Supporting Information

Efficient and Simplified Strategy to Access Novel Polysulfamate Materials: from Laboratory Research to Industrial Production

Xingyu Ma, Pengqiang Liang, Zhongqiang Zhao, Jinwei Chen, Xueqing Wang, Yunbin Zhou, Xianxing Jiang^{*} and Weiwei Zhu^{*}

Email: zhuww8@mail.sysu.edu.cn; jiangxx5@mail.sysu.edu.cn

Table of contents

1. General information	1
2. Nucleophilic construction of sulfamate bond	1
2.1 Conditions screening	1
2.2 Synthesis of sulfamates	3
3. Laboratory synthesis of PSA	9
3.1 Conditions screening	9
3.2 Synthesis of PSAs from diverse building blocks	9
3.2.1 Synthesis of alkylsulfamoyl fluorides ³	9
3.2.2 Synthesis of PSAs ^{4,5}	10
3.3. Hundred gram-scale synthesis of P1	17
4. Characterization of the polymers	17
4.1 Molecular weight and polymer dispersity index of polymers	17
4.2 Thermal properties of polymers	18
4.3 Mechanical properties of polymers	19
4.4 Solvent-stability of P1	24
5. Industrial production of PSA	24
5.1 Industrial produciton of P1	24
5.2 Mechanical properties of industrial products of P1	25
6. References	25
7. Copies of the NMR spectra and DSC curve of new compounds	27
7.1 Copies of the NMR spectra of monomers	27
7.2 Copies of the NMR spectra of polymers	54
7.3 Copies of the DSC curves of polymers	82
7.4 Copies of the GPC traces of polymers	96

1. General information

All chemical reagents were purchased in analytical grade from commercial suppliers and unless otherwise noted, all commercial reagents were used without further purification. Merck F-254 silica gel plates were used for thin layer analytical chromatography (TLC). Column chromatography purification was carried out using EMD (Merck) Silica Gel 60 (40-63 am). ¹H, ¹³C and ¹⁹F NMR spectra were recorded with BRUKER Ascend 400 M & BRUKER Ascend 500 M at 25°C. The spectra were recorded in $CDCl_3$ or DMSO- d_6 as solvent. Multiplicity was described as follows: s (singlet); d (doublet); t (triplet); m (multiplet); dd (doublet of doublets), etc. and coupling constants (J) were given in Hz. Chemical shifts are reported in ppm relative to TMS as an internal standard. The peak around delta value of ¹H NMR 7.26 and 2.5 are corresponding to deuterated solvent chloroform and DMSO respectively, and the peaks around delta value of ¹H NMR (1.56 and 3.3) are corresponding to water contained in CDCl₃ and DMSO- d_6 respectively. The peak around delta values of ¹³C NMR around 77.4 and 39.5 referenced to the appropriate NMR solvent residual peaks of $CDCl_3$ and $DMSO-d_6$ respectively. The molecular weight and polymer dispersity index were measured using a gel permeation chromatography (GPC) system (EliteHPLC P3100, China). Thermal properties were evaluated through differential scanning calorimetry (DSC) using a DSC 3500 Sirius instrument (Netzsch, Germany) and thermogravimetric analysis (TGA) using a TGA Q50 instrument (TA Instruments, USA). High-resolution mass spectrometric (HRMS) data were obtained on an Agilent 6210 time-of-flight HPLC/MS spectrometer (ESI-TOF).

2. Nucleophilic construction of sulfamate bond

2.1 Conditions screening

Table S1 shows the conditions screening results of the reaction. Inspired by our previous work, the reaction of pyrrolidine-1-sulfonyl fluoride (1a) and 4-(2-phenylpropan-2-yl)phenol (2a) in the presence of Na₂CO₃ in DMF was employed to optimize the reaction conditions. When the reaction was carried out at rt for 1 h, the desired product 3a was obtained in trace. Increasing the reaction temperature leads to increased yields of **3a** (Table S1, entries 2-5). While the yield of 3a was decreased when the reaction temperature was 150°C (Table S1, entry 6), this might because the destruction of sulfamate bond and DMF at high temperature under alkaline conditions. Prolonging the reaction time to 2 h (Table S1, entry 7) also give a higher yield of **3a** while the yield of **3a** was decreased when the reaction time was prolonged to 4 h (Table S1,

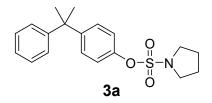
entry 8). NMP and Sulfolane didn't give superior yields of 3a (Table S1, entries 9 and 10). When K_2CO_3 was applied, the yield of 3a was 95% (Table S1, entry 11), other IOB didn't show superior results (Table S1, entries 12-15). Then we got the optimal reaction conditions: the reaction was carried out in DMF (0.5 M) at 135°C for 2 h in the presence of K_2CO_3 . **Table S1** conditions screening of the sulfamate bond formation reaction^{*a*}

SO₂F │ │ │ 1a	+ HO 2	IOB Solvent		O-S-N O	
Entry	2a Temperature ^b	Solvent	IOB	R. T.	Yield ^c
1	rt	DMF	Na ₂ CO ₃	1 h	traced
2	50°C	DMF	Na ₂ CO ₃	1 h	18%
3	80°C	DMF	Na ₂ CO ₃	1 h	42%
4	120°C	DMF	Na ₂ CO ₃	1 h	75%
5	135°C	DMF	Na ₂ CO ₃	1 h	83%
6	150°C	DMF	Na ₂ CO ₃	1 h	72%
7	135°C	DMF	Na ₂ CO ₃	2 h	88%
8	135°C	DMF	Na ₂ CO ₃	4 h	82%
9	135°C	NMP	Na ₂ CO ₃	2 h	62%
10	135°C	Sulfolane	Na ₂ CO ₃	2 h	85%
11	135°C	DMF	K_2CO_3	2 h	95%
12	135°C	DMF	Li ₂ CO ₃	2 h	35%
13	135°C	DMF	MgCO ₃	2 h	trace
14	135°C	DMF	CaCO ₃	2 h	trace
15	135°C	DMF	NaOH	2 h	45%

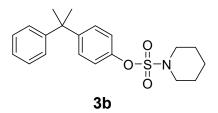
^{*a*}The reaction was carried out on 2 mmol scale in 4 mL solvent. 1.1 equiv. of IOB was applied for the formation of **3a-3d** and **3p-3s**, while 2.2 equiv. of IOB was applied for the formation of **3e-3o**. ^{*b*}External temperature. ^{*c*}Isolated yield. ^{*d*}Determined by HPLC. IOB, inorganic base. rt, room temperature. R. T., reaction time.

Note: we chose polar solvent including *N*,*N*-dimethylformamide (DMF), *N*-methylpyrrolidone (NMP) and sulfolane because these solvents exhibited better performance in our next polycondensation reaction.

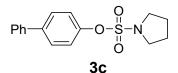
2.2 Synthesis of sulfamates

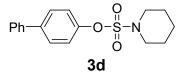

General procedure for synthesis of 1a and 1b: 1a and 1b were synthesized according to previous work,³ also see section S3.2.1.

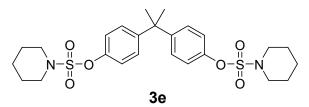
pyrrolidine-1-sulfonyl fluoride (1a), white solid, 95% yield. ¹H NMR (400 MHz, Chloroformd) δ 3.49 (t, J = 6.9 Hz, 4H), 2.10-1.91 (m, 4H). ¹³C NMR (100 MHz, Chloroform-d) δ 49.2, 25.6. ¹⁹F NMR (376 MHz, Chloroform-d) δ 35.97.

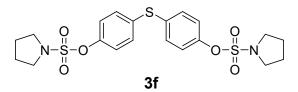


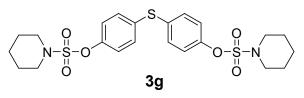
piperidine-1-sulfonyl fluoride (**1b**), white solid, 94% yield. ¹H NMR (400 MHz, Chloroformd) δ 3.43 (J = 5.2 Hz, 4H), 1.74-1.68 (m, 4H), 1.65-1.61 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 48.0, 24.5, 23.1. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ 39.75.

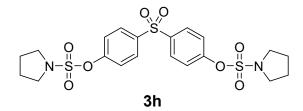

General procedure for synthesis of 3a-3s: 2 mmol of alkylsulfamoyl fluorides (1.0 equiv.), 4 mL of DMF and K_2CO_3 (1.1 equiv. for the formation of 3a-3d and 3p-3s and 2.2 equiv. for the formation of 3e-3o) were added to a 10 mL flask, then the flask was heated at 135°C for 2 h. The reaction was quenched by water (10 mL). When the mixture was cooled to rt, the mixture was extracted with ethyl acetate and washed with brine. The combined organic layers were dried over Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (EtOAc-hexane elution: hexane/EtOAc (V/V) = 100:1~10:1) on silica gel to provide the sulfamates.

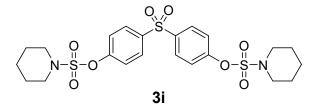

4-(2-phenylpropan-2-yl)phenyl pyrrolidine-1-sulfonate (**3a**), white solid, 95% yield. 1H NMR (500 MHz, Chloroform-*d*) δ 7.28-7.16 (m, 9H), 3.43 (t, *J* = 6.7 Hz, 4H), 2.00-1.89 (m, 4H), 1.67 (s, 6H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 150.1, 149.3, 148.2, 128.2, 126.7, 125.8, 121.2, 49.2, 42.8, 30.8, 25.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₉H₂₄NO₃S [M+H]⁺: 346.1471, found 346.1473.


4-(2-phenylpropan-2-yl)phenyl piperidine-1-sulfonate (**3b**), white solid, 96% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.21-7.07 (m, 9H), 3.28 (t, *J* = 5.5 Hz, 4H), 1.59 (s, 6H), 1.57-1.55 (m, 4H), 1.50-1.47 (m, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 150.1, 149.2, 148.1, 128.1, 126.7, 125.8, 121.1, 47.9, 42.8, 30.8, 25.0, 23.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₀H₂₆NO₃S [M+H]⁺: 360.1628, found 360.1627.

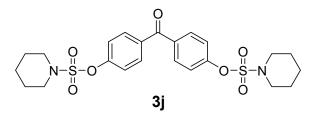

[1,1'-biphenyl]-4-yl pyrrolidine-1-sulfonate (3c), white solid, 90% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 (d, *J* = 8.8 Hz, 2H), 7.56 (d, *J* = 7.2 Hz, 2H), 7.44 (t, *J* = 8.0 Hz, 2H), 7.37-7.34 (m, 3H), 3.48 (t, *J* = 6.8 Hz, 4H), 1.98-1.94 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 149.7, 140.0, 139.8, 128.9, 127.6, 127.1, 122.2, 49.3, 25.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₈NO₃S [M+H]⁺: 304.1002, found 304.1003.


[1,1'-biphenyl]-4-yl piperidine-1-sulfonate (3d), white solid, 94% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 7.2 Hz, 2H), 7.42 (t, *J* = 8.0 Hz, 2H), 7.35-7.32 (m, 3H), 3.49 (t, *J* = 5.6 Hz, 4H), 1.68-1.62 (m, 4H), 1.58-1.54 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 149.7, 140.0, 139.8, 128.9, 128.4, 127.6, 127.1, 122.1, 48.0, 25.0, 23.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₂₀NO₃S [M+H]⁺: 318.1158, found 318.1155.

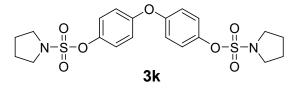

propane-2,2-diylbis(4,1-phenylene) bis(piperidine-1-sulfonate) (3e), white solid, 93% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.20 (d, *J* = 8.9 Hz, 4H), 7.16 (d, *J* = 8.8 Hz, 4H), 3.37 (t, *J* = 5.5 Hz, 8H), 1.69- 1.65 (m, 14H), 1.60-1.56 (m, 4H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 148.6, 148.2, 128.1, 121.2, 47.9, 42.6, 30.9, 25.0, 23.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₅H₃₅N₂O₆S₂ [M+H]⁺: 523.1931, found 523.1933.


thiobis(4,1-phenylene) bis(pyrrolidine-1-sulfonate) (3f), white solid, 92% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.33 (d, J = 8.5 Hz, 4H), 7.23 (d, J = 8.5 Hz, 4H), 3.46 (t, J = 5.5 Hz, 8H), 1.98-1.95 (m, 8H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 149.6, 133.7, 132.4, 122.8, 49.3, 25.7. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₂₀H₂₄N₂O₆S₃Na [M+Na]⁺: 507.0689, found 507.0686.

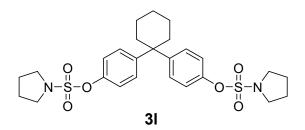
thiobis(4,1-phenylene) bis(piperidine-1-sulfonate) (3g), white solid, 93% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.33 (d, J = 8.5 Hz, 4H), 7.22 (d, J = 8.5 Hz, 4H), 3.38 (t, J = 5.5 Hz, 8H), 1.70-1.66 (m, 8H), 1.61-1.58 (m, 4H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 149.6, 133.7, 132.4, 122.7, 48.0, 25.0, 23.4. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₂₂H₂₈N₂O₆S₃Na [M+Na]⁺: 535.1002, found 535.1003.

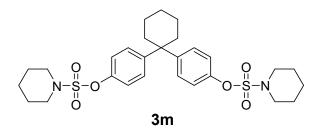


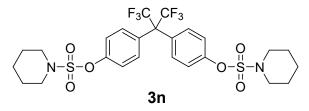
sulfonylbis(4,1-phenylene) bis(pyrrolidine-1-sulfonate) (3h), white solid, 95% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.96 (d, J = 8.5 Hz, 4H), 7.42 (d, J = 8.5 Hz, 4H), 3.48 (t, J = 5.5 Hz, 8H), 2.00-1.97 (m, 8H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 154.2, 139.0, 129.8, 122.5, 49.4, 25.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₀H₂₅N₂O₈S₃ [M+H]⁺: 517.0768, found 517.0764.

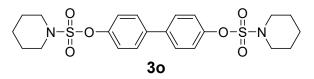


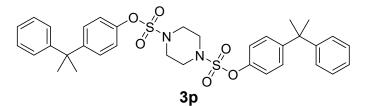
sulfonylbis(4,1-phenylene) bis(piperidine-1-sulfonate) (3i), white solid, 96% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.24 (d, *J* = 8.5 Hz, 4H), 7.16 (d, *J* = 8.5 Hz, 4H), 3.35 (t, *J* = 5.5


Hz, 8H), 1.64-1.63 (m, 8H), 1.57-1.53 (m, 4H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 148.0, 146.6, 128.4, 121.4, 47.9, 25.0, 23.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₂H₂₉N₂O₈S₃ [M+H]⁺: 545.1081, found 545.1082.

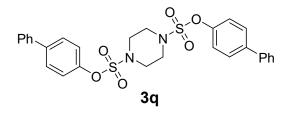

carbonylbis(4,1-phenylene) bis(piperidine-1-sulfonate) (3j), white solid, 92% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 8.5 Hz, 4H), 7.40 (d, *J* = 8.5 Hz, 4H), 3.43 (t, *J* = 4.5 Hz, 8H), 1.72-1.69 (m, 8H), 1.63-1.60 (m, 4H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 194.0, 153.6, 135.3, 131.8, 121.5, 48.0, 24.9, 23.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₃H₂₉N₂O₇S₂ [M+H]⁺: 509.1411, found 509.1411.


oxybis(4,1-phenylene) bis(pyrrolidine-1-sulfonate) (3k), white solid, 91% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.24 (d, J = 8.5 Hz, 4H), 7.17 (d, J = 8.5 Hz, 4H), 3.42 (t, J = 6.5 Hz, 8H), 1.93-1.91 (m, 8H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 148.0, 146.7, 128.4, 121.5, 49.2, 25.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₀H₂₅N₂O₇S₂ [M+H]⁺: 469.1098, found 469.1095.

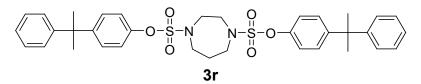

cyclohexane-1,1-diylbis(4,1-phenylene) bis(pyrrolidine-1-sulfonate) (3l), white solid, 96% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.24 (d, *J* = 8.5 Hz, 4H), 7.17 (d, *J* = 8.5 Hz, 4H), 3.42 (t, *J* = 6.5 Hz, 8H), 2.24-2.22 (m, 4H), 1.93-1.91 (m, 8H), 1.55-1.49 (m, 6H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 148.0, 146.7, 128.4, 121.5, 49.2, 45.8, 37.2, 26.2, 25.7, 22.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₆H₃₅N₂O₆S₂ [M+H]⁺: 535.1931, found 535.1932.


cyclohexane-1,1-diylbis(4,1-phenylene) bis(piperidine-1-sulfonate) (3m), white solid, 95% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.24 (d, *J* = 8.5 Hz, 4H), 7.16 (d, *J* = 8.5 Hz, 4H), 3.35 (t, *J* = 5.5 Hz, 8H), 2.24-2.22 (m, 4H), 1.66-1.62 (m, 8H), 1.56-1.48 (m, 10H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 148.0, 146.6, 128.4, 121.4, 47.9, 45.8, 37.2, 26.2, 25.0, 23.4, 22.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₈H₃₉N₂O₆S₂ [M+H]⁺: 563.2244, found 563.2245.

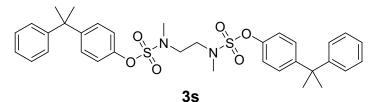
(perfluoropropane-2,2-diyl)bis(4,1-phenylene) bis(piperidine-1-sulfonate) (3n), white solid, 92% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.32 (d, *J* = 8.5 Hz, 4H), 7.22 (d, *J* = 9.0 Hz, 4H), 3.33 (t, *J* = 5.5 Hz, 8H), 1.63-1.58 (m, 8H), 1.54-1.50 (m, 4H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 150.8, 131.7, 131.1, 123.9 (q, *J* = 286.6 Hz, 2C), 121.4, 64.2-63.5 (m, 1C), 48.0, 24.9, 23.3. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₅H₂₉F₆N₂O₆S₂ [M+H]⁺: 631.1366, found 631.1367.



1,1'-biphenyl]-4,4'-diyl bis(pyrrolidine-1-sulfonate) (30), white solid, 94% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.33 (d, *J* = 8.5 Hz, 4H), 7.22 (d, *J* = 8.5 Hz, 4H), 3.38 (t, *J* = 5.5 Hz, 8H), 1.70-1.65 (m, 8H), 1.61-1.58 (m, 4H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 149.6, 133.7, 132.4, 122.7, 48.0, 25.0, 23.4.



bis(4-(2-phenylpropan-2-yl)phenyl) piperazine-1,4-disulfonate (3p), white solid, 95% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.27-7.10 (m, 18H), 3.49 (t, *J* = 5.5 Hz, 8H), 1.67 (s, 12H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 149.9, 147.7 (2C), 128.3, 128.1, 126.7, 125.9,


121.2, 51.8, 48.7, 30.8, 28.1. HRMS (ESI-TOF) m/z: $[M+Na]^+$ Calcd for $C_{34}H_{38}N_2O_6S_2Na$ $[M+Na]^+$: 657.2064, found 657.2064.

di([1,1'-biphenyl]-4-yl) piperazine-1,4-disulfonate (3q), white solid, 92% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.58-7.55 (m, 4H), 7.54 (d, *J* = 7.2 Hz, 4H), 7.44 (t, *J* = 8.0 Hz, 4H), 7.37-7.34 (m, 6H), 3.45 (t, *J* = 5.5 Hz, 8H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 149.8, 140.1, 139.7, 128.9, 128.2, 127.7, 127.2, 122.2, 49.3. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₂₈H₂₆N₂O₆S₂Na [M+Na]⁺: 573.1125, found 573.1123.

bis(4-(2-phenylpropan-2-yl)phenyl) 1,4-diazepane-1,4-disulfonate (3r), white solid, 95% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29-7.23 (m, 8H), 7.19 (d, *J* = 8.0 Hz, 6H), 7.13 (d, *J* = 8.8 Hz, 4H), 3.53-3.50 (m, 8H), 2.01 (q, *J* = 6.3 Hz, 2H), 1.67 (s, 12H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 153.3, 146.9, 128.9, 128.2, 127.5, 126.7, 125.9, 118.3, 51.8, 48.1, 45.1, 31.8, 28.7. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₃₅H₄₀N₂O₆S₂Na [M+Na]⁺: 671.2220, found 671.2223.

bis(4-(2-phenylpropan-2-yl)phenyl) ethane-1,2-diylbis(methylsulfamate) (3s), white solid, 92% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29-7.17 (m, 14H), 7.14 (d, *J* = 8.8 Hz, 4H), 3.42 (t, *J* = 5.6 Hz, 4H), 2.99 (s, 6H), 1.66 (s, 12H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 150.0, 149.8, 147.8, 128.3, 127.4, 127.1, 125.9, 121.2, 50.7, 44.5, 39.1, 26.9. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₄H₄₁N₂O₆S₂ [M+H]⁺: 637.2401, found 637.2403.

