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1. Materials and Methods

1.1 Materials

All Chemicals were purchased from TCI, J&K, Energy Chemical, and Adamas-
beta, and were used as received without further purification.

Deuterated chloroform was purchased from Cambridge Isotope Laboratories.
All anhydrous solvents were purchased from J&K and were used as received.

1.2 Methods

"H NMR and '*C NMR spectra were recorded on a Bruker 400 Hz (100 Hz for *C)
spectrometer at ambient temperature. Chemical shifts (5) for both 'H and '3*C NMR
spectra were given in ppm relative to tetramethylsilane. Al NMR spectra were
referenced to the residual solvent (CHCI3) signal (5 = 7.26 ppm for '"H NMR and § =
77.00 ppm for '*H NMR).

Analysis of polymer’s number-average molecular weight (M) and dispersity (D)
was performed using a Waters €2695 system (with one guard column and two Styragel
columns) coupled with Waters 2414 refractive index detector (calibrated with 10
polystyrene standards). The analysis was performed at 40 °C using THF as the eluent
at a flow rate of 1.0 mL/minute.

Decomposition temperatures (Ta>”®) at 5% of weight loss and maximum rate
decomposition temperatures (7max) of the obtained polymers were measured by thermal
gravimetric analysis (TGA) on a TA Q50 analyzer, TA instruments. Polymer samples
were measured by heating the polymer samples from 25 °C to 700 °C at the rate of
10 °C/min. Glass transition temperatures (7g) of obtained polymers were measured by
differential scanning calorimetry (DSC) on a TA Q20 analyzer, at a rate of 10 °C/min.
All Tg values were obtained from a second scan.

White-light LED beakers were made according to our previous procedure.! White
LED strips (Yifaguang, item no. 5050, 14.4 W/meter) was wrapped around the inside
of a 400 mL beaker, and powered by a 12VDC power Supply (Yifaguang, item no.
12V8A96W).
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2. Synthesis of Monomers

CO,Me
Br
/\[r R’ CO,Et

o)
Ph3P/ COR R . _CO.R
03 OEt —
Off —> K.co
2ves MeO,C

CO,R M1: R = EtR' = OEt

M2: R = Me R' = OEt

S2 M3: R = Bn R'= OEt

M4: R = BuR' = OEt

M5: R =Me R'=CN

According to the literature’s procedure,’ in situ-generated ozone was bubbled
through a 100 mL round-bottomed flask with diethyl allylmalonate (5.9 mL, 30 mmol,
1.0 equiv.) and CH2Cl2 (50 mL) at -78 °C until it turned a deep blue color. Then oxygen
was bubbled through the resulting solution until the color dissipated.
Triphenylphosphine (11.80 g, 45 mmol, 1.50 equiv.) was added and the mixture was
stirred at room temperature for 12 hours. The mixture was concentrated under reduced

pressure, and purified by flash column chromatography (EtOAc/hexanes) to give S1.

S1 (2.02 g, 10 mmol, 1.00 equiv.) was added in one portion to a solution of ethyl
2-(triphenylphosphoranylidene)acetate (3.85 g, 11 mmol, 1.10 equiv.) in anhydrous
CH2CIL2 (60 mL). The resulting mixture was stirred at room temperature until full
conversion of S1. The mixture was concentrated, and the residue was purified by flash
column chromatography (EtOAc/hexanes) to give S2.

To a 100 mL oven-dried flask, S2 (1.36 g, 5 mmol, 1.0 equiv.), 20 mL of anhydrous
DMF, methyl 2-(bromomethyl)acrylate (1.38 g, 7.7 mmol, 1.5 equiv.) and K2CO3 (1.38
g, 10 mmol, 2.00 equiv.) were sequentially added. The resulting mixture was rigorously
stirred at room temperature for 12 hours. The reaction was quenched with water, then
extracted with EtOAc (3 x 30 mL). The combined organic phase was washed three
times with H20O and brine, dried over NaxSOs, filtered and concentrated under vacuum.
The crude product was purified by flash column chromatography (hexane/ EtOAc) to
give the pure diene monomer.

