414	-36.2 ± 0.3
PMMA ₁₁₄ - <i>b</i> -PSPMA-BTC ₁₂₆	58 ± 1	0.269 ± 0.005	-35.2 ± 0.7
Determined by DLS/ζ-potential measurements at 28	5 °C on 1 g L ⁻¹	solutions in 10 mM KNO $_3$ and me	asured in triplicate.

S12: TEM on block copolymers in aqueous media

Figure S12-1: Comparative TEM images of uranyl acetate-stained polymer micelles self-assembled from aqueous solutions of (A) PMMA₁₁₄-*b*-PSPMA-Na₁₂₆, (B) PMMA₁₁₄-*b*-PSPMA-TMA₁₂₆, (C) PMMA₁₁₄-*b*-PSPMA-TEA₁₂₆, (D) PMMA₁₁₄-*b*-PSPMA-TBA₁₂₆, (E) PMMA₁₁₄-*b*-PSPMA-EMIM₁₂₆, (F) PMMA₁₁₄-*b*-PSPMA-PhTEA₁₂₆, (G) PMMA₁₁₄-*b*-PSPMA-FPhTMA₁₂₆, and (H) PMMA₁₁₄-*b*-PSPMA-BTC₁₂₆ in 10 mM KNO₃.

Figure S12-2: TEM images of uranyl acetate-stained polymer micelles self-assembled from a solution of PMMA₁₁₄-*b*-PSPMA-Na₁₂₆ in 10 mM KNO₃.

Figure S12-3: TEM images of uranyl acetate-stained polymer micelles self-assembled from a solution of PMMA₁₁₄-*b*-PSPMA-TMA₁₂₆ in 10 mM KNO₃.

Figure S12-4: TEM images of uranyl acetate-stained polymer micelles self-assembled from a solution of PMMA₁₁₄-*b*-PSPMA-TEA₁₂₆ in 10 mM KNO₃.

Figure S12-5: TEM images of uranyl acetate-stained polymer micelles self-assembled from a solution of PMMA₁₁₄-*b*-PSPMA-TBA₁₂₆ in 10 mM KNO₃.

Figure S12-6: TEM images of uranyl acetate-stained polymer micelles self-assembled from a solution of PMMA₁₁₄-*b*-PSPMA-EMIM₁₂₆ in 10 mM KNO₃.

Figure S12-7: TEM images of uranyl acetate-stained polymer micelles self-assembled from a solution of PMMA₁₁₄-*b*-PSPMA-PhTEA₁₂₆ in 10 mM KNO₃.

Figure S12-8: TEM images of uranyl acetate-stained polymer micelles self-assembled from a solution of PMMA₁₁₄-*b*-PSPMA-FPhTMA₁₂₆ in 10 mM KNO₃.

Figure S12-9: TEM images of uranyl acetate-stained polymer micelles self-assembled from a solution of PMMA₁₁₄-*b*-PSPMA-BTC₁₂₆ in 10 mM KNO₃.

Figure S13: Comparative DLS intensity plots (bars) and correlograms (solid lines) of polymer micelles self-assembled from (A) PMMA₁₁₄-*b*-PSPMA-EMIM₁₂₆, (B) PMMA₁₁₄-*b*-PSPMA-PhTEA₁₂₆, (C) PMMA₁₁₄-*b*-PSPMA-FPhTMA₁₂₆ and (D) PMMA₁₁₄-*b*-PSPMA-BTC₁₂₆ in methanol.

Table S7: Characteristics of the micelles obtained after self-assembly of the PMMA₁₁₄-*b*-PSPMA-R₁₁₆ BCPs in methanol.

	D _h (nm)	PDI
PMMA ₁₁₄ - <i>b</i> -PSPMA-EMIM ₁₂₆	107 ± 4	0.336 ± 0.006
PMMA114- <i>b</i> -PSPMA-PhTEA126	95 ± 4	0.341 ± 0.021
PMMA ₁₁₄ - <i>b</i> -PSPMA- FPhTMA ₁₂₆	1417 ± 386	n.a.
PMMA ₁₁₄ -b-PSPMA-BTC ₁₂₆	204 ± 90	0.507 ± 0.042
Determined by DLS at 25 °C on 1 g L ⁻¹ solution	ons in methanol and measured in	triplicate.