3. Laboratory synthesis of PSA

3.1 Conditions screening

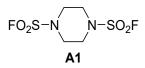
ш

Reaction of piperazine with propane-2,2-diylbis(4,1-phenylene) bis(sulfurofluoridate)².
The reaction of piperazine (a) and propane-2,2-diylbis(4,1-phenylene) bis(sulfurofluoridate)
(b) were applied to verify the polycondensation of aryl fluorosulfates and aliphatic amines.

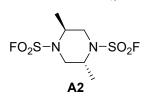
) + FO2SO	$\sum_{OSO_2F} \frac{\text{base, Sulfol}}{\Delta}$			
N H a	1 0 ₂ 30	-	L	P1	O∫n
Entry	Base	Catalyst	T/⁰C	$M_{\rm n}^{\rm PS}/{\rm kDa}$	PDI
1	Na ₂ CO ₃		170	4.1	2.32
2	Na ₂ CO ₃	DMAP (10%)	170	11.0	1.93
3	K_2CO_3	DMAP (10%)	170	7.1	2.12
4	Li ₂ CO ₃	DMAP (10%)	170	14.8	1.89
5	NaHCO ₃	DMAP (10%)	170	12.4	1.92
6	Na ₃ PO ₄	DMAP (10%)	170	10.2	1.96
7	Na ₂ CO ₃	DMAP (10%)	200	19.2	1.85
8	Li ₂ CO ₃	DMAP (10%)	200	15.2	1.85
9	Na ₂ CO ₃	DMAP (10%)	220	13.8	1.95

Table S2. Conditions screening for the reaction of a and b^a

^{*a*}The reaction was carried out with 2.5 mmol **a** (1.00 equiv) and **b** (1.01 equiv) in 5 mL of solvent in the presence of 2.2 equiv of base for 6 h. *T*, External temperature. M_n^{PS} , number-average molecular weight with polystyrene as standard. PDI, polydispersity index.

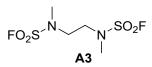

From the results above we found that the reaction of **a** and **b** resulted in a relative lower M_n of the **P1**, though catalyst (DMAP) was added and the reaction temperature was increased. Thus, in our study, PSAs were synthesized through the nucleophilic polycondensation between aryl phenols and alkylsulfamoyl fluorides.

3.2 Synthesis of PSAs from diverse building blocks

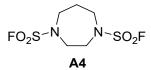

3.2.1 Synthesis of alkylsulfamoyl fluorides³

In a 500 mL round-bottom flask equipped with a stir bar, the secdary amines (100 mmol, 1 eq.) was dissolved in 100 mL dichloromethane (DCM). Triethylamine (300 mmol, 3 eq.) and DMAP (100 mmol, 1 eq.) were added and the resulting solution was stirred at room temperature for 5 mins. The flask was charged with gentle vacuum, then quickly filled with SO_2F_2 gas *via* a syringe attached balloon. The reaction was allowed stirring at room temperature until the full conversion of starting compound to target bisfluorosulfate, monitored by TLC. DCM was then evaporated away on rotary evaporator, the resulting crude product was dissolved in 100 mL

ethyl acetate (EtOAc). It was subsequently washed with 50 mL aqueous HCl (1.0 M, 3 times), 50 mL saturated aqueous solution of NaHCO₃, then 50 mL saturated brine. The organic phase was dried over anhydrous Na₂SO₄. After filtration, the removal of EtOAc gave alkylsulfamoyl fluorides as white solid, which was further purified through column chromatography (silica gel 200-300 mesh size) using *n*-hexanes/EtOAc = 50:1-10:1 as eluent.



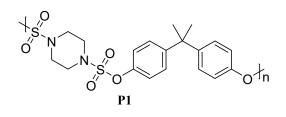
piperazine-1,4-disulfonyl difluoride (A1), white solid, 96% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 3.65 (t, *J* = 1.2 Hz, 8H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 46.1. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 42.57.



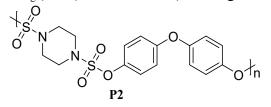
(2S,5R)-2,5-dimethylpiperazine-1,4-disulfonyl difluoride (A2), white solid, 92% yield.¹H
NMR (500 MHz, Chloroform-*d*) δ 4.25-4.20 (m, 2H), 3.54-3.51 (m, 4H), 1.37 (d, *J* = 6.9 Hz, 6H).¹³C NMR (125 MHz, Chloroform-*d*) δ 49.3, 44.4, 12.6. ¹⁹F NMR (376 MHz,

Chloroform-d) δ 48.53.

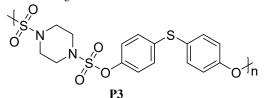
ethane-1,2-diylbis(methylsulfamoyl fluoride) (A3), white solid, 96% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 3.60 (t, J = 1.2 Hz, 4H), 3.14 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 47.7, 35.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ 49.84.

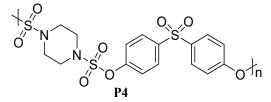


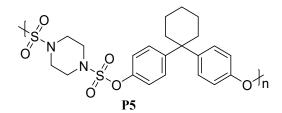
1,4-diazepane-1,4-disulfonyl difluoride (A4), white solid, 94% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 3.77-3.70 (m, 8H), 2.19-2.12 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 45.9, 43.8, 22.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ 49.85 (d, *J* = 6.7 Hz).

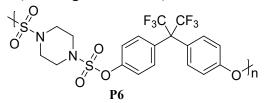

3.2.2 Synthesis of PSAs^{4,5}

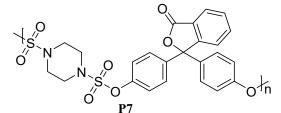
General procedure: Aryl phenols (2.50 mmol, 1.0 eq) and alkylsulfamoyl fluorides (2.55mol, 1.02eq) were combined in a 25 mL glass vial equipped with magnetic stir bar. Sulfolane (5.0 mL) was added, and the vial was placed into a pre-heated 150°C oil bath with stirring. After 2

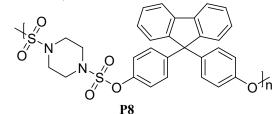

min, commercially available anhydrous K₂CO₃ (2.2 eq) was added in one portion. The reaction was run for 6 hours, during which course the reaction mixture turned highly viscous while the moisture appeared. At the end of the reaction, it was allowed to cool to 70°C and the mixture was slowly poured into 50 mL of cold water under vigorous stirring. Polymers precipitated as white fiber or powder once the sulfolane solution touched the water. The polymers were collected via filtration and then refluxed in water for 1 h to remove the salts and sulfolane. Finally, the polymers were dried at 40°C for 12 hours in vacuo. Molecular weight and polymer distribution were determined on GPC. The thermal properties were determined by DSC and TGA analysis.

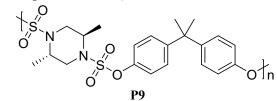

P1, White fiber, 95% yield. ¹H NMR (500 MHz, DMSO- d_6) δ 7.26-7.20 (m, 8H), 3.41 (s, 8H), 1.58 (s, 6H). ¹³C NMR (125 MHz, DMSO- d_6) δ 149.3, 147.9, 128.6, 121.8, 46.2, 42.7, 30.8. $M_n^{PS} = 155 \text{ kDa}$, PDI = 1.65, T_g (DSC) = 147.2°C, T_d (5% weight loss, TGA) = 339.5°C


P2, White fiber, 96% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.37 (d, J = 8.4 Hz, 4H), 7.10 (d, J = 8.6 Hz, 4H), 3.45 (s, 8H). ¹³C NMR (100 MHz, DMSO- d_6) δ 155.4, 145.6, 124.1, 120.5, 46.4. $M_n^{PS} = 110$ kDa, PDI = 1.56, T_g (DSC) = 129.9°C, T_d (5% weight loss, TGA) = 341.3°C.

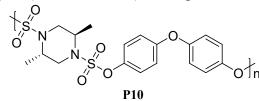

P3, White fiber, 96% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.42 (d, J = 8.6 Hz, 4H), 7.36 (d, J = 8.4 Hz, 4H), 3.45 (s, 8H). ¹³C NMR (100 MHz, DMSO- d_6) δ 149.3, 133.8, 132.9, 123.6, 46.4. $M_n^{PS} = 90$ kDa, PDI = 1.41, T_g (DSC) = 128.3°C, T_d (5% weight loss, TGA) = 336.3°C.


P4, White fiber, 95% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 8.11 (d, J = 8.8 Hz, 4H), 7.60 (d, J = 8.5 Hz, 4H), 3.50 (s, 8H). ¹³C NMR (100 MHz, DMSO- d_6) δ 153.7, 139.5, 130.6, 123.5, 46.3. M_n^{PS} = 13 kDa, PDI = 1.36, T_g (DSC) = 174.9°C, T_d (5% weight loss, TGA) = 322.6°C.

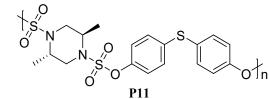

P5, White fiber, 97% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.34 (d, J = 8.5 Hz, 4H), 7.21 (d, J = 8.4 Hz, 4H), 3.38 (s, 8H), 2.22-2.17 (m, 4H), 1.40-1.36 (m, 6H). ¹³C NMR (100 MHz, DMSO- d_6) δ 147.6, 147.3, 129.0, 121.9, 46.2, 45.8, 36.6, 26.0, 22.8. $M_n^{PS} = 60$ kDa, PDI = 1.34, T_g (DSC) = 215.1°C, T_d (5% weight loss, TGA) = 356.6°C.


P6, White fiber, 96% yield. ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.54 (d, *J* = 8.9 Hz, 4H), 7.49 (d, *J* = 8.5 Hz, 4H), 3.56 (s, 8H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 150.6, 132.1, 131.1, 125.3 (q, *J* = 3.5 Hz, 1C), 123.1-122.7 (m, 1C), 122.5, 46.3. *M*_n^{PS} = 67 kDa, PDI = 1.71, *T*_g (DSC) = 152.9°C, *T*_d (5% weight loss, TGA) = 374.9°C.

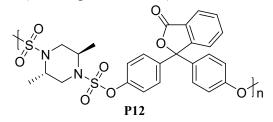
P7, White fiber, 95% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.90 (t, J = 9.0 Hz, 2H), 7.81 (t, J = 7.6 Hz,1H), 7.65 (t, J = 7.4 Hz, 1H), 7.38 (d, J = 8.7 Hz, 4H), 7.33 (d, J = 8.5 Hz, 4H), 3.41 (s, 8H). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.9, 151.2, 150.0, 139.6, 135.8, 130.8, 129.1, 126.3, 125.0, 124.6, 122.6, 122.0, 121.1, 90.2, 46.3. $M_n^{PS} = 45$ kDa, PDI = 1.27, T_g (DSC) = 221.2°C, T_d (5% weight loss, TGA) = 359.1°C.

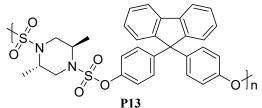


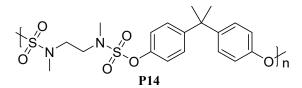
P8, White fiber, 97% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.85 (d, J = 7.6 Hz, 2H), 7.38-7.32 (m, 4H), 7.25-7.12 (m, 10H), 3.34 (s, 8H). ¹³C NMR (100 MHz, DMSO- d_6) δ 150.2, 148.7, 144.7, 139.9, 129.6, 128.6, 126.3, 122.1, 121.2, 64.4, 46.1. $M_n^{PS} = 140$ kDa, PDI = 1.69, T_g (DSC) = 234.8°C, T_d (5% weight loss, TGA) = 360.5°C.

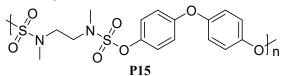


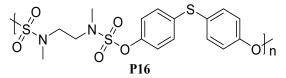
P9, White fiber, 97% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.27 (d, J = 8.3 Hz, 4H), 7.20 (d, J = 8.4 Hz, 4H), 4.23-4.13 (m, 2H), 3.50-3.43(m, 4H), 1.61 (s, 6H), 1.10 (d, J = 6.5 Hz, 6H).

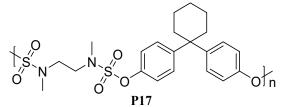

¹³C NMR (100 MHz, DMSO- d_6) δ 149.3, 148.0, 128.6, 121.6, 50.1, 45.6, 42.7, 30.8, 13.6. M_n^{PS} = 42 kDa, PDI = 1.50, T_g (DSC) = 153.9°C, T_d (5% weight loss, TGA) = 344.6°C.

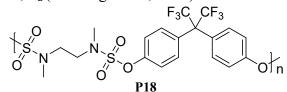

P10, White fiber, 95% yield. ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.33 (d, *J* = 8.5 Hz, 4H), 7.10 (d, *J* = 8.4 Hz, 4H), 4.21- 4.17 (m, 2H), 3.55-3.44 (m, 4H), 1.22-1.19 (m, 6H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 155.4, 145.7, 124.0, 120.4, 50.2, 45.7, 13.8. *M*_n^{PS} = 85 kDa, PDI = 1.64, *T*_g (DSC) = 136.7°C, *T*_d (5% weight loss, TGA) = 329.7°C.

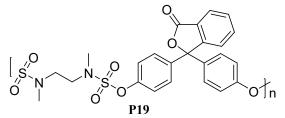

P11, White fiber, 92% yield.¹H NMR (400 MHz, DMSO-*d*₆) δ 7.42 (d, *J* = 8.2 Hz, 4H), 7.32 (d, *J* = 8.4 Hz, 4H), 4.21-4.15 (m, 2H), 3.56-3.44 (m, 4H), 1.19 (d, *J* =6.8 Hz, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 149.5, 133.8, 133.0, 123.4, 50.2, 45.7, 13.7. *M*_n^{PS} = 34 kDa, PDI = 1.57, *T*_g(DSC) = 126.5°C, *T*_d(5% weight loss, TGA) = 327.2°C.

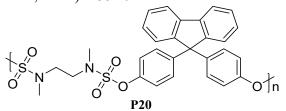

P12, White fiber, 95% yield. 1H NMR (400 MHz, DMSO-d6) δ 8.00-7.95 (m, 2H), 7.91 (d, J = 7.6 Hz, 1H), 7.72 (t, J = 7.5 Hz, 1H), 7.47 (d, J = 8.5 Hz, 4H), 7.38 (d, J = 8.5 Hz, 4H), 4.22-4.19 (m, 2H), 3.58-3.54 (m, 4H), 1.17 (d, J = 5.2 Hz, 6H). ¹³C NMR (125 MHz, DMSO- d_6) δ 168.9, 164.3, 151.2, 150.1, 139.6, 135.8, 130.8, 129.0, 126.3, 125.0, 124.6, 122.4, 90.2, 50.2, 45.7, 13.6. $M_n^{PS} = 96$ kDa, PDI = 1.50, T_g (DSC) = 224.2°C, T_d (5% weight loss, TGA) = 309.7°C.

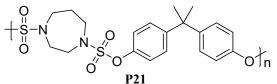

P13, White fiber, 97% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.88 (d, J = 7.7 Hz, 2H), 7.41-7.34 (m, 4H), 7.31-7.16 (m, 10H), 4.10-4.05 (m, 2H), 3.48-3.45 (m, 4H), 1.06-1.01 (m, 6H). ¹³C NMR (100 MHz, DMSO- d_6) δ 150.3, 148.9, 144.6, 139.9, 129.7, 128.6, 126.3, 122.1, 121.2, 64.5, 50.1, 45.6, 13.5. $M_n^{PS} = 35$ kDa, PDI = 1.50, T_g (DSC) = 232.6°C, T_d (5% weight loss, TGA) = 346.8°C.

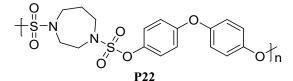

P14, White fiber, 95% yield. ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.24 (d, *J* = 8.5 Hz, 4H), 7.18 (d, *J* = 8.1 Hz, 4H), 3.33 (s, 4H), 2.88 (s, 6H), 1.58 (s, 6H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 149.2, 148.0, 128.5, 121.9, 48.4, 42.6, 36.1, 30.8. $M_n^{PS} = 64$ kDa, PDI = 1.46, T_g (DSC) = 88.6°C, T_d (5% weight loss, TGA) = 337.3°C.

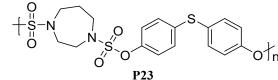

P15, White fiber, 95% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.32 (d, *J* = 7.7 Hz, 4H), 7.10 (d, *J* = 7.8 Hz, 4H), 3.47-3.44 (m, 4H), 2.93 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 155.4, 145.7, 124.2, 120.4, 48.6, 36.3. *M*_n^{PS} = 81 kDa, PDI = 1.53, *T*_g(DSC) = 74.4°C, *T*_d(5% weight loss, TGA) = 290.8°C.

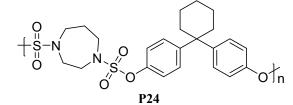

P16, White fiber, 96% yield. ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.41 (d, *J* = 8.0 Hz, 4H), 7.33 (d, *J* = 8.0 Hz, 4H), 3.45-3.42 (m, 4H), 2.94 (s,6H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 149.4, 133.7, 132.8, 123.7, 48.6, 36.2. $M_n^{PS} = 63 \text{ kDa}$, PDI = 1.61, T_g (DSC) = 72.3°C, T_d (5% weight loss, TGA) = 308.7°C.


P17, White fiber, 98% yield. ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.35 (d, *J* = 8.4 Hz, 4H), 7.19 (d, *J* = 8.3 Hz, 4H), 3.31 (s, 4H), 2.86 (s, 6H), 2.21 (s, 4H), 1.40 (s, 6H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 147.7, 147.2, 128.9, 122.1, 48.4, 45.8, 36.7, 36.2, 26.0, 22.9. *M*_n^{PS} = 103 kDa, PDI = 1.61, *T*_g (DSC) = 102.2°C, *T*_d (5% weight loss, TGA) = 341.7°C.

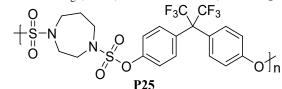

P18, White fiber, 96% yield. ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.45 (s, 8H), 3.46 (s, 4H), 2.97 (s, 6H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 150.69, 132.0, 125.3 (q, *J* = 3.5 Hz, 1C), 123.1-122.8 (m, 1C), 122.7, 122.6, 48.7, 36.2. $M_n^{PS} = 120 \text{ kDa}$, PDI = 1.57, T_g (DSC) = 96.5°C, T_d (5% weight loss, TGA) = 335.7°C.


P19, White fiber, 98% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.97-7.92 (m, 2H), 7.86 (t, J = 7.7 Hz, 1H), 7.69 (t, J = 7.5 Hz, 1H), 7.42 (d, J = 8.6 Hz, 4H), 7.35 (d, J = 8.4 Hz, 4H), 3.46-3.43 (m, 6H), 2.91 (s, 6H). ¹³C NMR (125 MHz, DMSO- d_6) δ 168.9, 151.3, 150.1, 139.5, 135.8, 130.8, 129.0, 126.3, 125.0, 124.6, 122.7, 90.3, 48.5, 36.2. $M_n^{PS} = 47$ kDa, PDI = 1.41, T_g (DSC) = 141.9°C, T_d (5% weight loss, TGA) = 351.9°C.