EtO,C_ CO,Et

ﬁ/\/coza
MeO,C

1,4,4-triethyl 6-methyl (E)-hepta-1,6-diene-1,4,4,6-tetracarboxylate (M1)
Colorless oil. 'TH NMR (500 MHz, Chloroform-d) 6 6.87 — 6.79 (m, 1H), 6.28 (s, 1H),
5.88 —5.81 (m, 1H), 5.66 (s, 1H), 4.23 — 4.09 (m, 6H), 3.72 (s, 3H), 2.99 (s, 2H), 2.71
(d, J=7.6 Hz, 2H), 1.25 (dt, J= 14.3, 7.1 Hz, 9H).13C NMR (126 MHz, Chloroform-
d) 5 170.0, 167.2, 165.8, 142.6, 135.6, 129.6, 125.1, 61.6, 60.3, 57.3, 52.0, 35.6, 34.2,
14.2,13.9.

EtO,C_ CO,Et
X _COMe

MeO,C
4,4-diethyl 1,6-dimethyl (E)-hepta-1,6-diene-1,4,4,6-tetracarboxylate (M2)
Colorless oil. '"H NMR (500 MHz, Chloroform-d) 6 6.85 (dt, J=15.4, 7.6 Hz, 1H),
6.28 (d,J=1.3 Hz, 1H), 5.85 (dd, J=15.6, 1.5 Hz, 1H), 5.66 (d, /= 1.3 Hz, 1H),
4.23 —4.08 (m, 4H), 3.71 (d, J= 2.4 Hz, 6H), 2.98 (s, 2H), 2.71 (dd, J= 7.6, 1.5 Hz,
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2H), 1.23 (t, J= 7.1 Hz, 6H). 3C NMR (126 MHz, Chloroform-d)  170.0, 167.2,
166.2, 143.0, 135.6, 129.6, 124.6, 61.6, 57.3, 52.0, 51.5, 35.6, 34.1, 13.9.

Et0,C_ CO,Et
X _-COzBn

MeO,C

1-benzyl 4,4-diethyl 6-methyl (E)-hepta-1,6-diene-1,4,4,6-tetracarboxylate (M3)
Colorless oil. 'TH NMR (500 MHz, Chloroform-d) & 7.41 — 7.27 (m, 5H), 6.90 (dt, J =
15.4,7.6 Hz, 1H), 6.28 (d, J= 1.3 Hz, 1H), 5.90 (dt, J=15.5, 1.4 Hz, 1H), 5.66 (d, J
= 1.4 Hz, 1H), 5.16 (s, 2H), 4.24 — 4.08 (m, 4H), 3.70 (s, 3H), 2.99 (s, 2H), 2.72 (dd, J
=17.6, 1.5 Hz, 2H), 1.22 (t,J= 7.2 Hz, 6H).13C NMR (126 MHz, Chloroform-d) &
170.0, 167.2, 165.6, 143.5, 136.0, 135.6, 129.6, 128.5, 128.1, 124.6, 66.1, 61.6, 57.3,
52.0,35.7,34.2,13.9.

EtO,C_ CO,Et
X _CO,Bu

MeO,C
1-(tert-butyl)4,4-diethyl6-methyl(E)-hepta-1,6-diene-1,4,4,6-tetracarboxylate(M4)
Colorless 0il."H NMR (500 MHz, Chloroform-d) § 6.71 (dt, J= 15.4, 7.6 Hz, 1H),
6.28 (d, J=1.3 Hz, 1H), 5.76 (dt, J=15.5, 1.5 Hz, 1H), 5.66 (d, /= 1.3 Hz, 1H), 4.22
—4.15 (m, 2H), 4.15 - 4.09 (m, 2H), 3.71 (s, 3H), 3.00 — 2.95 (m, 2H), 2.68 (dd, J =
7.6, 1.5 Hz, 2H), 1.45 (s, 9H), 1.23 (t, J= 7.1 Hz, 6H). 3C NMR (126 MHz,
Chloroform-d) & 170.0, 167.2, 165.2, 141.3, 135.6, 129.5, 126.8, 80.3, 61.5, 57.3,
51.9,35.5,34.2,28.1, 13.9.

