Supporting Information

Regioselective RAFT-HDA: a New Approach to Hyperbranched

Polymers with Precise Topology Control

Jiayi Zhang^{a,b}, Ruyue Cao^{a,b}, Xiaowei Wang^{a,b} Yixuan Wang^{a,b} and Anchao Feng^{*a,b}

a. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.

b. Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

Fig.S2 The ¹H NMR spectrum (DMSO) of the diene building block: a)SF; b)MMF; c)DF; d)MF.

Fig. S3 Changes in the UV absorption spectra before the reaction (black), after the reaction at 75°C (red), and after the reaction at 100°C (blue): a) St-based polymer; b) MMA-based polymer; c) DMA-based polymer; d) MA-based polymer.

Fig. S4 The ¹H NMR spectrum (DMSO) of DF (top) and D-DF (bottom).

Fig. S5 DSC characterization results of four different monomer-based building blocks of D-DF, S-SF, M-MF and MM-MMF after HDA reaction.

Fig. S6 The DSC results of the brush-type polymer (blue) and the control group (polymer without the HDA reaction) (red).

Fig. S7 ¹H NMR spectrum (CDCl₃) of the macromonomer AB_x.

Fig. S8 GPC: (h-g) Comparison of relative molecular weight changes based on linear polystyrene standards before and after HDA reaction of AB'₅, AB'₁₀ and AB'₁₅ blocks; h) AB'₅ (black $M_n = 6000$, D = 1.16), and HBP4 (red $M_n = 8200$ D = 1.25); i) AB'₁₀ (black $M_n = 7000$, D = 1.14), and HBP5 (red $M_n = 8683$ D = 1.29); g) AB'₁₅ (black $M_n = 8800$, D = 1.21), and HBP6 (red $M_n = 10700$ D = 1.31). GPC-MALLS: (k-l) HBP4 and HBP6 absolute molecular weight characterization results; k) HBP4 by LS detector (black $M_n = 413400$ D = 9.75), and by RI detector (red $M_n = 8200$ D = 1.25); l) HBP6 by LS detector (black $M_n = 73400$ D = 7.41), and by RI detector (red $M_n = 10700$ D = 1.31).

Fig. S9 The schematic diagram of the UV testing principle for AB_{x} and hyperbranched polymers.

Fig. S10 HDA reaction efficiency (bar chart) and the absolute number of functional groups undergoing the HDA reaction (line chart) for AB_x macromonomers with different functionalities. (a) AB_x obtained from the copolymerization of DMA and FMA; (b) AB'_x obtained from the copolymerization of MA and FMA.

Blocks	r(furan/ dithioesters)	[F] ₀ (mol.ML ⁻¹)	[S] ₀ (mol.ML ⁻¹)	T(°C)	M_{n}^{b}	${oldsymbol{D}}^b$
M-MF1		10-5	10-5	60	-	-
M-MF2					156700	1.14
D-DF1					14300	1.15
D-DF2	1				163300	1.09
MM-MMF1	1				799000	1.03
MM-MMF2					747700	1.04
S-SF1					25000	1.01
S-SF2					24400	1.02

Table S1. Summarized data on brush-like polymers after HDA reaction.

r = reactivity ratio, M_n = number-average molecular weight, D = dispersity index, 'b' obtained from GPC.

Table S2. Temperature probes for the synthesis of Ab_x macromonomers.

Blocks	СТА	T(°C)	Time (h)	M_n^a	M_n^b	${\boldsymbol{\varPhi}}^{b}$
P(DMA ₃₀ -co-FMA ₅)		75	1	21500	22100	1.42
P(DMA ₃₀ -co-FMA ₅)		100	1	1000	3000	1.16
P(DMA ₃₀ -co-FMA ₅)	CDPC	100	2	1800	4700	1.15
P(DMA ₃₀ -co-FMA ₅)		100	4	2200	5000	1.18
P(DMA ₃₀ -co-FMA ₅)		100	6	3200	4600	1.04

 M_n = number-average molecular weight, D = dispersity index, 'a' obtained from NMR, and 'b' obtained from GPC.

Table S3. Summarized data on AB_x and AB'_x building blocks.

Blocks	f	<i>M/f</i> (g.mol ⁻¹)	DPa	M_n^a	M_n^b	D^{b}
$P(DMA_{50}\text{-}co\text{-}FMA_5)(AB_5)$	5	1336	51	5400	5700	1.40
$P(DMA_{50}\text{-}co\text{-}FMA_{10}) (AB_{10})$	10	761	62	6900	7200	1.30
$P(DMA_{50}\text{-}co\text{-}FMA_{15}) (AB_{15})$	15	474	58	6600	6800	1.50
$P(MA_{50}\text{-}co\text{-}FMA_5) (AB'_5)$	5	1449	53	5800	6000	1.16
$P(MA_{50}\text{-}co\text{-}FMA_{10}) (AB'_{10})$	10	762	60	6900	7000	1.14
P(MA55-co-FMA15) (AB'15)	15	586	69	8200	8800	1.21

f= Specifically refers to the number of functional groups required for the HDA reaction, M = relative molecular mass, *DP* = degree of polymerization, M_n = number-average molecular weight, D = dispersity index, 'a' obtained from NMR, and 'b' obtained from GPC.