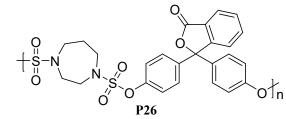

P20, White fiber, 96% yield. ¹H NMR (500 MHz, DMSO- d_6) δ 7.92 (d, J = 7.6 Hz, 2H), 7.44-7.37 (m, 4H), 7.29 (t, J = 7.4 Hz, 2H), 7.21-7.17 (m, 8H), 3.49-3.41 (m, 4H), 2.87 (s, 6H). ¹³C NMR (125 MHz, DMSO- d_6) δ 150.3, 148.9, 144.6, 139.9, 129.6, 128.6, 126.4, 122.3, 64.5, 48.4, 36.1. $M_n^{PS} = 72$ kDa, PDI = 1.45, T_g (DSC) = 171.2°C, T_d (5% weight loss, TGA) = 351.7°C.


P21, White fiber, 98% yield. ¹H NMR (500 MHz, DMSO- d_6) δ 7.32 (d, J = 8.4 Hz, 4H), 7.25 (d, J = 8.4 Hz, 4H), 3.55-3.49 (m, 8H), 1.86-1.82 (m, 2H), 1.67 (s, 6H). ¹³C NMR (100 MHz, DMSO- d_6) δ 149.2, 147.91, 128.5, 121.9, 49.9, 48.4, 42.7, 30.8, 28.9. $M_n^{PS} = 64$ kDa, PDI = 1.52, T_g (DSC) = 112.0°C, T_d (5% weight loss, TGA) = 342.8°C.

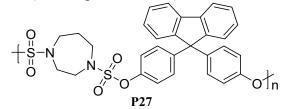
P22, White fiber, 98% yield. ¹H NMR (500 MHz, DMSO- d_6) δ 7.34 (d, J = 8.5 Hz, 4H), 7.10 (d, J = 8.6 Hz, 4H), 3.51-3.46 (m, 8H), 1.86-1.81 (m, 2H). ¹³C NMR (125 MHz, DMSO- d_6) δ 155.4, 145.6, 124.3, 120.4, 50.0, 48.5, 29.0. $M_n^{PS} = 44$ kDa, PDI = 1.51, T_g (DSC) = 97.8°C, T_d (5% weight loss, TGA) = 317.4°C.

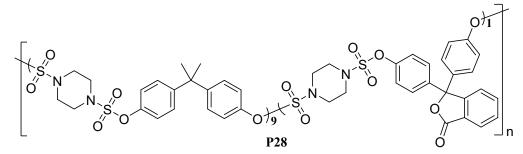


P23, White fiber, 95% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.48-7.45 (m, 4H), 7.38 (d, J = 8.4 Hz, 4H), 3.59-3.51 (m, 8H), 1.94-1.86 (m, 2H). ¹³C NMR (125 MHz, DMSO- d_6) δ 155.5, 145.7,124.4, 120.3, 50.2, 48.7, 29.1. $M_n^{PS} = 37$ kDa, PDI = 1.71, T_g (DSC) = 94.2°C, T_d (5% weight loss, TGA) = 337.2°C.



P24, White fiber, 95% yield. ¹H NMR (500 MHz, DMSO- d_6) δ 7.33 (d, J = 8.3 Hz, 4H), 7.18 (d, J = 8.2 Hz, 4H), 3.47-3.43 (m, 8H), 2.20 (s, 4H), 1.74-1.70 (m, 2H), 1.43-1.38 (m, 6H). ¹³C


NMR (125 MHz, DMSO- d_6) δ 158.2, 147.7, 128.9, 122.0, 49.8, 48.4, 45.8, 36.7, 28.8,26.0, 22.6. $M_n^{PS} = 37 \text{ kDa}$, PDI = 1.51, T_g (DSC) = 127.4°C, T_d (5% weight loss, TGA) = 328.0°C.


P25, White fiber, 94% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.48-7.45 (m, 8H), 3.62-3.54 (m, 8H), 1.90-1.84 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 150.6, 132.1, 131.1, 125.7 (q, *J* = 3.5 Hz, 1C), 122.7, 122.6, 49.8, 48.5, 28.8. $M_n^{PS} = 66 \text{ kDa}, \text{PDI} = 1.44, T_g(\text{DSC}) = 122.2^{\circ}\text{C}, T_d(5\% \text{ weight loss, TGA}) = 336.2^{\circ}\text{C}.$

P26, White fiber, 97% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.96-7.91 (m, 2H), 7.88-7.82 (m, 1H), 7.69 (t, J = 7.4 Hz, 1H), 7.41 (d, J = 8.5 Hz, 4H), 7.34 (d, J = 8.7 Hz, 4H), 3.52-3.45 (m, 8H), 1.81 (q, J = 6.3Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.9, 151.3, 150.1, 139.6, 135.8, 130.8, 129.0, 126.3, 125.0, 124.6, 122.8, 90.3, 49.8, 48.5, 28.9. $M_n^{PS} = 40$ kDa, PDI = 1.38, T_g (DSC) = 148.2°C, T_d (5% weight loss, TGA) = 347.2°C.

P27, White fiber, 95% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.90 (d, J = 7.6 Hz, 2H), 7.42-7.35 (m, 4H), 7.27 (t, J = 7.1 Hz, 2H), 7.19-7.13 (m, 8H), 3.48-3.44 (m, 8H), 1.74-1.70 (m, 2H). ¹³C NMR (125 MHz, DMSO- d_6) δ 150.3, 148.8, 144.6, 139.9, 129.6, 128.6, 126.4, 122.3, 121.2, 64.5, 49.8. $M_n^{PS} = 32$ kDa, PDI = 1.59, T_g (DSC) = 184.4°C, T_d (5% weight loss, TGA) = 350.8°C.

P28, White fiber, 98% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.31-7.21 (m, 84H), 3.41 (s, 80H), 1.59 (s, 54H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 150.3, 149.3, 149.1, 148.3, 147.8, 142.7, 129.4, 129.0, 128.6, 121.9, 121.8, 121.7, 121.1, 121.0, 46.2, 42.6, 30.7. $M_n^{PS} = 167 \text{ kDa}$, PDI = 1.60, T_g (DSC) = 148.6°C, T_d (5% weight loss, TGA) = 357.0°C.

3.3. Hundred gram-scale synthesis of P1

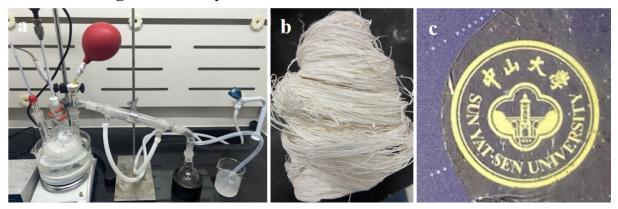
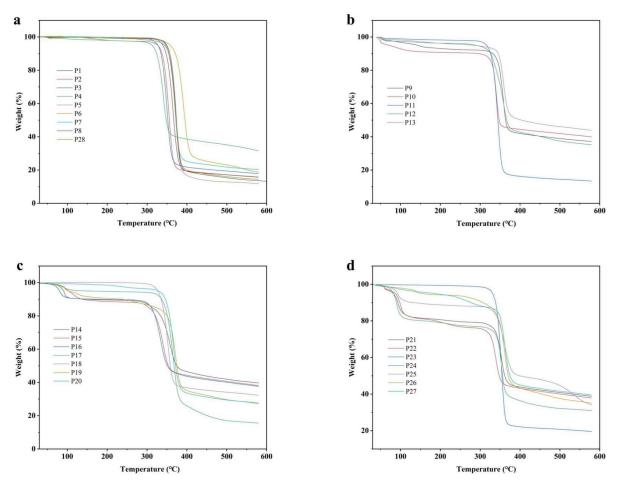


Fig. S1 Hundred gram-scale synthesis of P1

The scaled-up reaction was carried out under the optimal reaction conditions with 0.25 mol of A1 (62.5 g) and B1 (57.1 g) in 250 mL sulfolane. Mechanical agitation was applied for the vast and viscous reaction mixture (Fig. S1a), in a 500 mL glass vial equipped with a distillation apparatus to collect the produced water and a balloon to collect the produced CO2. The vial was placed into a pre-heated 150°C oil bath. After 2 min, commercially available anhydrous K2CO3 (2.2 eq.) was added in one portion. The reaction was run for 6 h, during which course the reaction mixture turned highly viscous as moisture appeared, and the balloon was inflated as well. At the end of the reaction, it was allowed to cool to 70°C, and the mixture was slowly poured into 500 mL of water under vigorous stirring. Polymers precipitated as white fibers once the sulfolane solution touched the water (Fig. S1b). The polymer P1 was collected via filtration and pulverized, then refluxed in water for 1 h to remove the salts and sulfolane. Finally, the polymers were dried at 40 °C for12 hours in vacuo. In addition, P1 could be prepared as transparent and flexible thin sample (Fig. S1c).


4. Characterization of the polymers

4.1 Molecular weight and polymer dispersity index of polymers

The molecular weight and polymer dispersity index were measured using a gel permeation chromatography (GPC) system (EliteHPLC P3100, China) equipped with an Agilent PL1100-6500 column and a SHIMADZU RID-20A detector. During the test, the column temperature was maintained at 40°C. The GPC analysis was conducted using chromatographic-grade N, N-dimethylformamide (DMF) as the solvent, with a sample concentration of 1.5 mg/mL, a flow rate of 1.0 mL/min, and an injection volume of 20 μ L. Polystyrene standards from the American Polymer Standards Corporation were used for calibration.

4.2 Thermal properties of polymers

Thermogravimetric analysis (TGA) was conducted using a TGA Q50 instrument (TA Instruments, USA) to evaluate the thermal stability of the polymer. Approximately 5–10 mg of each sample was heated from 30°C to 600°C at a heating rate of 10°C/min under a nitrogen flow of 20 mL/min. The temperature corresponding to 5% weight loss (Td, 5% weight loss) was used as the criterion for assessing the polymer's thermal stability (Fig. S2).

Differential scanning calorimetry (DSC) was conducted using a DSC 3500 instrument (Netzsch, Germany) to investigate the thermal properties of the samples. Approximately 5–10 mg of each sample was analyzed. The procedure included an initial heating from 25°C to 250°C at 10°C/min, followed by cooling to 25°C at the same rate, and a subsequent reheating to 250°C under a nitrogen flow of 40 mL/min. The second heating scan was utilized to evaluate the material's intrinsic thermal properties and the reversibility of changes observed in the first scan, as the initial heating removed the effects of thermal history and physical aging. Data analysis was performed using Netzsch Universal Analysis software.

4.3 Mechanical properties of polymers

Flexural and tensile specimens were molded using a plastics injection machine (UN-120SK, Yizumi, China), and tests were conducted using a universal testing machine (LD23.104, Lishi (Shanghai) Instruments Co., Ltd., China) at room temperature. Tensile test specimens were dumbbell-shaped (specimen type 1A) with an initial grip distance of 115 mm, a narrow portion width of 10 mm, and a thickness of 4 mm, in accordance with ISO 527-2:2012. Tensile tests were performed at a speed of 10 mm/min. Flexural test specimens measured $80 \times 10 \times 4$ mm, and flexural properties were evaluated using the same testing machine, following ISO 178:2010, with a crosshead speed of 2 mm/min. Izod impact strength was measured at room temperature using a 2.75 J pendulum in accordance with ASTM D256. For each test, five specimens were analyzed, and the mean values of the results are presented in the results section.

Table S3. Mec	hanical pro	perties of P1
---------------	-------------	----------------------

Tensile	Elastic	Flexural	Flexural	Droaling	Notch impact
strength	modulus	strength	modulus	Breaking	strength (kJ/m ²
(MPa)	(MPa)	(MPa)	(MPa)	elongation (%))
75	3500	94	3531	3-5	3

P1 with $M_n^{PS} = 155$ kDa was applied.

Table S4. Mechanical properties of P1 with different molecular weights

polymer	Tensile strength	Elastic modulus	Flexural strength	Flexural modulus
	(MPa)	(MPa)	(MPa)	(MPa)
P1	75	3500	94	3531
P1-1	72.4	3332	92.8	3398

P1 with $M_n^{PS} = 155$ kDa, P1-1 with $M_n^{PS} = 67$ kDa was applied.

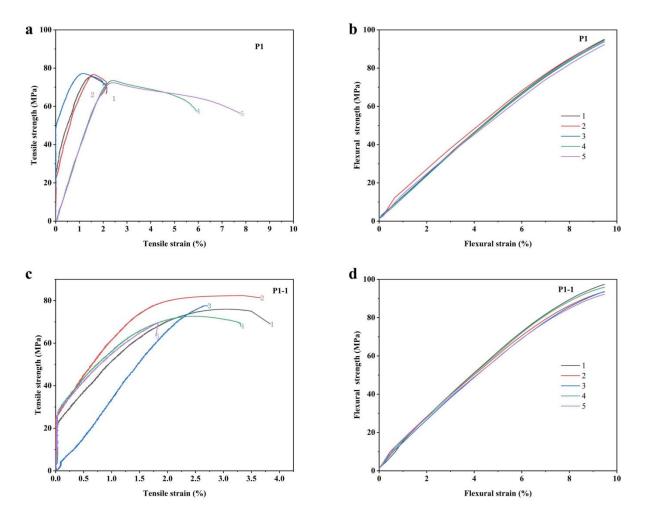


Fig. S3 The tensile and flexural tests of P1 with different molecular weights (P1 with M_n PS

= 155 kDa, P1-1 with M_n^{PS} = 67 kDa)

polymer	Tensile strength	Elastic modulus	Flexural strength	Flexural modulus
	(MPa)	(MPa)	(MPa)	(MPa)
P9	77	3600	98	3560
P9-1	79	3760	98	3576

Table S5. Mechanical properties of P9 with different molecular weights

P9 with $M_n^{PS} = 42$ kDa, P9-1 with $M_n^{PS} = 71$ kDa was applied.

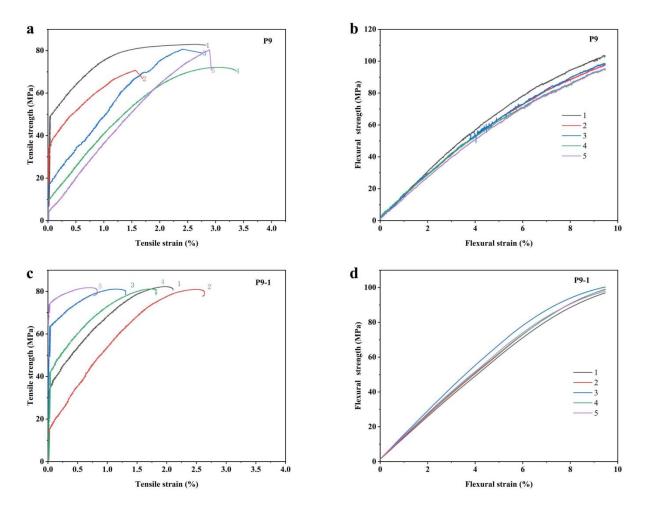


Fig. S4 The tensile and flexural tests of P9 with different molecular weights (P9 with M_n^{PS} = 42 kDa, P9-1 with M_n^{PS} = 71 kDa)

polymer	Tensile strength	Elastic modulus	Flexural strength	Flexural modulus
	(MPa)	(MPa)	(MPa)	(MPa)
P14	55	2300	75	2500
P14-1	60	2760	82	2975

Table S6. Mechanical properties of P14 with different molecular weights

P14 with $M_n^{PS} = 64$ kDa, P14-1 with $M_n^{PS} = 183$ kDa was applied.

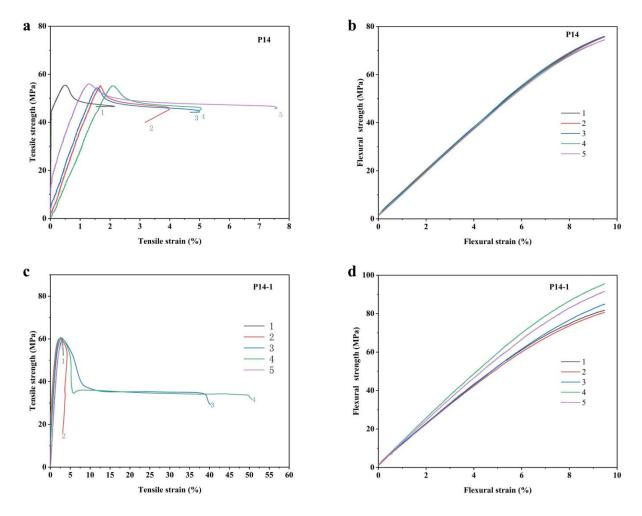


Fig. S5 The tensile and flexural tests of P14 with different molecular weights (P14 with M_n

PS = 64 kDa, P14-1 with $M_n PS = 183 \text{ kDa}$)

polymer	Tensile strength	Elastic modulus	Flexural strength	Flexural modulus
	(MPa)	(MPa)	(MPa)	(MPa)
P21	71	3500	91	3500
P21-1	73	3620	92	3525

P21 with $M_n^{PS} = 64$ kDa, P21-1 with $M_n^{PS} = 119$ kDa was applied.

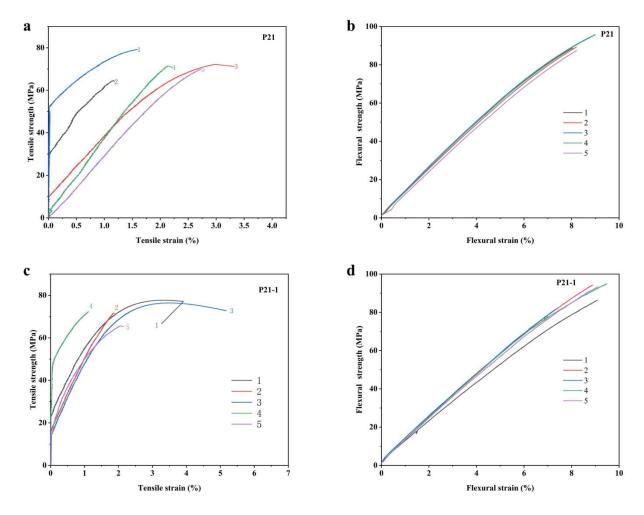


Fig. S6 The tensile and flexural tests of P21 with different molecular weights (P21 with M_n

Table 56. We channed properties of TA 0						
	Tensile strength	Elastic modu	lus Flexural s	trength	Flexural modulu	ıs
polymer	(MPa)	(MPa)	(MP	a)	(MPa)	
PA 6	60	2300	65		2340	
a 80 - 40 - 1 20 -	3	PA6	b 80 (WFa) (WFa) (WFa) (WFa) (WFa) (WFa) (WFa)		PA6	
0 20 40	60 80 100 120 140 Tensile strain (%)	160 180 200		4 Flexura	6 8 I strain (%)	10

Table S8. Mechanical properties of PA 6

Fig. S7 The tensile and flexural tests of PA 6

4.4 Solvent-stability of P1

			•	
Entry	Reagents (solvents)	Reagents concentration (%)	Weight change (%)	Notes
1	water	100	0.5	stable
2	MeOH	100	0.1	stable
3	EtOH	100	0.1	stable
4	<i>n</i> -butanol	100	0.1	stable
5	HC1	20	0.2	stable
6	HNO ₃	68	0.1	stable
7	HNO ₃	40	0.1	stable
8	HNO ₃	20	0.2	stable
9	КОН	35	0.1	stable
10	КОН	20	0.2	stable
11	Acetone/H ₂ O	5	0.2	stable
12	Acetic acid	99.5	0.1	stable
13	<i>n</i> -hexane	100	0.1	stable
14	<i>n</i> -heptane	100	0.2	stable
15	ethylene glycol	100	0.1	stable
16	Hydrofluoric acid	48	0.2	stable

Table S9. Solvent-stability of P1

Note: The solvent stability experiments were measured by placing 5.4±0.2 g of **P1** (thicker samples after processing, 80*10*4 mm) into 200 ml solvent for 7days at 25 °C. Each group was run for 5 times and we took the average. **P1** with $M_n^{PS} = 150$ kDa was applied.