NC_ CO,Et

MeO,C

4-ethyl 1,6-dimethyl (E)-4-cyanohepta-1,6-diene-1,4,6-tricarboxylate(M5)
Colorless oil."H NMR (400 MHz, Chloroform-d) § 6.87 (dt, J = 15.3, 7.5 Hz, 1H),
6.44 (d,J=0.7 Hz, 1H), 5.99 (dt, J = 15.6, 1.4 Hz, 1H), 5.86 (q, /= 1.0 Hz, 1H), 4.32
—4.15 (m, 2H), 3.77 (s, 3H), 3.74 (s, 3H), 2.97 (dd, /= 14.0, 1.0 Hz, 1H), 2.92 —2.80
(m, 2H), 2.66 (ddd, J=14.2, 7.6, 1.4 Hz, 1H), 1.29 (t,J= 7.1 Hz, 3H). 3C NMR
(126 MHz, Chloroform-d) 6 167.0, 166.4, 165.7, 139.6, 133.8, 130.8, 126.4, 117.4,
63.2,52.3,51.7,48.7,39.0, 37.6, 13.9.

MeOZC\(
/
MeO,C. hll/\/\COZMe
W/\Br 0=s=0
>
Boc. AN
Boc HN M Mé
NH \ﬁl/\/\cone | CO,Me K,CO/DMF
O=F=0 B COMe  o=s=0 TFA =r° Me
B ———— R
K,CO3/DMF DCM o \)C])\
be e =z A N/\/\COZMe
Me o o=s$=0
— =S=
S3 sS4

Et;N/DCM

Me M7

According to the literature’s procedure,’ to a 100 mL oven-dried flask, TsNHBoc
(4.77 g, 17.6 mmol, 1.00 equiv.), methyl 4-bromobut-2-enoate (2.2 mL, 18.5 mmol,
1.05 equiv.), 30 mL of anhydrous DMF, Nal (527 mg, 3.5 mmol, 0.17 equiv.) and
K2COs (4.86 g, 35.2 mmol, 2.00 equiv.) were sequentially added. The mixture was
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vigorously stirred at 60 °C for 3 hours. The reaction was quenched with H20, extracted
with EtOAc (3 x 30 mL). The combined organic phase was washed three times with
H20 and brine, dried over Na2SOu, filtered and concentrated under vacuum. The crude
was purified by recrystallization (hexane/ DCM) to give S3 as a white solid. 5.41 g, 83 %
yield.

To a 100 mL oven-dried flask containing S3 (2.44 g, 6.6 mmol, 1.00 equiv.) in 20
mL of anhydrous CH2Clz at 0 °C, TFA (3.1 mL, 39.6 mmol, 6.00 equiv.) was slowly
added. The mixture was stirred at room temperature for 16 hours. Then the reaction was
quenched with saturate aq. NaHCO3, extracted with CH2Cl2 (3 x 30 mL). The combined
organic phase was washed with H20 and brine, dried over NaxSOs, filtered and
concentrated under vacuum. The residue was purified by recrystallization
(hexane/DCM) to give S4 as a white solid. 1.59 g, 89% yield.

To a solution of S4 (539 mg, 2.0 mmol, 1.00 equiv.) in 15 mL of anhydrous DMF,
methyl 2-(bromomethyl)acrylate (430 mg, 2.4 mmol, 1.20 equiv.) and K2CO3 (553 mg,
4.0 mmol, 2.00 equiv.) were added. The resulting suspension was vigorously stirred at
room temperature for 15 hours. The reaction was quenched with 50 mL H20, and
extracted with EtOAc (3 %< 30 mL). The combined organic layer was washed with H2O
and brine, dried over Na>SOs4, and concentrated in vacuum. The residue was purified
by flash column chromatography to give M6 as a white solid. 526 mg, 72% yield.