Figure S14: Comparative DLS intensity plots (bars) and correlograms (solid lines) of polymer micelles self-assembled from (A) PMMA₁₁₄-*b*-PSPMA-TMA₁₂₆, (B) PMMA₁₁₄-*b*-PSPMA-TEA₁₂₆, (C) PMMA₁₁₄-*b*-PSPMA-TBA₁₂₆ (D) PMMA₁₁₄-*b*-PSPMA-EMIM₁₂₆, (E) PMMA₁₁₄-*b*-PSPMA-PhTEA₁₂₆, (F) PMMA₁₁₄-*b*-PSPMA-FPhTMA₁₂₆ and (G) PMMA₁₁₄-*b*-PSPMA-BTC₁₂₆ in ethanol.

Table S8: Characteristics of the micelles obtained after self-assembly of the PMMA114-b-PSPMA	•
R ₁₁₆ BCPs in ethanol.	

	D _h (nm)	PDI		
PMMA ₁₁₄ - <i>b</i> -PSPMA-TMA ₁₂₆	1001 ± 139	0.736 ± 0.144		
PMMA ₁₁₄ - <i>b</i> -PSPMA-TEA ₁₂₆	337 ± 49	0.616 ± 0.056		
PMMA ₁₁₄ - <i>b</i> -PSPMA-TBA ₁₂₆	237 ± 4	0.377 ± 0.059		
PMMA ₁₁₄ - <i>b</i> -PSPMA-EMIM ₁₂₆	212 ± 15	0.339 ± 0.051		
PMMA ₁₁₄ - <i>b</i> -PSPMA-PhTEA ₁₂₆	358 ± 38	0.466 ± 0.027		
PMMA ₁₁₄ - <i>b</i> -PSPMA- FPhTMA ₁₂₆	449 ± 3	0.611 ± 0.106		
PMMA ₁₁₄ - <i>b</i> -PSPMA-BTC ₁₂₆	232 ± 1	0.050 ± 0.048		
Determined by DLS at 25 °C on 1 g L ⁻¹ solutions in ethanol and measured in triplicate.				

S15: TEM on block copolymers in methanol

Figure S15-1: TEM images of uranyl acetate-stained polymer micelles self-assembled from a solution of PMMA₁₁₄-*b*-PSPMA-EMIM₁₂₆ in methanol.

Figure S15-2: TEM images of uranyl acetate-stained polymer micelles self-assembled from a solution of PMMA₁₁₄-*b*-PSPMA-PhTEA₁₂₆ in methanol.

Figure S15-3: TEM images of uranyl acetate-stained polymer micelles self-assembled from a solution of PMMA₁₁₄-*b*-PSPMA-FPhTMA₁₂₆ in methanol.

Figure S15-4: TEM images of uranyl acetate-stained polymer micelles self-assembled from a solution of PMMA₁₁₄-*b*-PSPMA-BTC₁₂₆ in methanol.

S16: TEM on block copolymers in ethanol

Figure S16-1: TEM images of uranyl acetate-stained polymer micelles self-assembled from a solution of PMMA₁₁₄-*b*-PSPMA-TMA₁₂₆ in ethanol.

Figure S16-2: TEM images of uranyl acetate-stained polymer micelles self-assembled from a solution of PMMA₁₁₄-*b*-PSPMA-TEA₁₂₆ in ethanol.

Figure S16-3: TEM images of uranyl acetate-stained polymer micelles self-assembled from a solution of PMMA₁₁₄-*b*-PSPMA-TBA₁₂₆ in ethanol.

Figure S16-4: TEM images of uranyl acetate-stained polymer micelles self-assembled from a solution of PMMA₁₁₄-*b*-PSPMA-EMIM₁₂₆ in ethanol.

Figure S16-5: TEM images of uranyl acetate-stained polymer micelles self-assembled from a solution of PMMA₁₁₄-*b*-PSPMA-PhTEA₁₂₆ in ethanol.

Figure S16-6: TEM images of uranyl acetate-stained polymer micelles self-assembled from a solution of PMMA₁₁₄-*b*-PSPMA-FPhTMA₁₂₆ in ethanol.

Figure S16-7: TEM images of uranyl acetate-stained polymer micelles self-assembled from a solution of PMMA₁₁₄-*b*-PSPMA-BTC₁₂₆ in ethanol.

Supporting References

[1] Polym. Chem. 2019, 10, 6109