5. Industrial production of PSA

5.1 Industrial produciton of P1

The 100 kg-scale **P1** was produced in Inner Mongolia Tuwei new material Technology Co., LTD. Generally, under N₂ atmosphere, **A1** (70.78 kg) and BPA (64 kg) were dissolved in sulfolane (450 kg) in 1000 L steel reactor. And K₂CO₃ (85.23 kg) was added (within 30 min) to the reaction mixture when the temperature was raised to 170°C. The moisture was removed by N₂ and collected by condensing. After reaction, the crude produt **P1** was post-processed including granulating, washing, removing of salts, solvent recovery and drying. The obtained **P1** was used without other modifations of processing (Fig. S8).

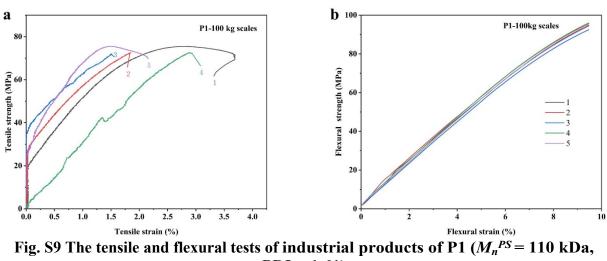


Fig. S8 Industrial products of P1

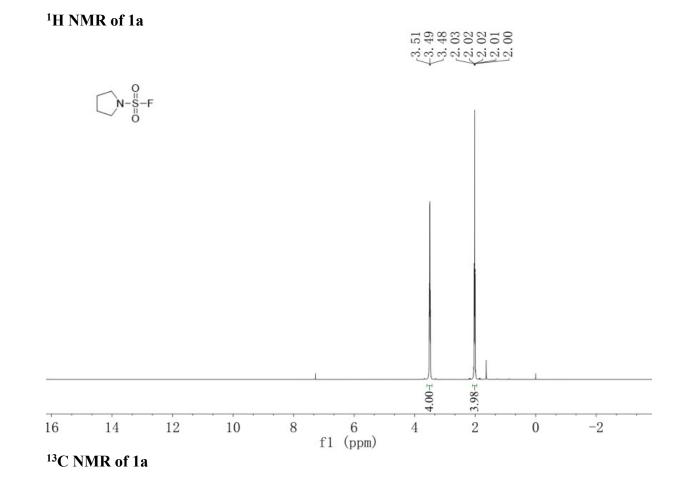
5.2 Mechanical properties of industrial products of P1

Table S10. Mechanical properties of industrial products of P1

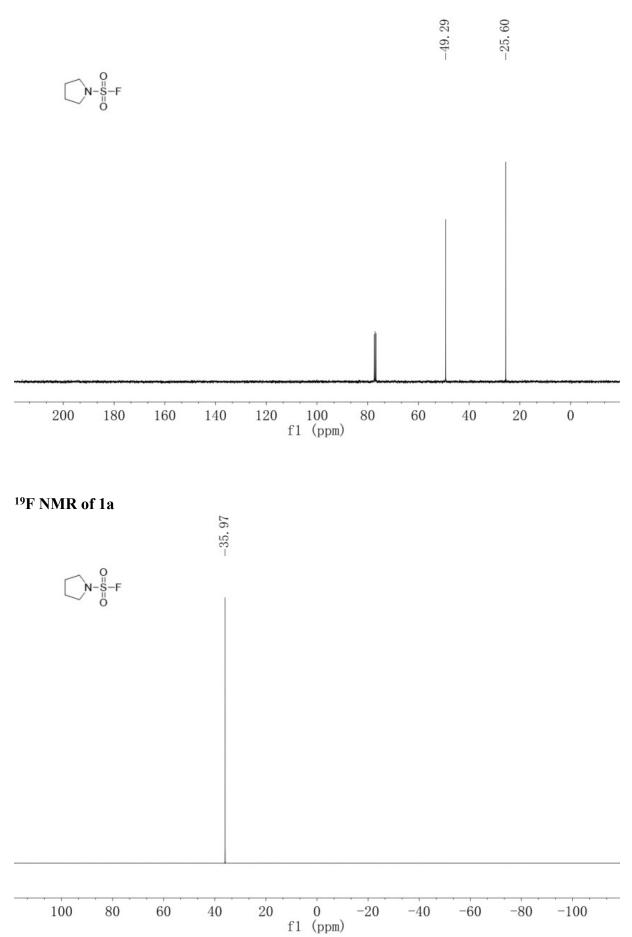
polymer	Tensile strength	Elastic modulus	Flexural strength	Flexural modulus
	(MPa)	(MPa)	(MPa)	(MPa)
P1	72	3300	92	3400

PDI = 1.61)

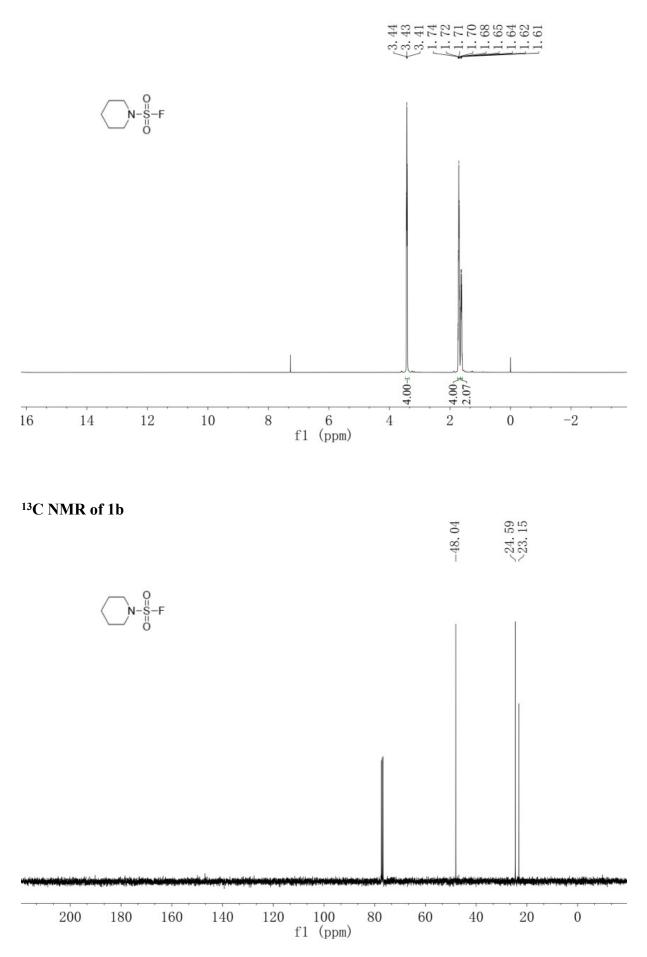
6. References

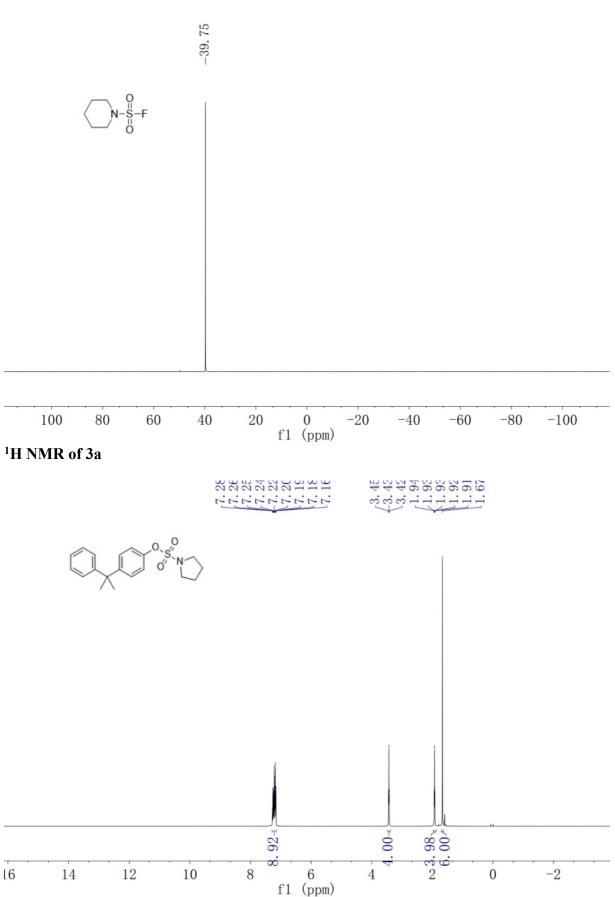

 Mahapatra, S. et al. SuFEx activation with Ca(NTf₂)₂: a unified strategy to access sulfamides, sulfamates, and sulfonamides from S (VI) fluorides. *Org. Lett.* 22, 4389–4394 (2020).

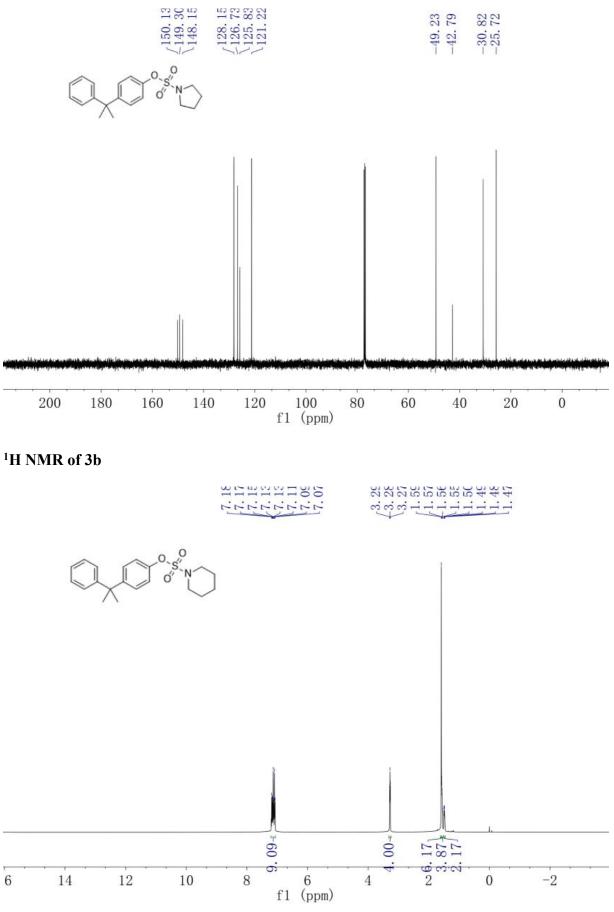
- Gao, B. et al. SuFEx chemistry of thionyl tetrafluoride (SOF4) with organolithium nucleophiles: Synthesis of sulfonimidoyl fluorides, sulfoximines, sulfonimidamides and sulfonimidates. *Angew. Chem., Int. Ed. Engl.* 130, 1957–1961 (2018).
- Dong, J. J., Krasnova, L., Finn, M. G., & Sharpless, K. B. Sulfur (VI) fluoride exchange (SuFEx): Another good reaction for click chemistry. *Angew. Chem., Int. Ed. Engl.* 53, 9430–9448 (2014).
- 4. Zhu, W. W. et al. Nucleophilic construction of sulfate bonds: simplified access to polysulfates and polysulfonates. *React. Chem. Eng.* **4**, 2074–2080 (2019).
- 5. Gao, B. et al. Bifluoride-catalysed sulfur (VI) fluoride exchange reaction for the synthesis of polysulfates and polysulfonates. *Nat. Chem.* **9**, 1083–1088 (2017).
- 6. Kato, Y. et al. Measurements of the Hansen solubility parameters of mites and cockroaches to improve pest control applications. *Heliyon* 5, e01853 (2019).
- 7. Hansen, C. M. Hansen Solubility Parameters: A User's Handbook; CRC Press, 1999.
- 8. Petersen, J. B. et al. Hansen solubility parameters of surfactant-capped silver nanoparticles for ink and printing technologies. *Langmuir* 30, 15514–15519 (2014).
- Bongiardina, N. J., Sinha, J. & Bowman, C. N. Flory–Huggins parameters for thiol-ene networks using Hansen solubility parameters. *Macromolecules* 54, 11439–11448 (2021).
- Lindvig, T., Michelsen, M. L. & Kontogeorgis, G. M. A Flory-Huggins model based on the Hansen solubility parameters. *Fluid Phase Equilib.* 203, 247–260 (2002).
- Bagley, E. B., Nelson, T. P. & Scigliano, J. M. Three-dimensional solubility parameters and their relationship to internal pressure measurements in polar and hydrogen bonding solvents. *J. Paint Technol.* 43, 35–42 (1971).
- 12. Wei, J. et al. Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes. *J. Membr. Sci.* 372, 292–302 (2011)
- Sabde, A. D. et al. Casting and characterization of cellulose acetate butyrate based UF membranes. *Desalination* 114, 223–232 (1997).
- 14. Zhou, J. Y. et al. Ultralow Ti3C2TX doping polysulfate membrane for high ultrafiltration performance. *J. Membr. Sci.* 637, 119603 (2021).
- Zhao, S. et al. Performance improvement of polysulfone ultrafiltration membrane using well-dispersed polyaniline-poly(vinylpyrrolidone) nanocomposite as the additive. *Ind. Eng. Chem. Res.* 51, 4661–4672 (2012).
- Yang, Q., Chung, T. S., & Santoso, Y. E. Tailoring pore size and pore size distribution of kidney dialysis hollow fiber membranes via dual-bath coagulation approach. *J. Membr. Sci.* 290, 153–163 (2007).


- Yang, Q., Chung, T. S., Chen, S. B., & Weber, M. Pioneering explorations of rooting causes for morphology and performance differences in hollow fiber kidney dialysis membranes spun from linear and hyperbranched polyethersulfone. *J. Membr. Sci.* 313, 190–198 (2008).
- 18. Meireles, M. et al. An appropriate molecular size parameter for porous membranes calibration. *J. Membr. Sci.* 103, 105–115 (1995).
- 19. Xiang, S. et al. Fabrication of PVDF/EVOH blend hollow fiber membranes with hydrophilic property via thermally induced phase process. *Sep. Purif. Technol.* 301, 122031 (2022).

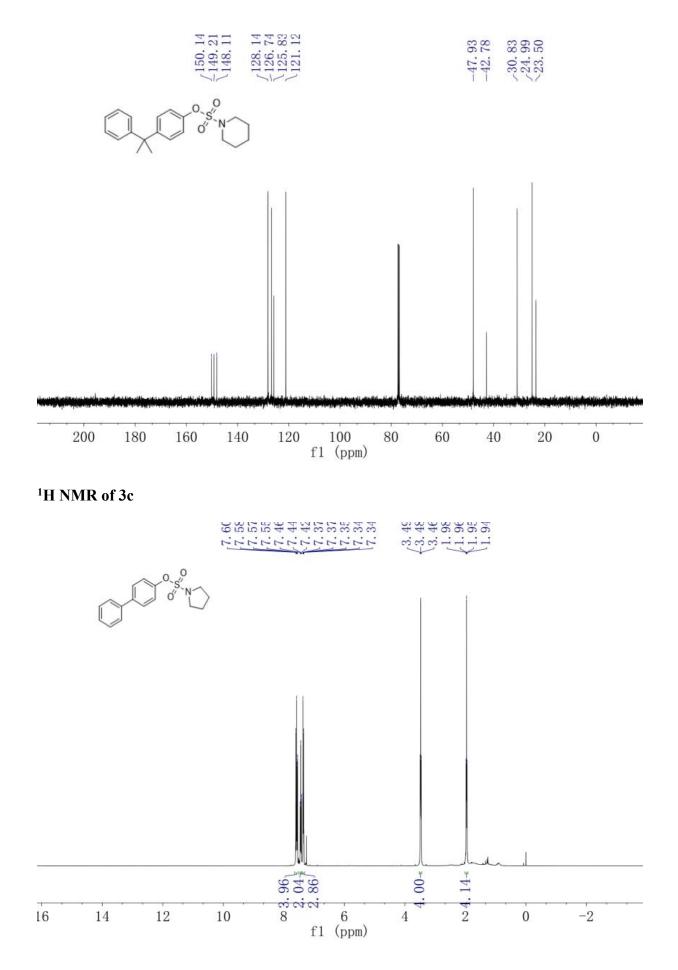
7. Copies of the NMR spectra and DSC curve of new compounds