To a 100 mL oven-dried flask containing a solution of S4 (1.0 g, 3.7 mmol, 1.00
equiv.) and triethylamine (1.6 mL, 11.1 mmol, 3.00 equiv.) in 20 mL of anhydrous
CH2Cl2 at 0 °C, acryloyl chloride (0.9 mL, 11.1 mmol. 3.00 equiv.) was added dropwise.
The mixture was stirred at room temperature for 12 h. The reaction was quenched with
1 M aq. NaHCO:s, extracted with CH2ClL2 (3 % 30 mL). The combined organic phase
was washed with H20O and brine, dried over Na2SO4 and concentrated in vacuum. The
residue was purified by flash column chromatography to give M7 as a white solid (0.67
g, 56% yield).

Ts

|
Ny -COMe
MeOzc/g

methyl(E)-4-((N-(2-(methoxycarbonyl)allyl)-4-methylphenyl)sulfonamido)but-2-
enoate(M6)

'TH NMR (500 MHz, Chloroform-d) & 7.72 —7.65 (m, 2H), 7.31 (d, J = 8.0 Hz, 2H),
6.66 (dt, J=15.6, 6.0 Hz, 1H), 6.35 (s, 1H), 5.91 — 5.79 (m, 2H), 4.02 (s, 2H), 3.96
(dd, J=6.0, 1.7 Hz, 2H), 3.71 (d, J = 4.2 Hz, 6H), 2.43 (s, 3H). 3C NMR (126 MHz,
Chloroform-d) & 166.2, 165.9, 143.8, 142.1, 136.5, 135.1, 129.8, 128.1, 127.2, 123.8,
52.0,51.7,49.0, 48.0, 21.5.

Ts

0O, IEIV\/COZMe
T\

methyl (E)-4-(N-tosylacrylamido)but-2-enoate(M7)
'TH NMR (500 MHz, Chloroform-d) & 7.77 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 8.0 Hz,
2H), 6.98 — 6.85 (m, 2H), 6.40 (dd, J=16.7, 1.6 Hz, 1H), 5.97 (dt, /= 15.7, 1.8 Hz,
1H), 5.80 (dd, J=10.4, 1.6 Hz, 1H), 4.60 (dd, /= 5.2, 1.8 Hz, 2H), 3.73 (s, 3H), 2.44
(s, 3H). 3C NMR (126 MHz, Chloroform-d) & 166.1, 165.2, 145.3, 142.0, 136.2,
132.2,130.0, 127.9, 127.6, 123.2, 51.7, 46.7, 21.6.
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3.#’isible-light-Pr0moted Radical cyclopolymerization of divinyl monomer

3.1 General Polymerization Procedure

An oven-dried 20 mL vial equipped with a small magnetic stir bar was transferred
into a Na-filled glove box. To this vial, monomer (0.5 mmol), anhydrous PhCl or EtOAc,
and the alkyl bromide solution were sequentially added. The vial was then tightly
capped and placed under white LED irradiation while stirring in the glovebox with a
cooling fan to maintain the temperature at ~30 °C. For the progress analysis, an aliquot
of the reaction mixture was taken via syringe and immediately quenched by injecting
into a 1.5 mL vial containing ~0.6 mL of CDCIs. This aliquot was analyzed via 'H NMR
for monomer conversion, then dried under vacuum for direct GPC analysis to obtain
the Mn and D. For further purification, the reaction mixture was slowly added into 20.0
mL of hexane while stirring at room temperature. The precipitated polymer was
collected by vacuum filtration, washed with hexane (5.0 mL X 2) and dried overnight
under vacuum at 50 °C to a constant weight.

3.2 Optimization for the Polymerization

Elution time (min)

Fig. S1 Overlay of GPC traces corresponding to PM1 in Table 1.