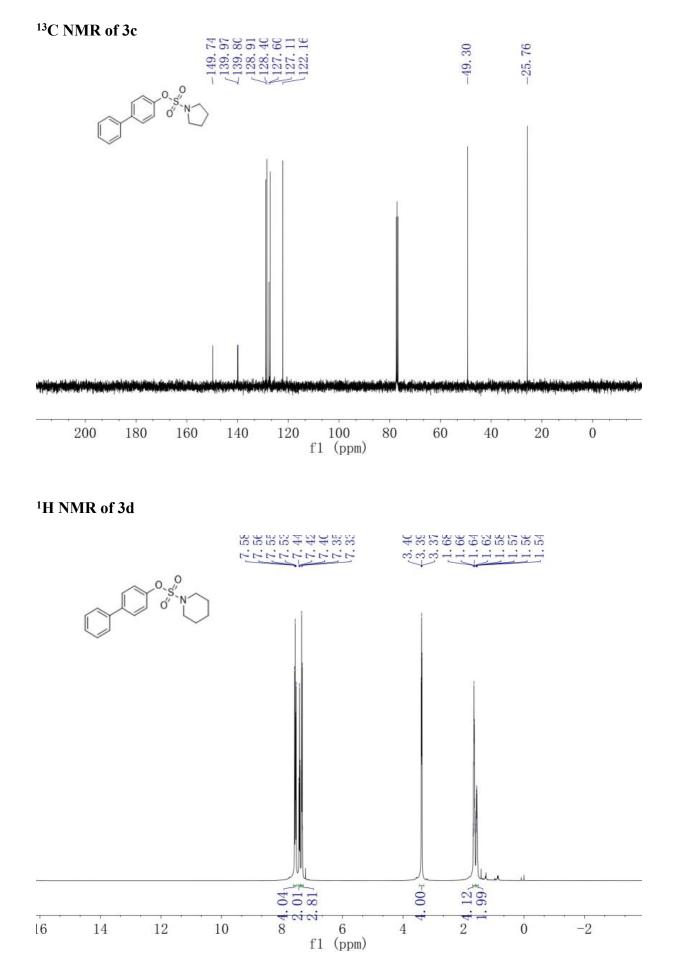

7.1 Copies of the NMR spectra of monomers

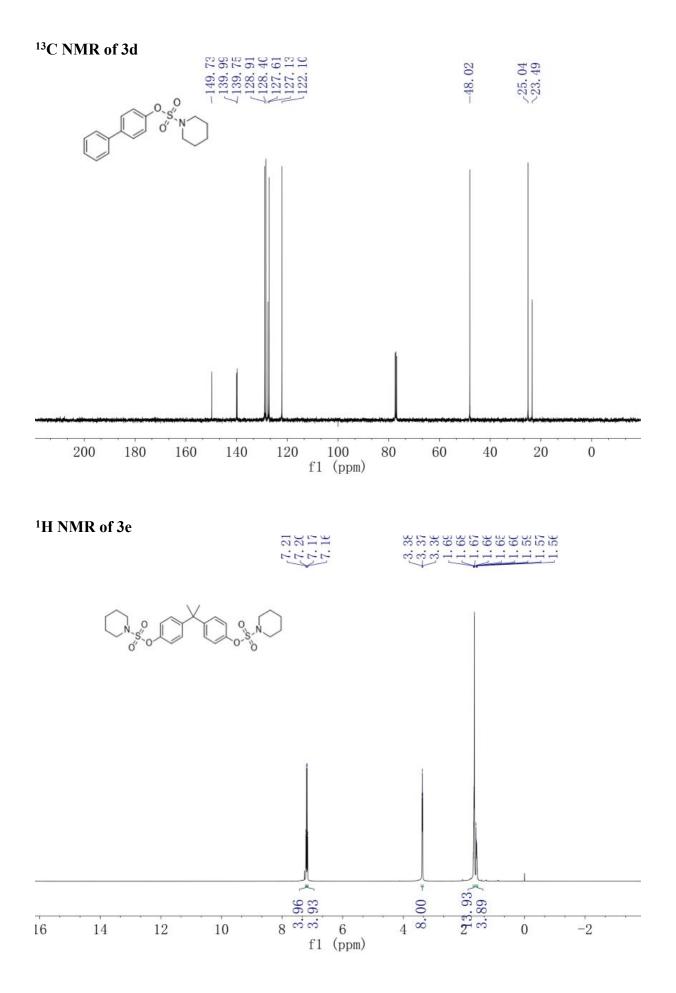


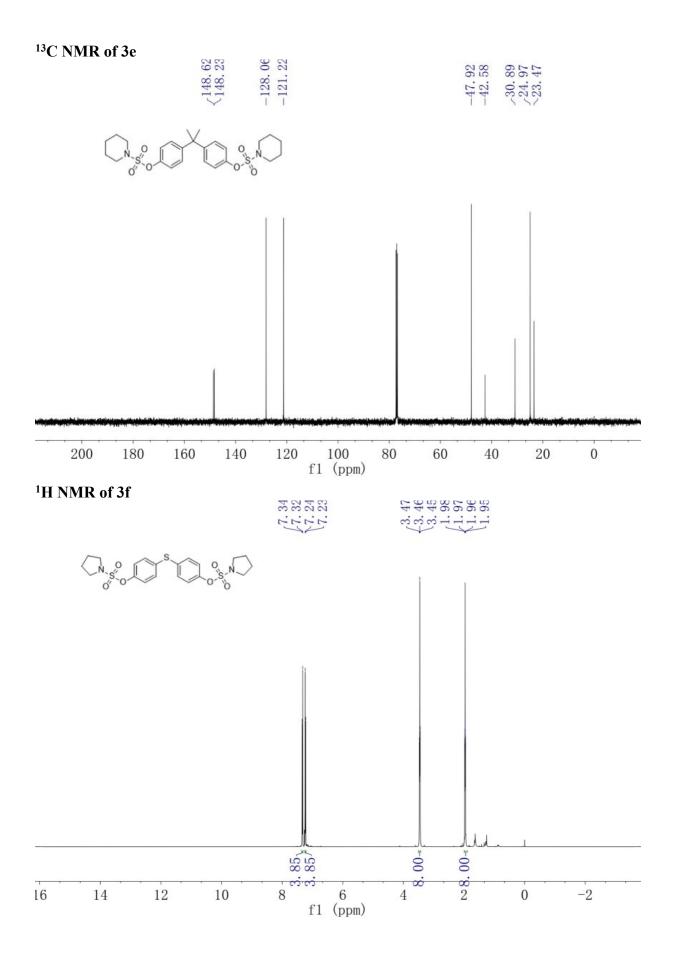


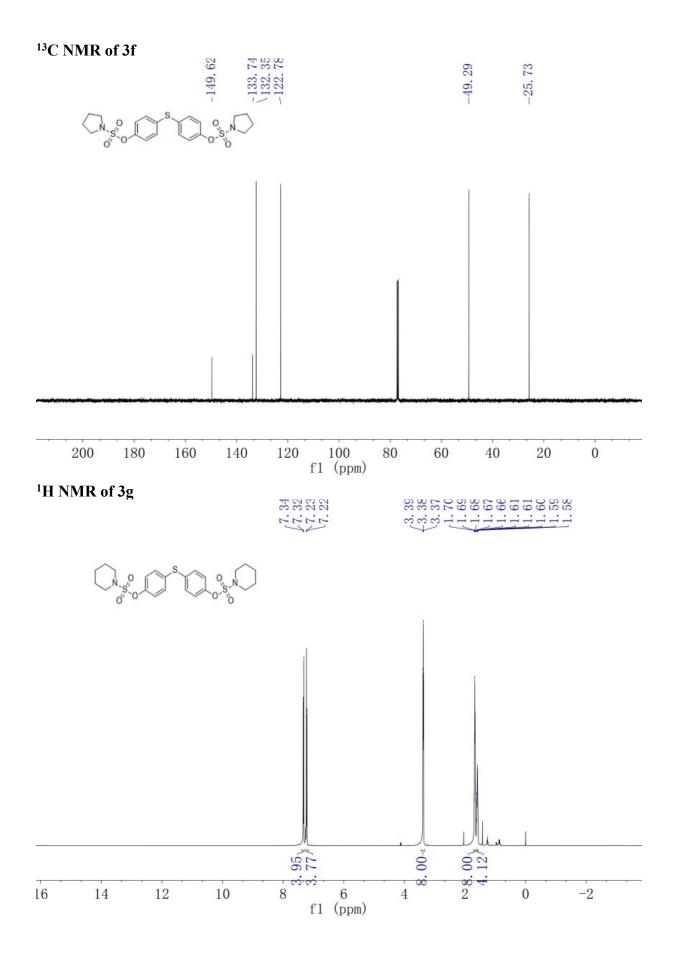
¹H NMR of 1b

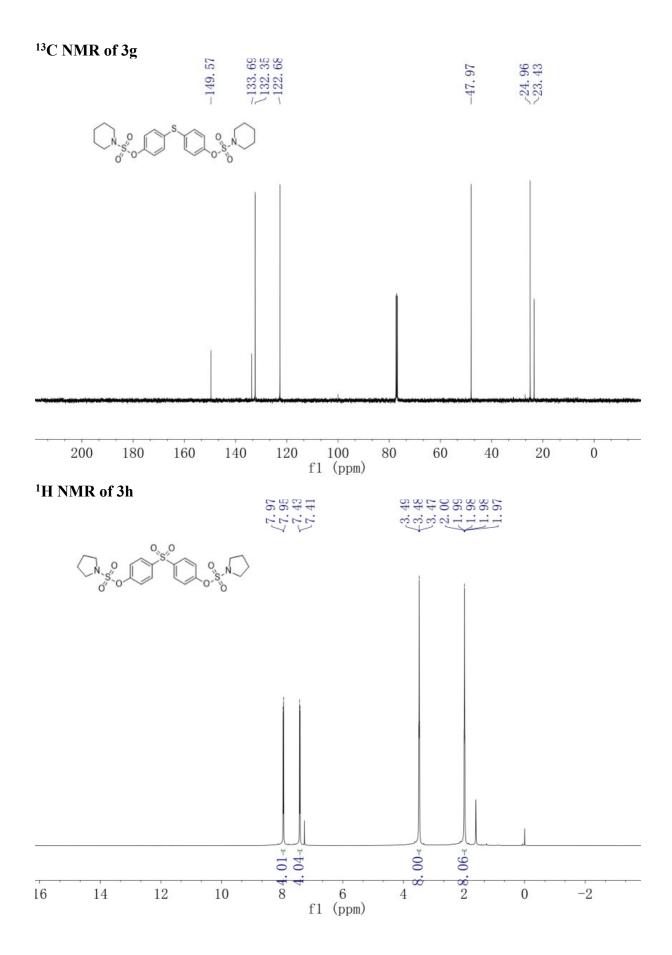


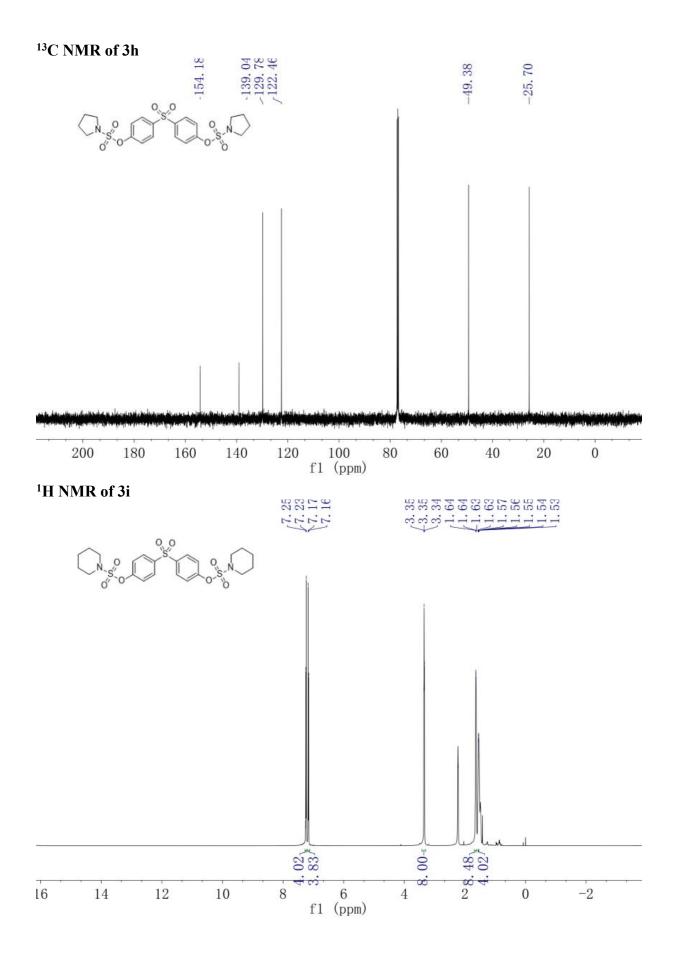


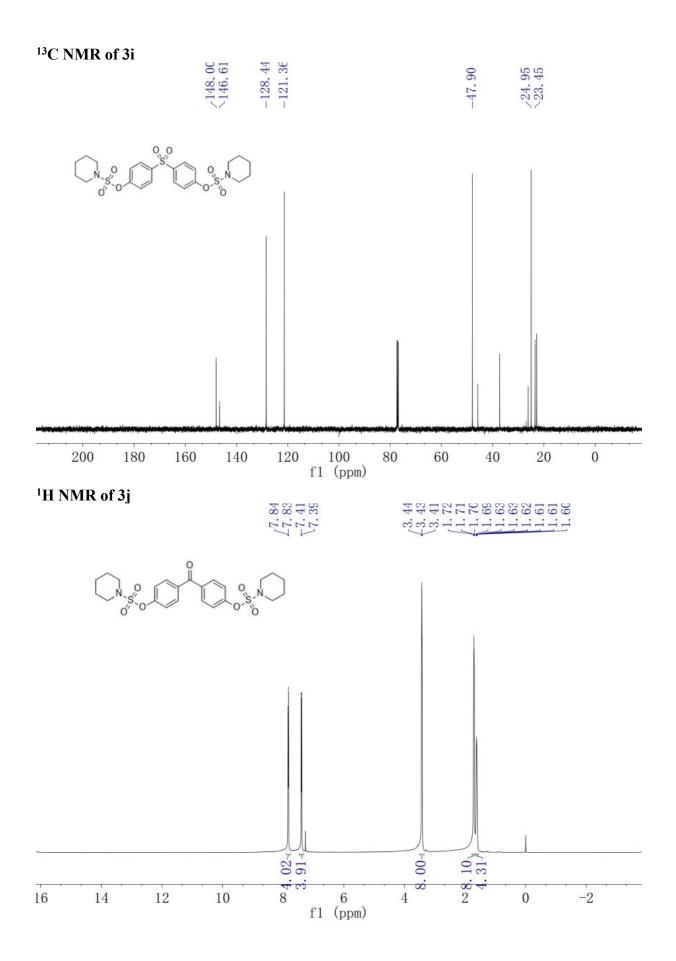

¹³C NMR of 3a

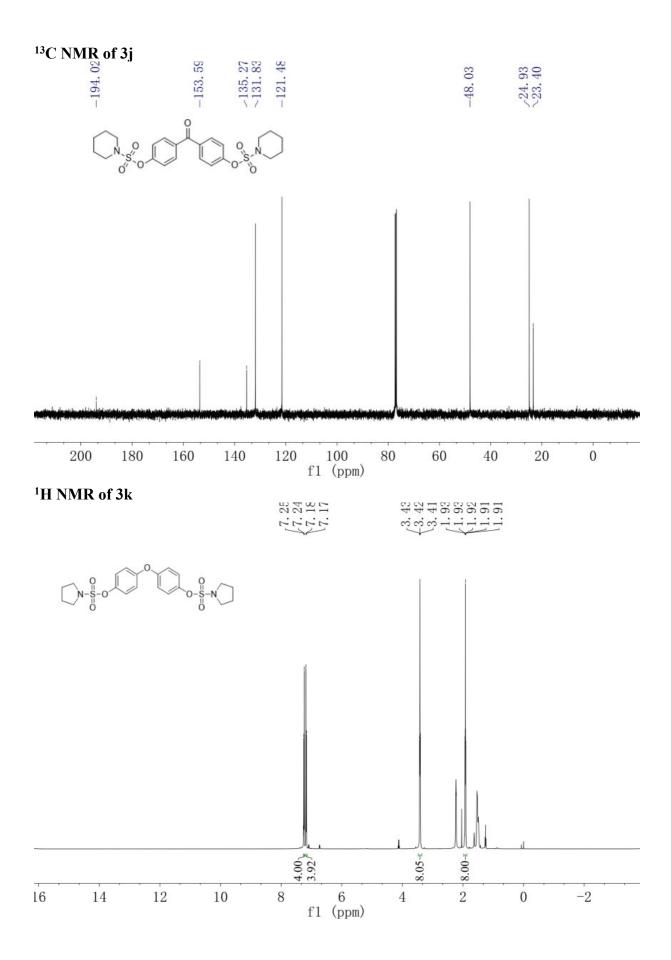


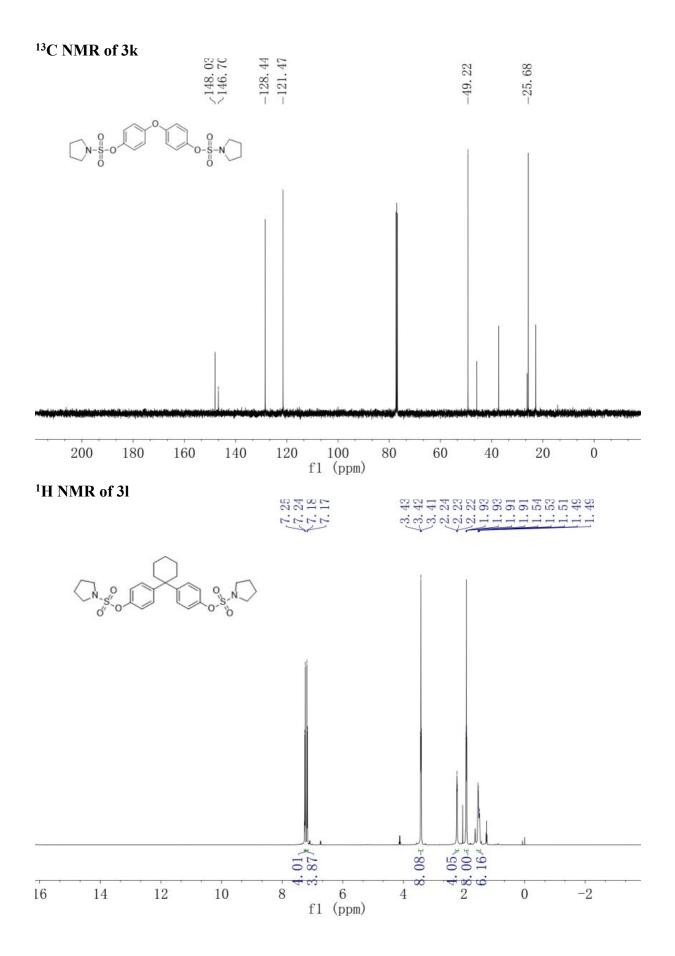

¹³C NMR of 3b

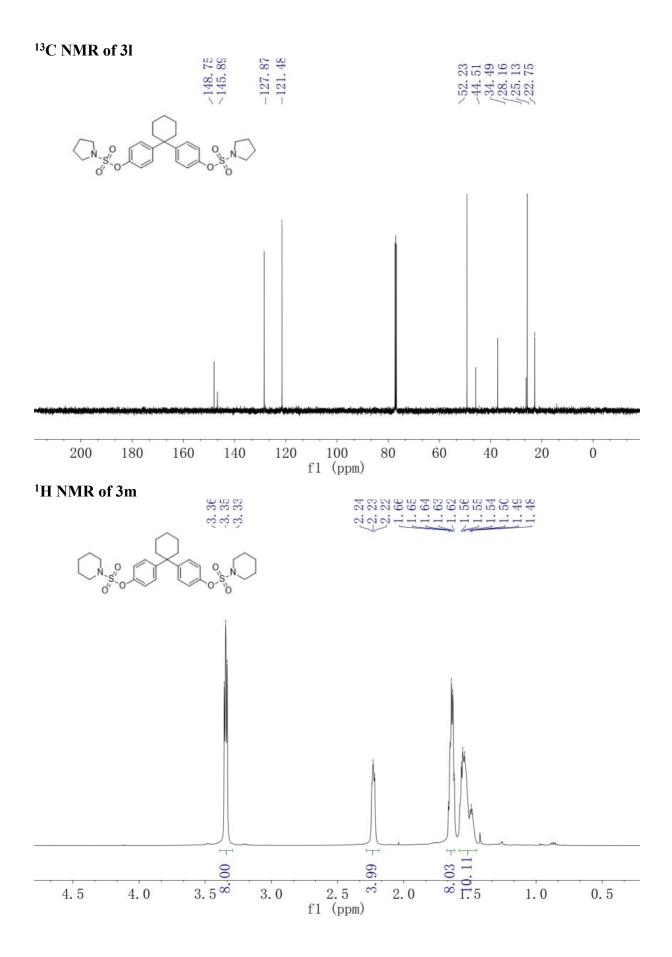


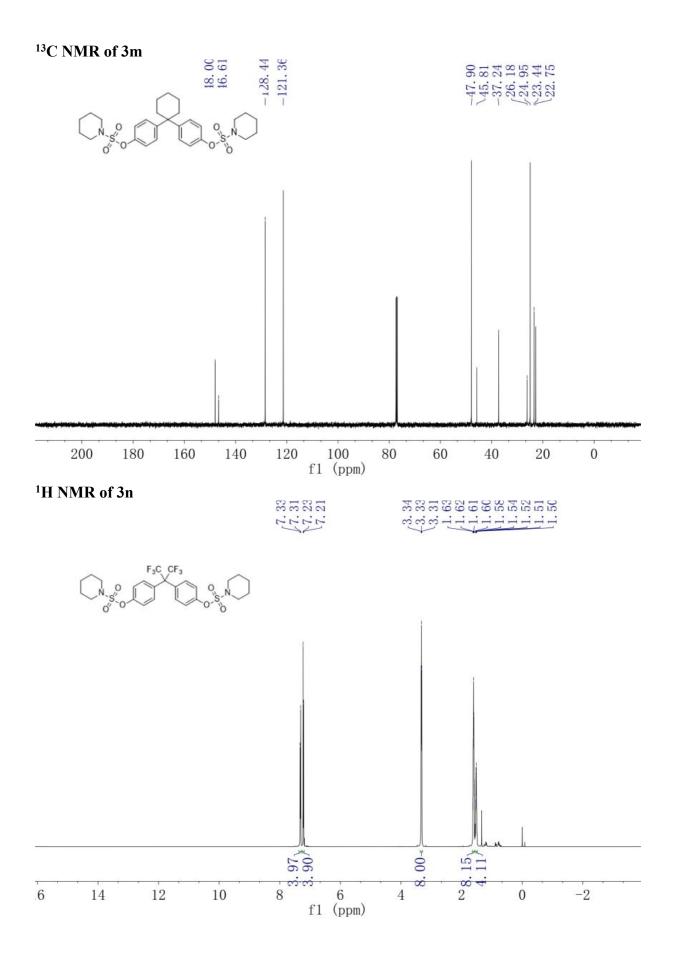


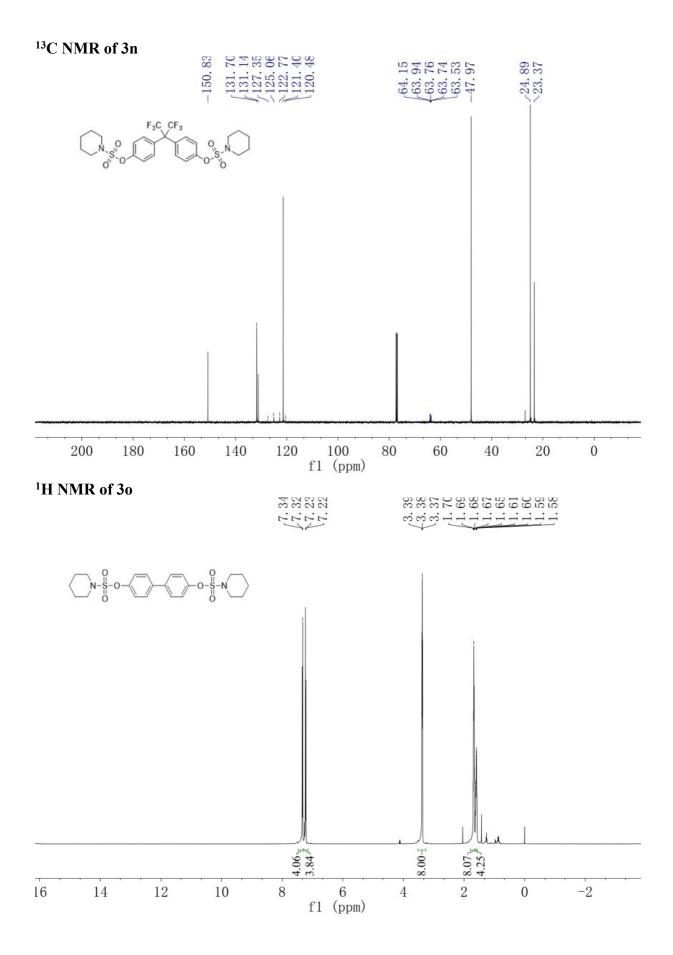


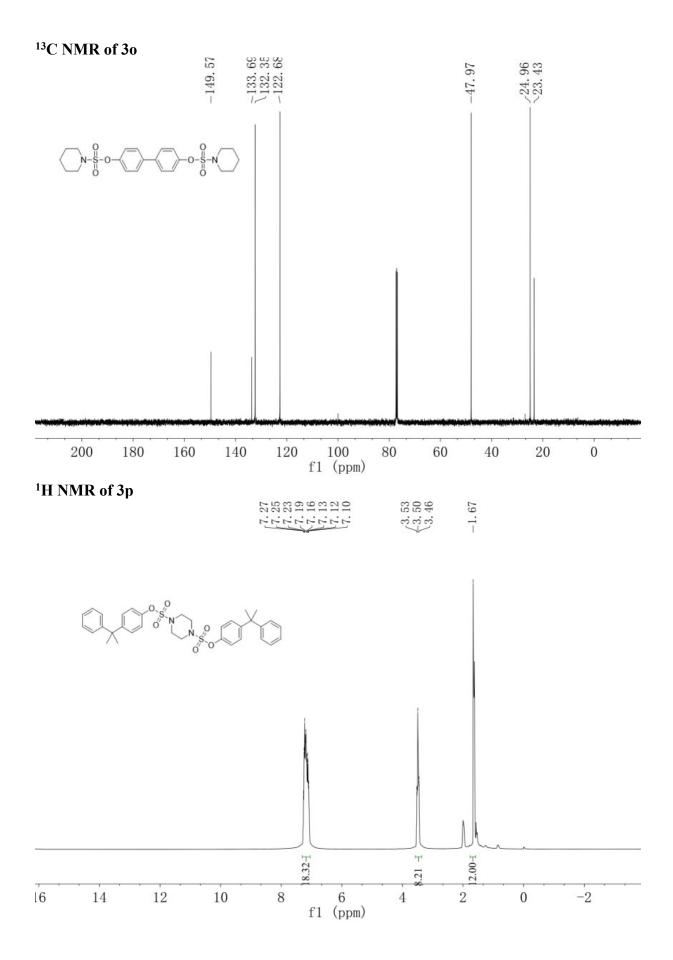


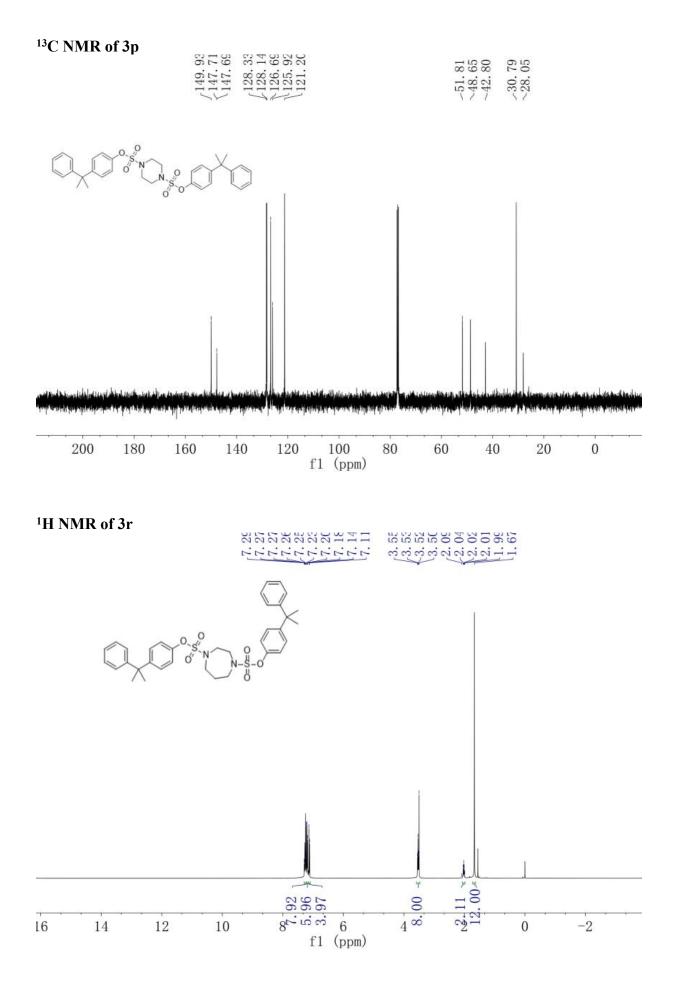


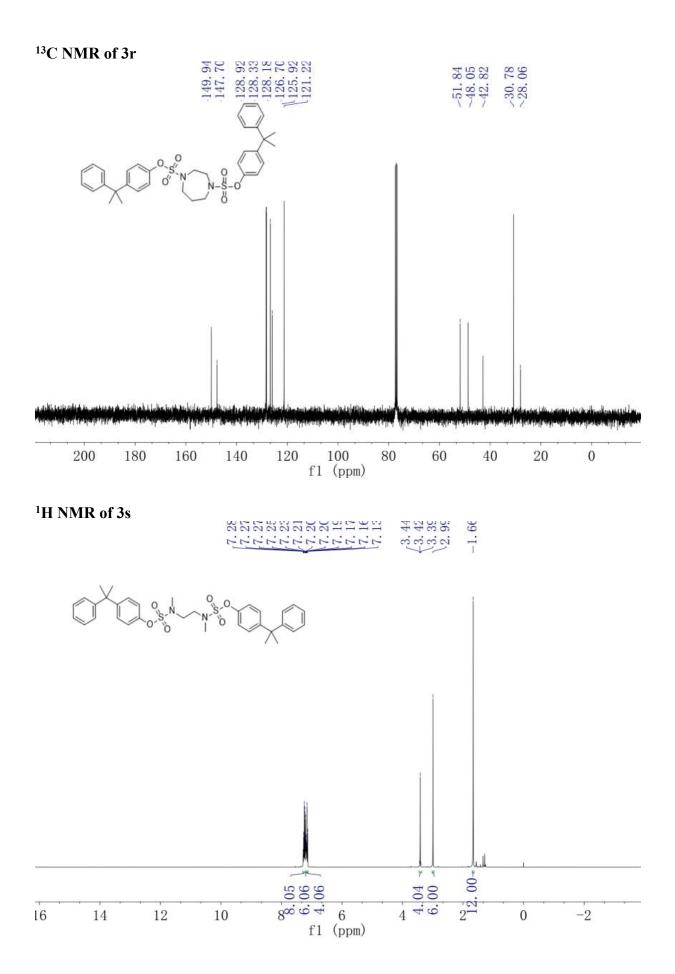


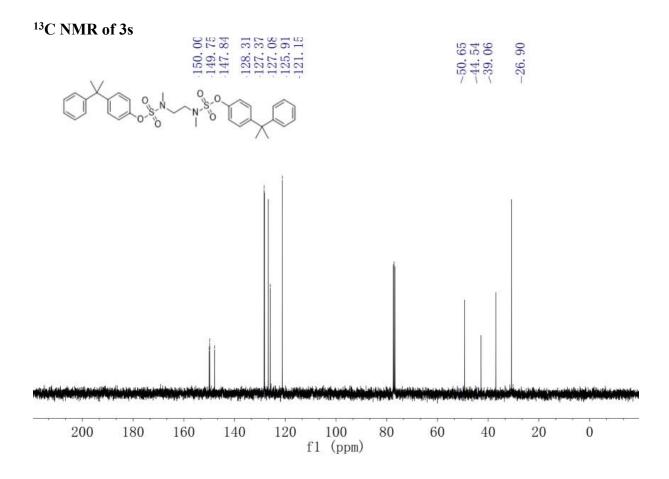


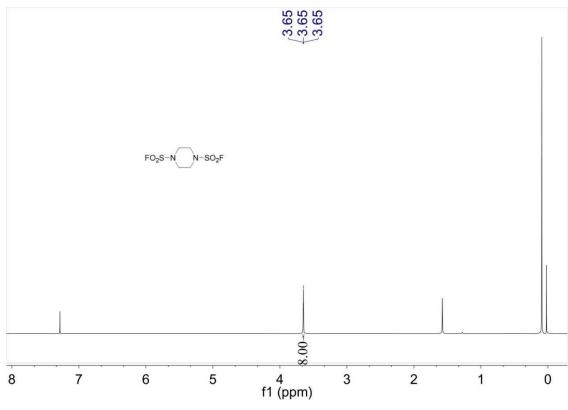


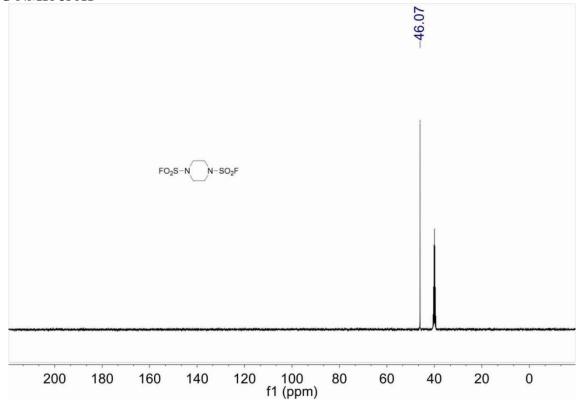


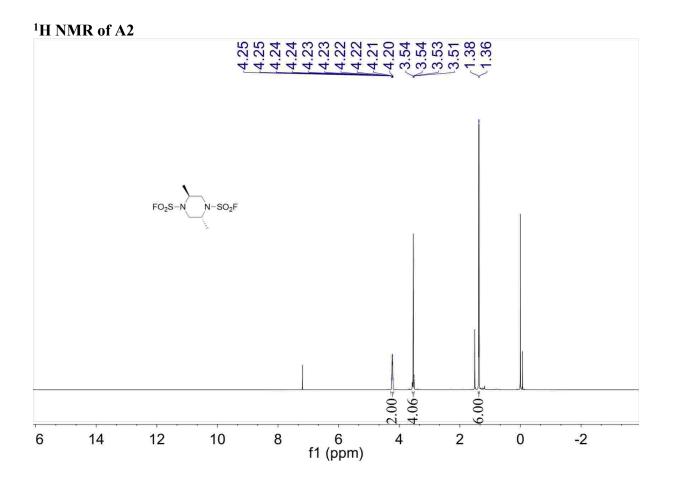


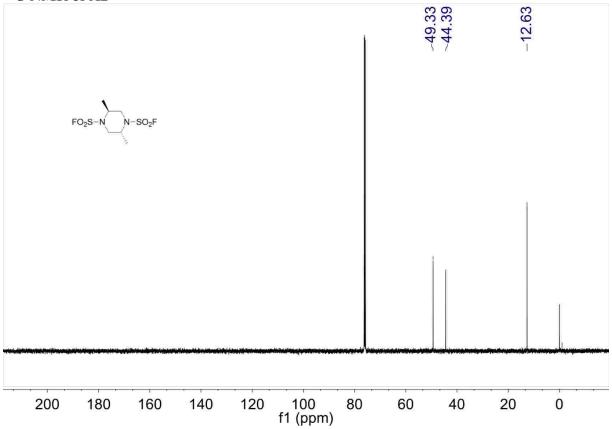


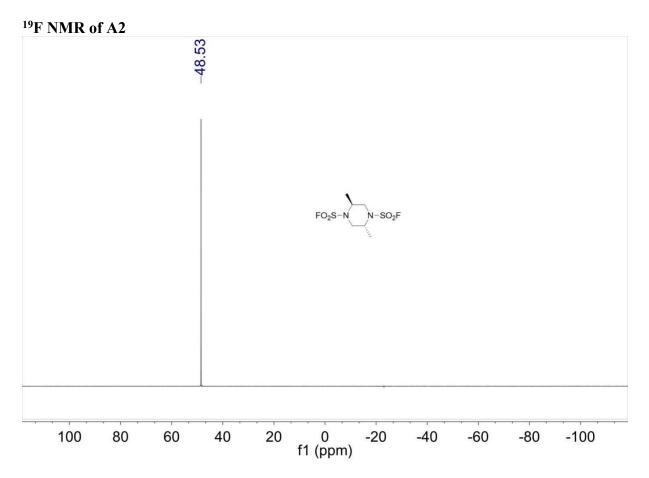




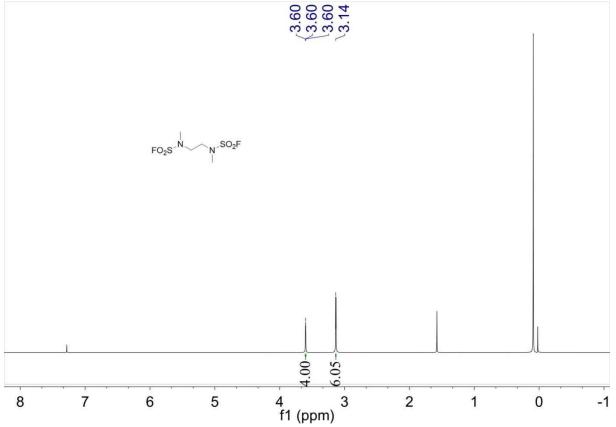



¹H NMR of A1

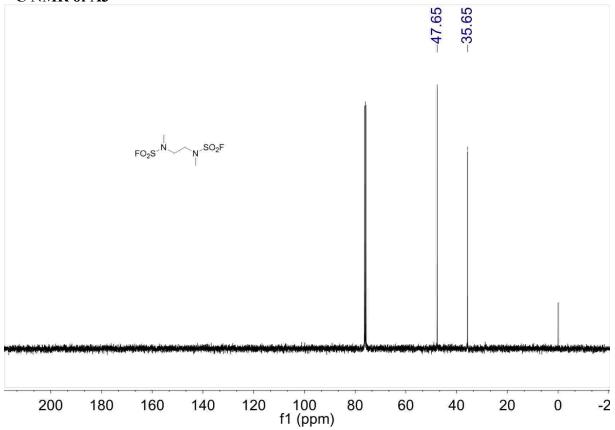


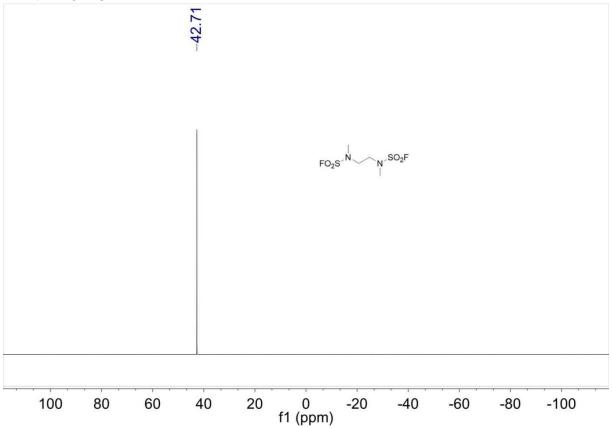


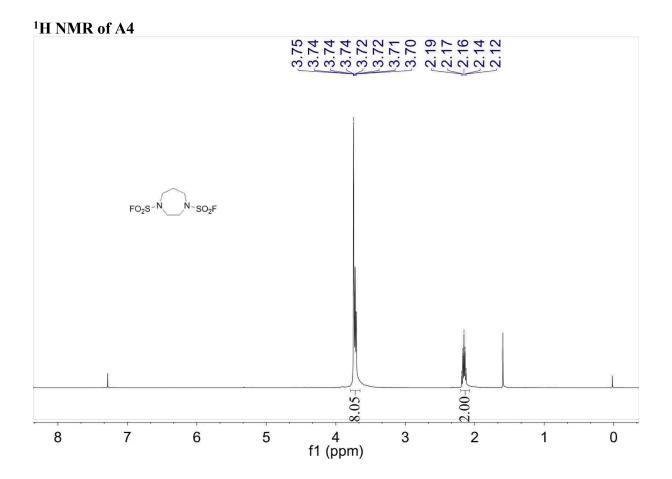
¹⁹F NMR of A1



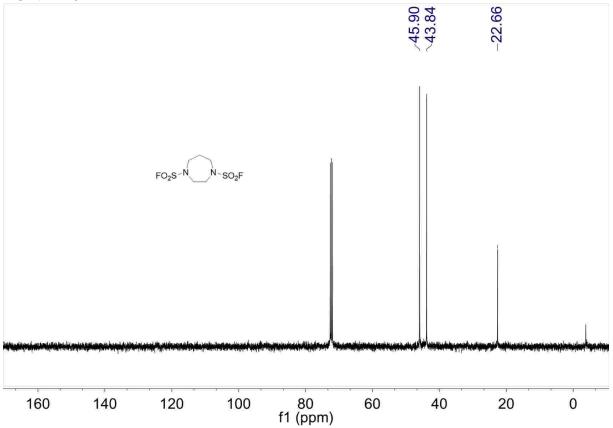
¹³C NMR of A2

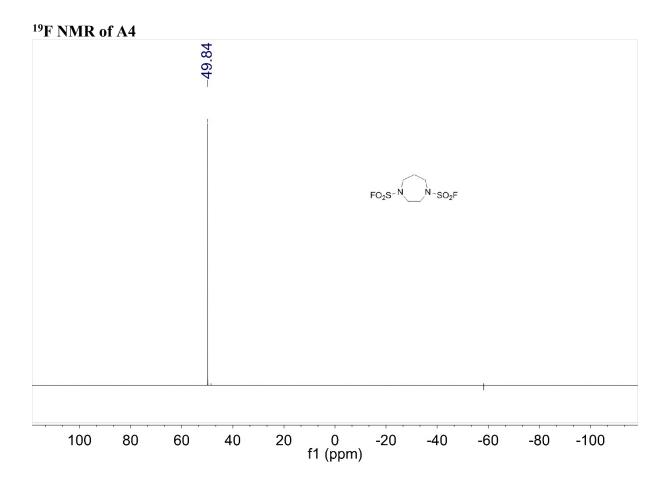


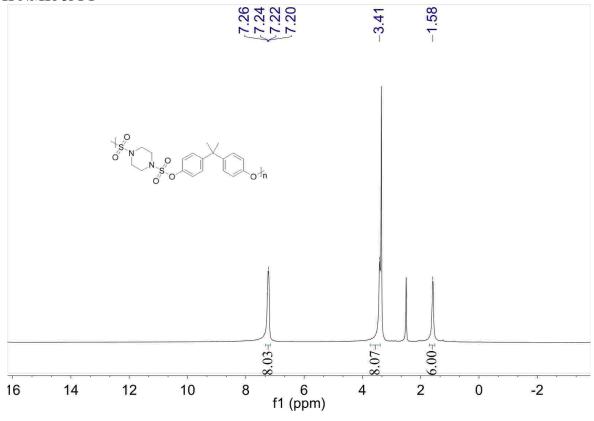


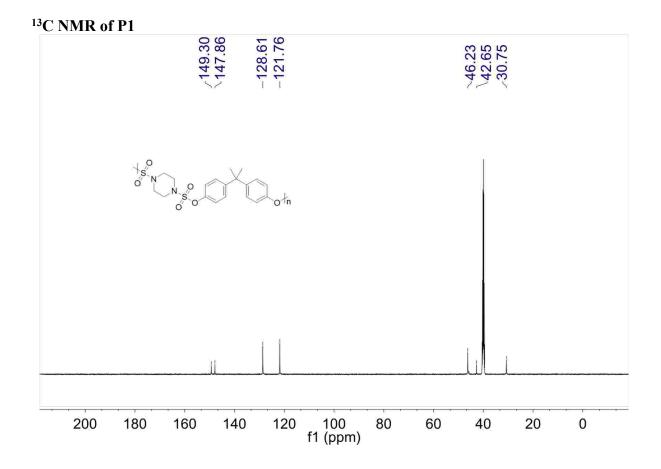


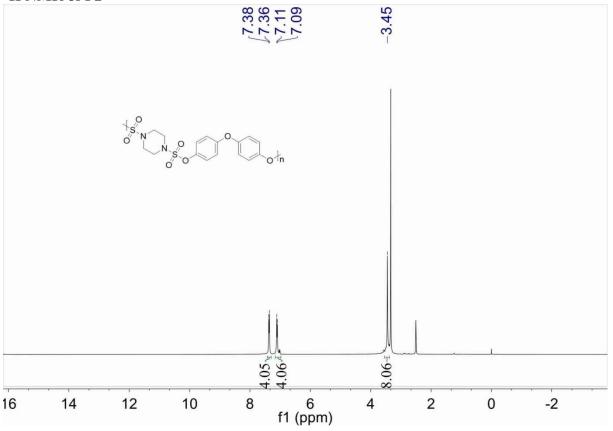
¹³C NMR of A3

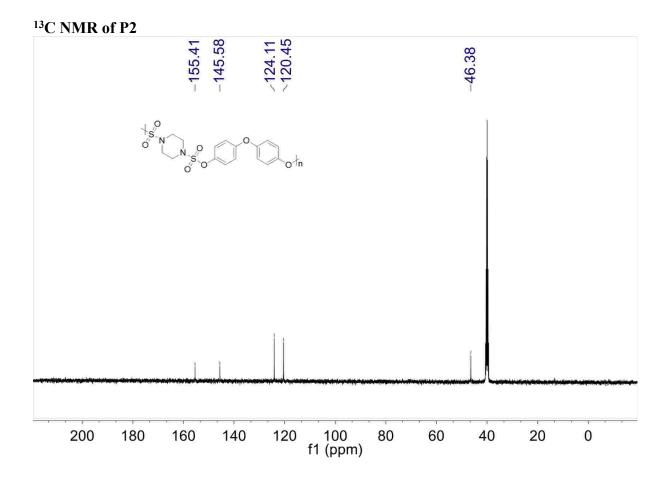


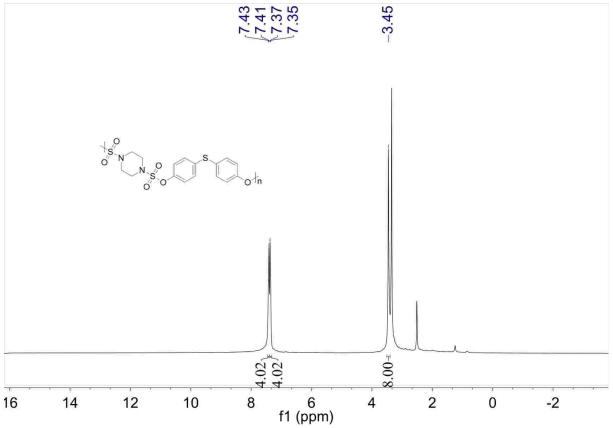


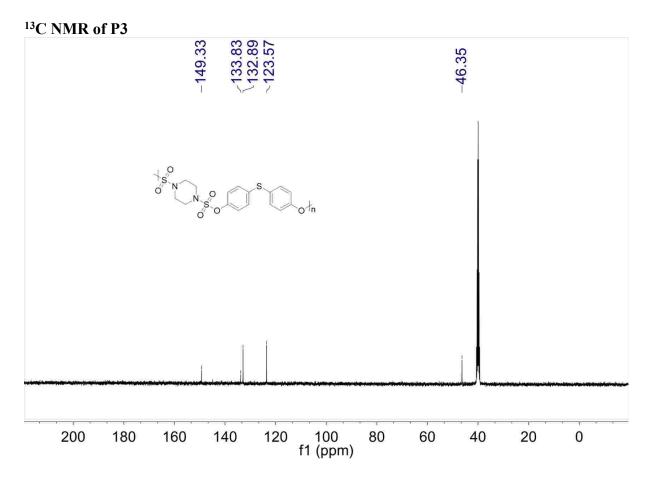


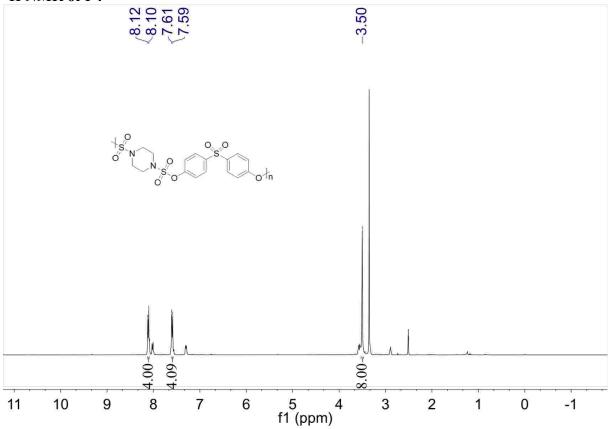