——entry 4

———entry 5 ——ecntry 7

—entry 6 ——entry 8
——entry 9

14 16 18 2 2 14 16 18
Elution time (min) Elution time (min) Elution time (min)

Fig. S2 Overlay of GPC traces for corresponding to PM1 in Table 2.
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Fig. S3 MALDI-TOF MS spectrum of low-MW PMI1 synthesized with TBAB
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3.3 Kinetic Study

Table S1. Progress analysis for polymerization of M1 under 10.8 W white LED
irradiation”

entry Time Conv.% ° M, theo(kDa) € M,(kDa)“ D
1 0 0 - -
2 0.5 17 3.4 -
3 1 34 6.5 9.2 1.72
4 2 59 11.2 13.3 1.72
5 3 72 13.6 14.6 1.77
6 4 81 15.3 15.4 1.75
7 5 86 16.2 14.6 1.83

“Polymerizations performed using 0.5 mmol of M1, 0.01 mmol of DBMM, 0.001 mmol of PC, 0.5
mL of PhCl, and irradiated by white LEDs (10.8 W) for 12 h. A cooling fan was used to maintain
the temperature ~30 °C. *Measured by crude 'H-NMR. ‘M, meo = MW(initiator) + MW(M1) x
conversion x ([M1]/[initiator]). “Determined by gel permeation chromatography (GPC) in THF (1.0
mL/min, 40 °C) and calibrated with polystyrene standards.

Elution time (min)

Fig. S4 Overlay of GPC traces corresponding to PM1 in Table S1.
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Table S2. Results of progress analysis for polymerization of M1 under 7.2 W white
LED irradiation”

entry Time Conv.% ” M, heo(kDa) € M,(kDa)“ D
1 0 0 - - -
2 0.5 18 3.6 6.7 1.67
3 1 33 6.4 12.2 1.66
4 2 53 10.1 14 1.68
5 3 66 12.5 16 1.73
6 4 75 14.1 16.1 1.78

“Polymerizations performed using 0.5 mmol of M1, 0.01 mmol of DBMM, 0.001 mmol of PC, 0.5
mL of PhCI, and irradiated by white LEDs (7.2 W) for 12 h. A cooling fan was used to maintain the
temperature ~30 °C. ?Measured by crude 'H-NMR. ‘Mymeo = MW(initiator) + MW(M1) x
conversion x ([M1]/[initiator]). “Determined by gel permeation chromatography (GPC) in THF (1.0
mL/min, 40 °C) and calibrated with polystyrene standards.

Elution time (min)

Fig. S5 Overlay of GPC traces corresponding to PM1 in Table S2.
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Table S3. Results of progress analysis for polymerization of M1 under 3.6 W white
LED irradiation”

entry Time Conv.% " My iheo(kDa) © M,(kDa)? b
1 0 0 - - -
2 0.5 17 34 4.8 1.63
3 1 31 6.0 8.9 1.7
4 2 49 9.3 12.8 1.78
5 3 62 11.7 14.2 1.79
6 4 70 13.2 15.3 1.74

“Polymerizations performed using 0.5 mmol of M1, 0.01 mmol of DBMM, 0.001 mmol of PC, 0.5
mL of PhCI, and irradiated by white LEDs (3.6 W) for 12 h. A cooling fan was used to maintain the
temperature ~30 °C. *Measured by crude 'H-NMR. ‘M, neo = MW(initiator) + MW(M1) x
conversion x ([M1]/[initiator]). “Determined by gel permeation chromatography (GPC) in THF (1.0
mL/min, 40 °C) and calibrated with polystyrene standards.