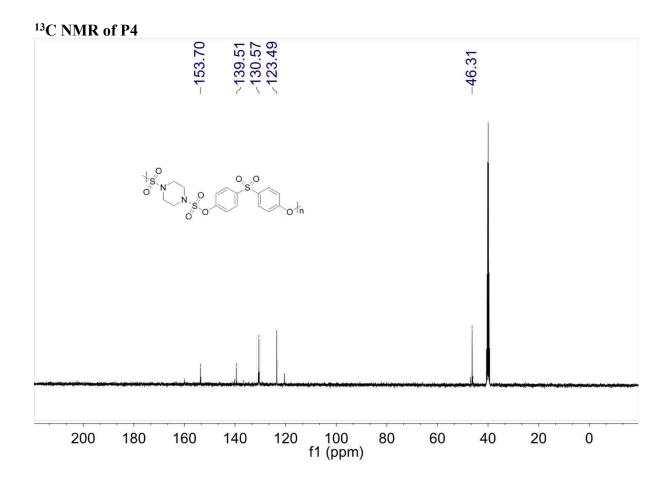


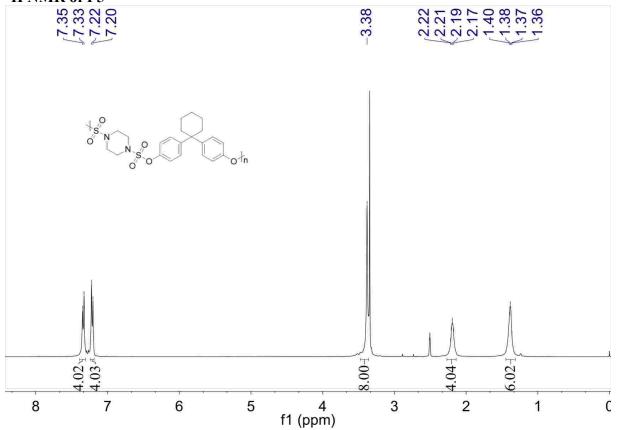

7.2 Copies of the NMR spectra of polymers ¹H NMR of P1

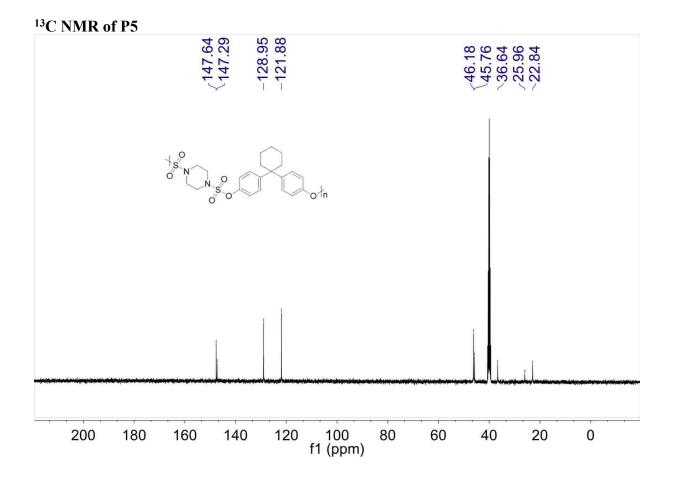


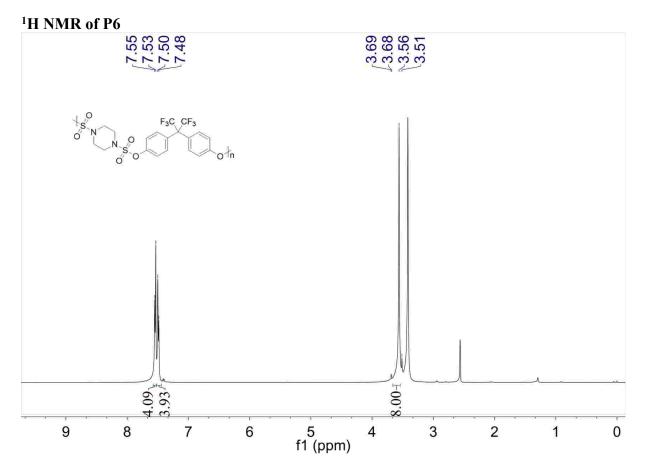

¹H NMR of P2

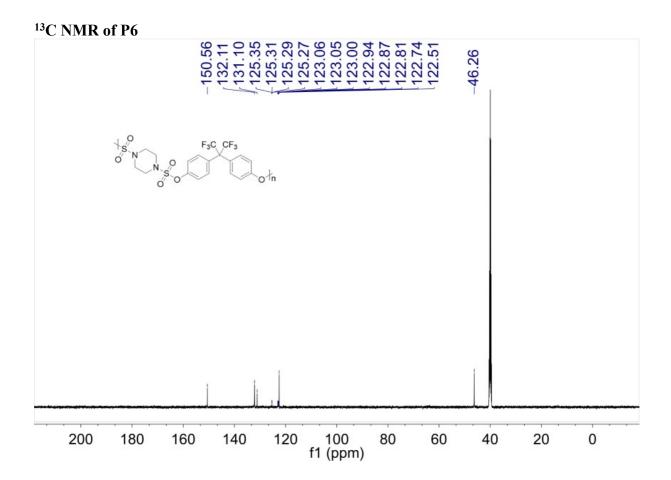


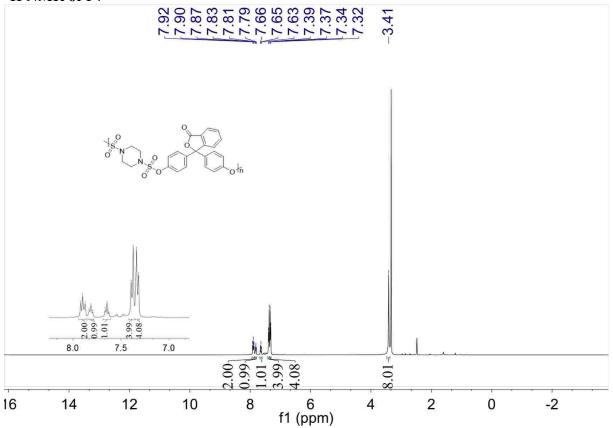


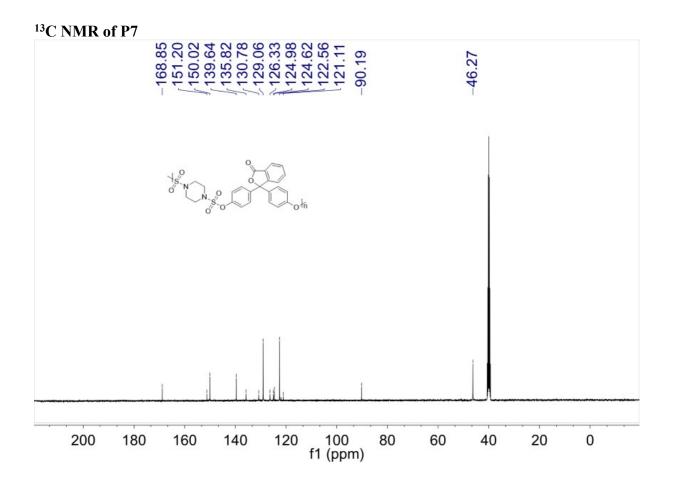


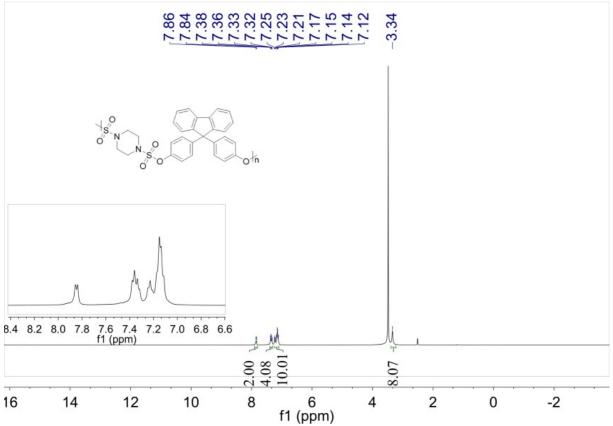

¹H NMR of P4

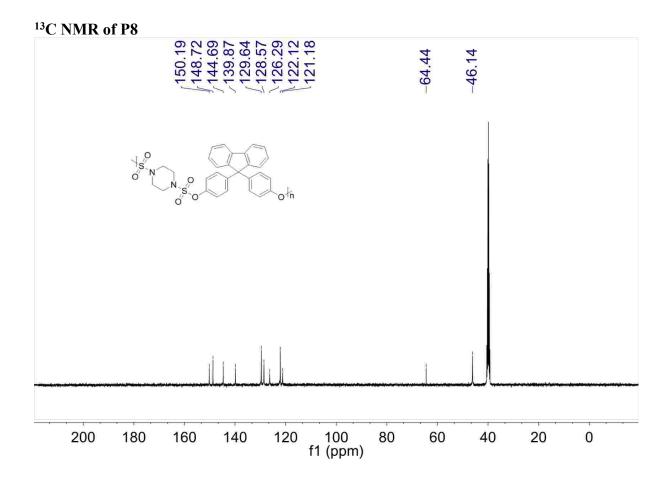


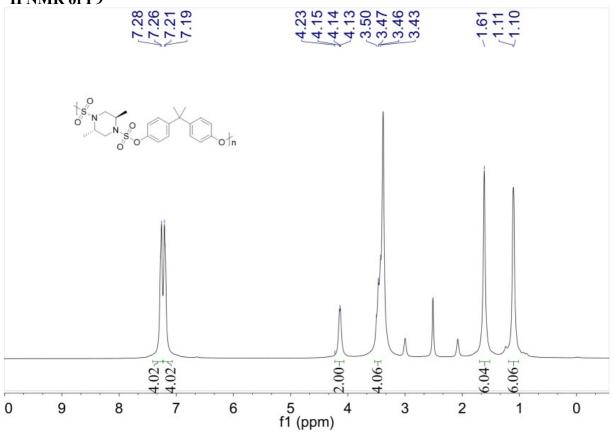


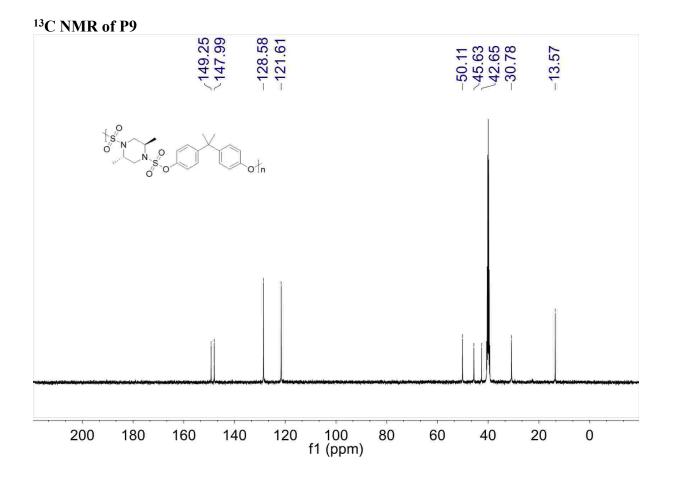


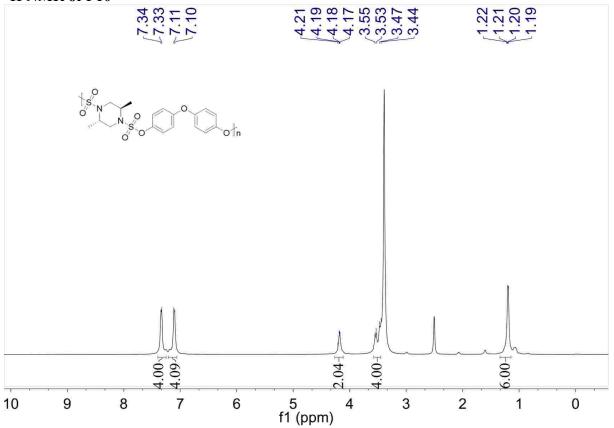




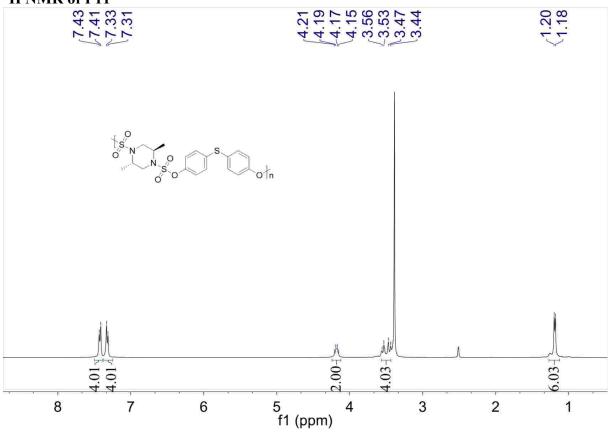


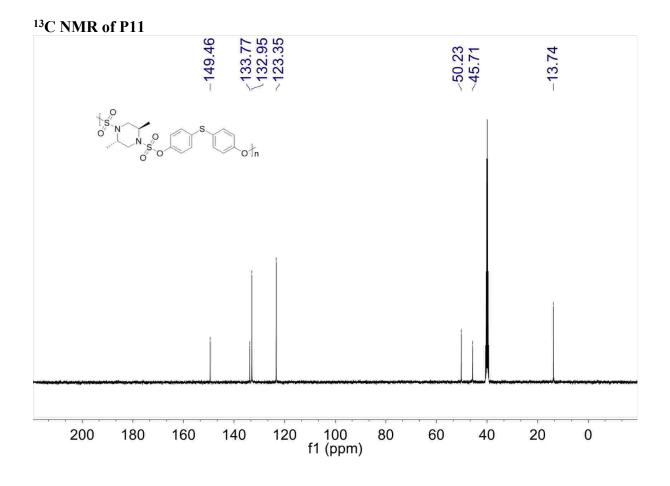


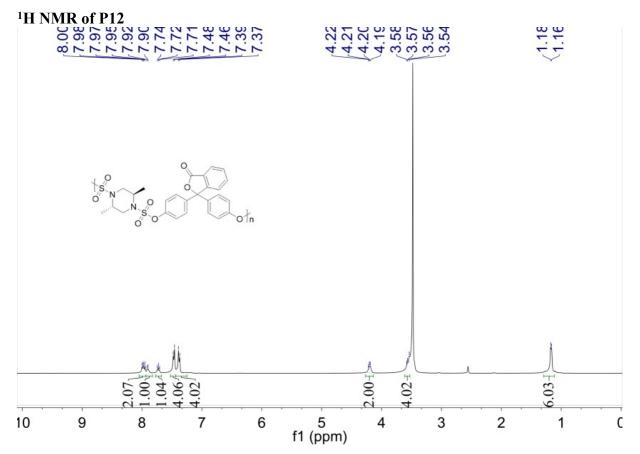


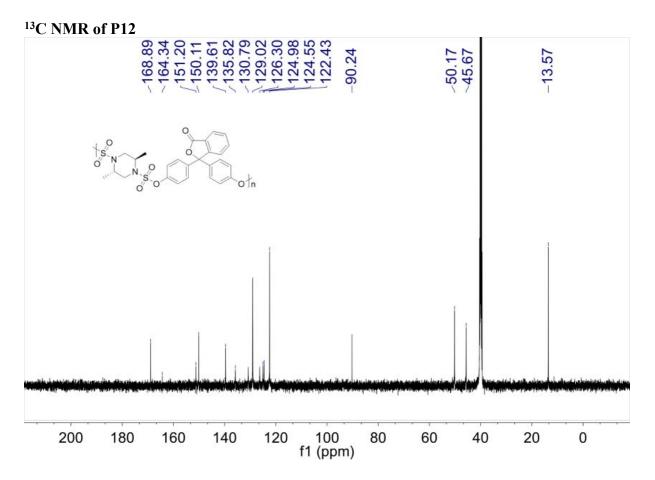


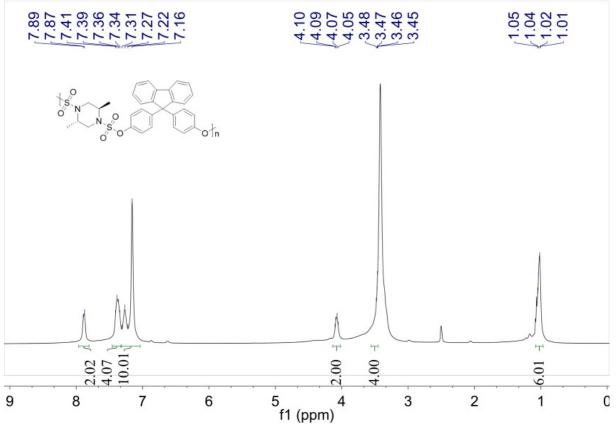