——0.5h
——1h
——2h
—3h
4h

Elution time (min)

Fig. S6 Overlay of GPC traces for PM1 in Table S3.
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Table S4. Results of progress analysis for polymerization of M1 under 1.4 W white
LED irradiation”

entry Time Conv.% ” M, heo(kDa) € M,(kDa)“ D
1 0 0 - : :
2 0.5 7 -
3 1 15 - - -
4 2 26 5.1 5.4 1.78
5 3 36 6.9 6.7 1.8
6 4 45 8.6 7.8 1.83
7 5 52 9.9 9.5 1.78

“Polymerizations performed using 0.5 mmol of M1, 0.01 mmol of DBMM, 0.001 mmol of PC, 0.5
mL of PhCI, and irradiated by white LEDs (1.4 W) for 12 h. A cooling fan was used to maintain the
temperature ~30 °C. “Measured by crude 'H-NMR. ‘M meo = MW(initiator) + MW(M1) x
conversion x ([M1]/[initiator]). “Determined by gel permeation chromatography (GPC) in THF (1.0
mL/min, 40 °C) and calibrated with polystyrene standards.

——2h
—3h
——4h
——5h

r T T T T
12 14 16 18 20

Elution time (min)

Fig. S7 Overlay of GPC traces corresponding to PM1 in Table S4.
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3.4 Pusled-Irradiation Experiment

Table S5. Results of pusled-irradiation experiment of PM1 at ~30 °C¢

entry Time Conv.%? M meo(kDa) © M,,(kDa)d b
1 0 0 - - -
2 2 24 4.7 4.8 1.81
3 4 24 4.7 4.8 1.82
4 6 42 8.0 7.5 1.87
5 12 42 8.0 7.5 1.83
6 13 51 9.7 8.7 1.87

“Polymerizations performed using 0.5 mmol of M1, 0.01 mmol of DBMM, 0.001 mmol of PC, 0.5
mL of PhCI, and irradiated by white LEDs (1.4 W) for 12 h. A cooling fan was used to maintain the
temperature ~30 °C. *Measured by crude 'H-NMR. ‘M, neo = MW(initiator) + MW(M1) x
conversion x ([M1]/[initiator]). “Determined by gel permeation chromatography (GPC) in THF (1.0
mL/min, 40 °C) and calibrated with polystyrene standards.

12 14 16 18 20
Elution time (min)

Fig. S8 Overlay of GPC traces corresponding to PM1 in Table S5.
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3.5 Chain-Extension Experiment

Synthesis of PM1 macroinitiator. An oven-dried 20 mL vial equipped with a small
magnetic stir bar was transferred into a Na-filled glove box. To this vial, M1 (0.5 mmol)
and 0.20 mL of the stock solution of DBMM in PhCI (0.05 M) were added. The vial
was then tightly capped and placed in the beaker wrapped with white LED strips while
stirring in the glovebox with a cooling fan to maintain the temperature at ~30 °C. For
purification, the reaction mixture was slowly added into 50.0 mL of hexane while
stirring at room temperature. The precipitated polymer was collected by vacuum
filtration, washed with hexane (5.0 mL x2) and dried overnight under vacuum at 50 °C
to a constant weight.

Chain-Extension Experiment. An oven-dried 20 mL charged with a magnetic stir
bar and PM1 macroinitiator (Mn = 5.3 kDa, P = 1.71, 50 mg, 0.01 mmol) was
transferred into a No-filled glovebox. To this vial, M6 monomer (0.50 mmol) and 1.0
mL of anhydrous solvent were quickly added. The vial was then tightly capped and
irradiated in the beaker equipped with white LED strips while stirring in the glove box.
A cooling fan was used to keep the temperature at ~30 °C. After 12 h, an aliquot was
taken for 'H NMR analysis. The aliquot was then dried under vacuum for direct GPC
analysis.

An oven-dried 20 mL charged with a magnetic stir bar and PM1 macroinitiator
(Mh=4.9 kDa, D =1.60, 230 mg, 0.047 mmol) was transferred into a N»-filled glovebox.
To this vial, MMA monomer (0.50 ml, 4.7mmol) and 1 mL of anhydrous solvent were
quickly added. The vial was then tightly capped and irradiated in the beaker equipped
with white LED strips while stirring in the glove box. A cooling fan was used to keep
the temperature at ~30 °C. After 32h, an aliquot was taken for 'H NMR analysis. The
aliquot was then dried under vacuum for direct GPC analysis.

—PM1
——PMI1-b-PM6

r T T T T
12 14 16 18 20

Elution time (min)

Fig. S9 Overlay of GPC traces before and after chain extension of PM1 with Mé.
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4. Small-Molecule Model Reaction of M1

H

|
N_ _COH
Boc” 2 (1)
(1.0 equiv.)
EtO,C_ CO,Et EtO,C_ CO,Et
Et0,C COEt If{dF (CF3)ppyl(dtbbpy)PFg z 2 z z
CO,Et (1 mol%)
X0 + MeO,C
KoHPO,, DMF, 36 h MeO,C COEt BocHN
MeO,C white LEDs (~ 10.8 W)
z BocHN CO,Et
M1, 0.5 mmol 2a, 44% 2b, not observed

According to the literature procedure,* an oven-dried 20 mL vial equipped with a
small magnetic stir bar was charged with Ir[dF(CF3)ppy)]2(dtbbpy)PFe (5.6 mg, 5 umol,
0.01 equiv), Boc-Gly-OH 1 (87.6 mg, 0.5 mmol, 1.0 equiv.), M1 (185.2 mg, 0.5 mmol,
1.0 equiv.), KxHPO4 (104.5 mg, 0.6 mmol, 1.2 equiv.), and 1.3 mL of DMF. The reaction
mixture was degassed by bubbling nitrogen stream for 15min, then irradiated with a
10.8 W white LED irradiation. After 36h, the reaction mixture was diluted with
saturated aqueous NaHCOs solution, extracted with EtOAc (3 x 50 mL). The combined
organic phase was washed with water and brine, dried over MgSOs4, and concentrated
in vacuo. The residue was purified by flash chromatography on silica gel to give 2a as
a colorless oil (110 mg, 44% yield). Product 2b was not observed.

EtO,C_ CO,Et

MeO,C
CO,Et
BocHN

1,1-diethyl 3-methyl 3-(2-((tert-butoxycarbonyl)amino)ethyl)-4-(2-ethoxy-2-
oxoethyl)cyclopentane-1,1,3-tricarboxylate

TH NMR (500 MHz, Chloroform-d) 8 4.53 (s, 1H), 4.20 — 4.12 (m, 4H), 4.08 (dd, J =
7.2,3.0 Hz, 2H), 3.63 (d, J = 16.7 Hz, 3H), 3.10 (d, J = 41.3 Hz, 2H), 2.86 (d, J =
14.5 Hz, 1H), 2.77 — 2.56 (m, 1H), 2.50 (d, J= 3.6 Hz, 1H), 2.40 — 2.32 (m, 2H), 2.17
(d, J=15.2 Hz, 2H), 2.07 — 1.75 (m, 2H), 1.39 (s, 9H), 1.21 (dd, J= 9.2, 7.2 Hz, 9H).
13C NMR for major (126 MHz, Chloroform-d) 8 174.6, 172.7, 172.0, 171.4, 155.6,
61.8,61.5, 60.6, 58.2, 51.8, 45.7, 41.0, 38.6, 35.2, 28.4, 14.2, 14.0, 14.0.13C NMR for
minor (126 MHz, Chloroform-d) & 175.6, 172.1, 172.1, 171.6, 79.1, 61.7, 60.5, 57.7,
54.8,52.3,43.2,39.6,38.2, 37.7, 37.3, 34.6.
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5. Thermal Analysis
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Fig. S12 TGA and DTG curves of PM1 (168.4 kDa, D = 1.49). T¢>”* = 341 °C, Tmax =

410 °C.
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Fig. S13 DSC curves of PM1 (16.1 kDa, D = 1.57). Ty = 75 °C (2" heating scan)
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6. NMR Spectra of M1-M7
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7. NMR Spectra of PM1-PM7
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8.NMR Spectra of block copolymers
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