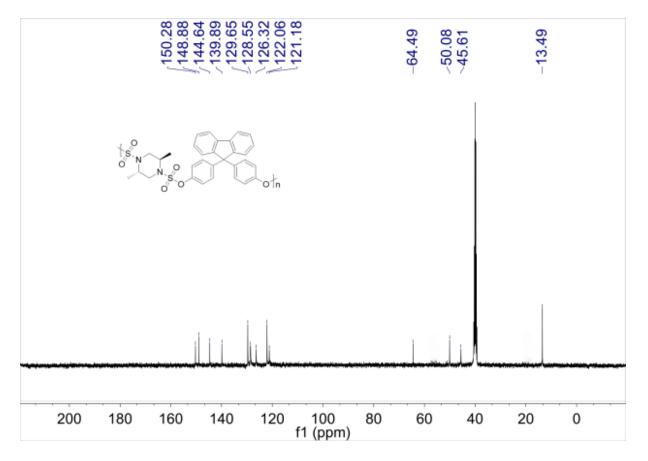


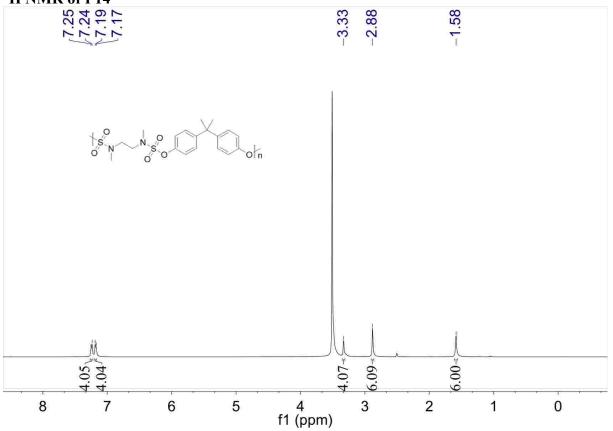


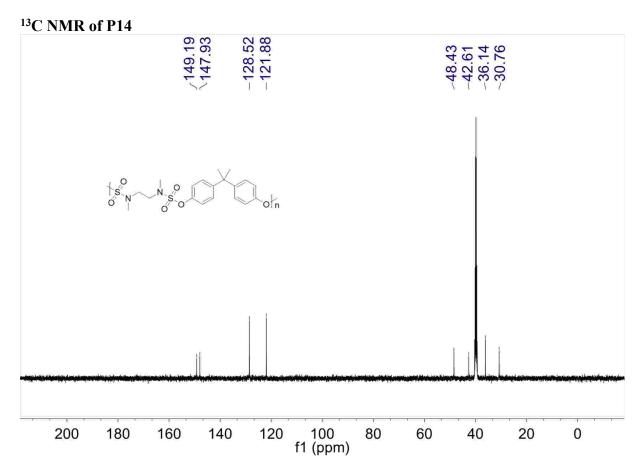




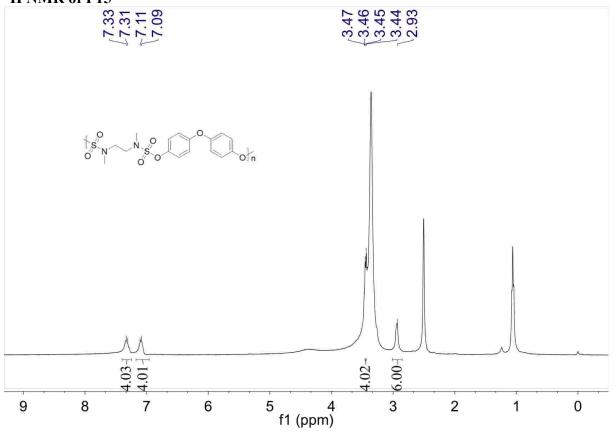


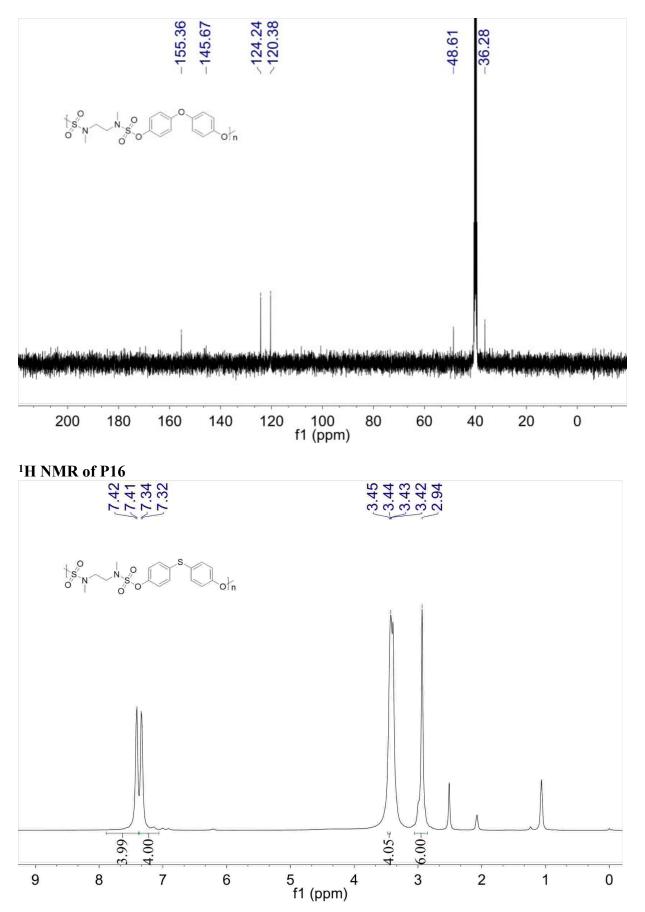


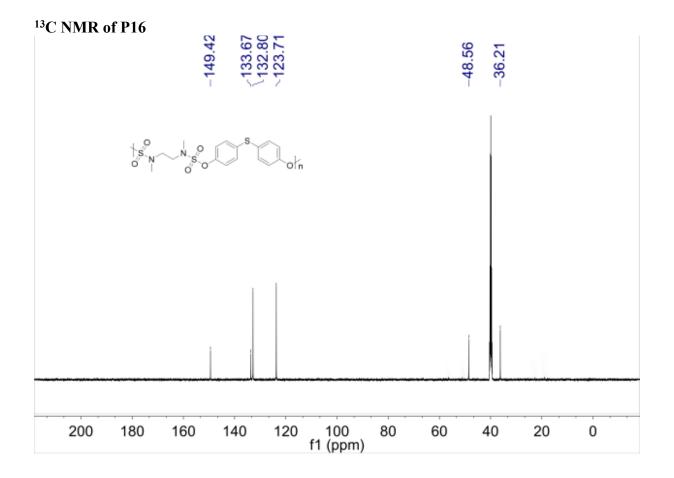

¹H NMR of P13



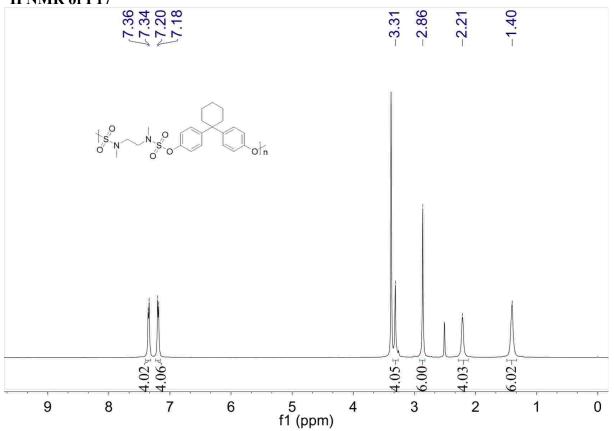
¹³C NMR of P13

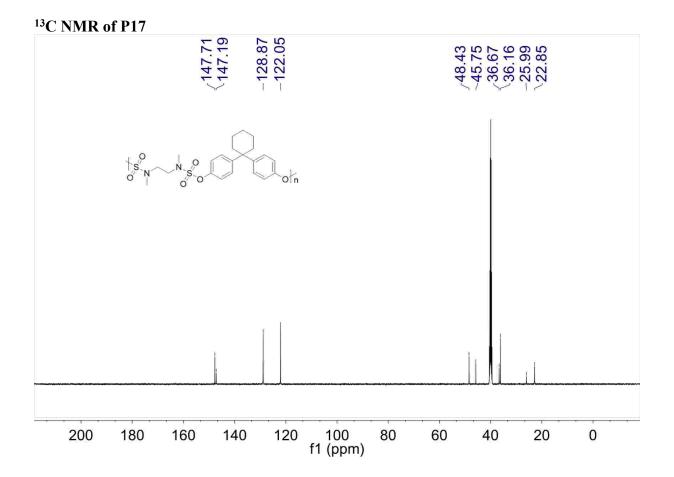


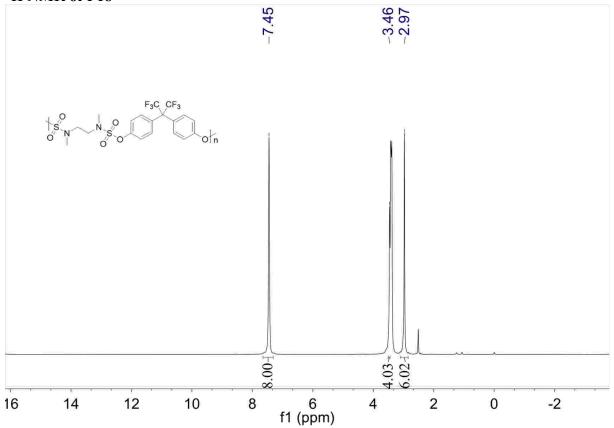


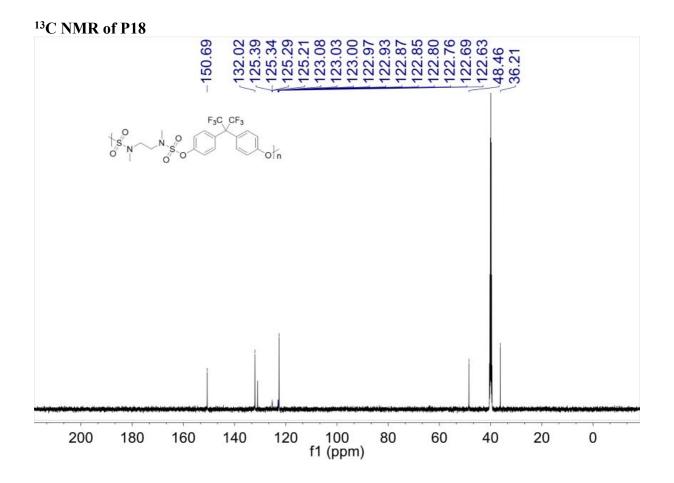


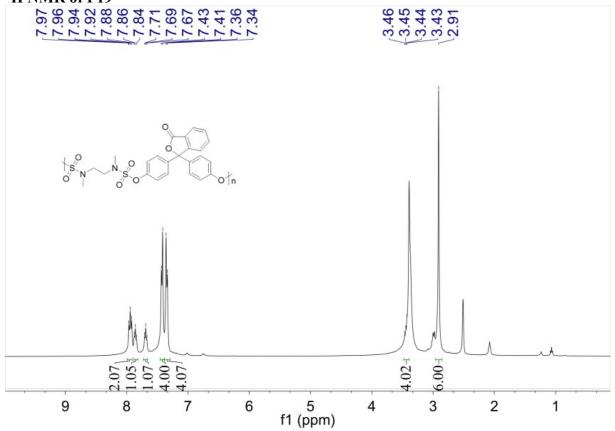
¹H NMR of P15

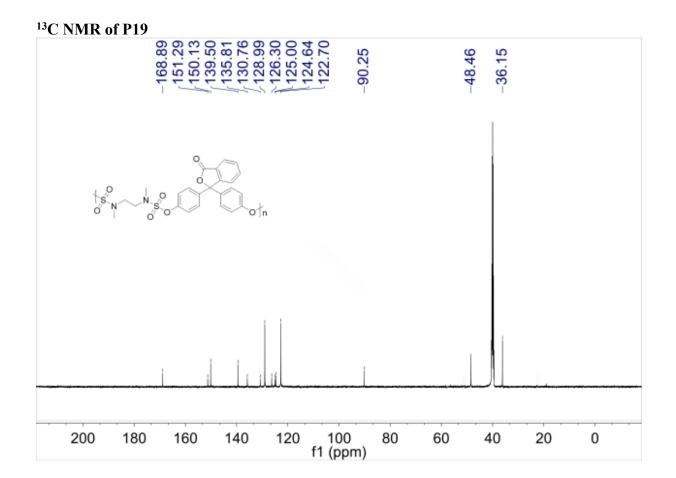


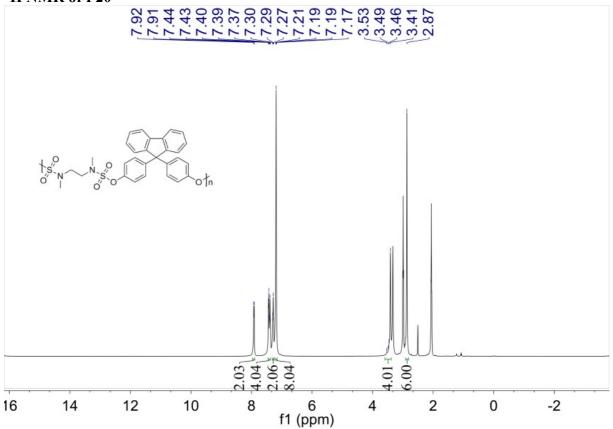

¹³C NMR of P15

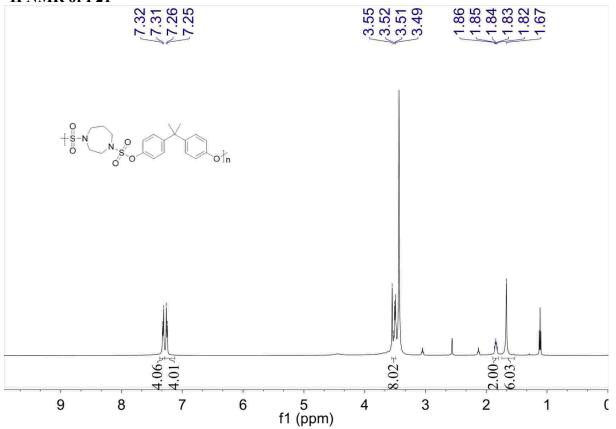


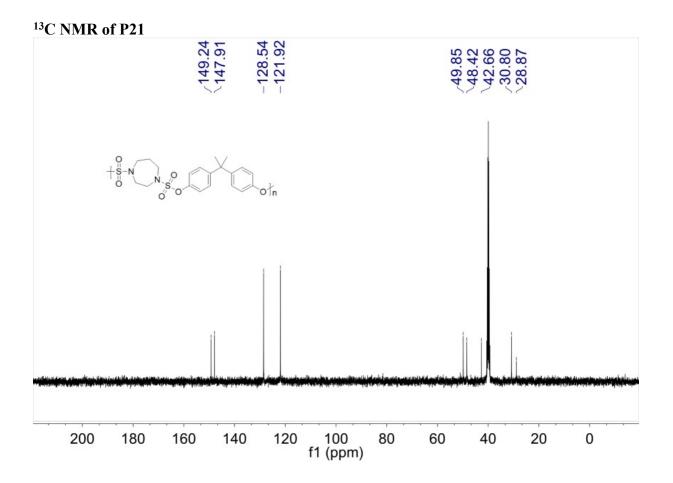


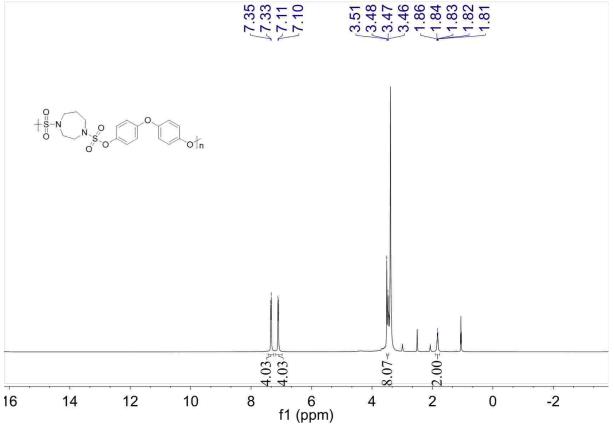


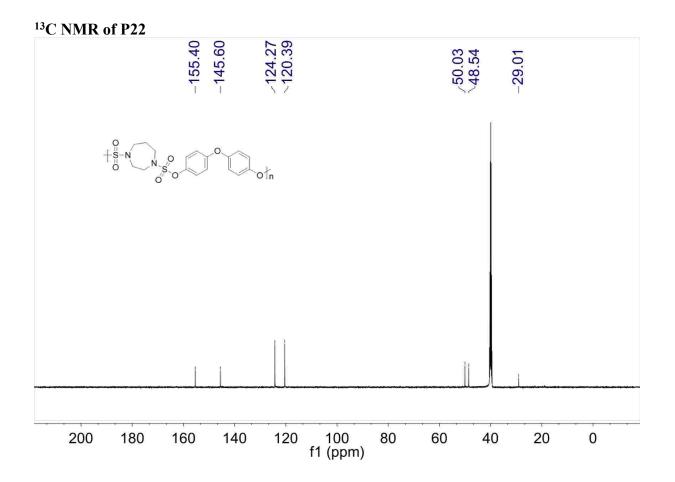


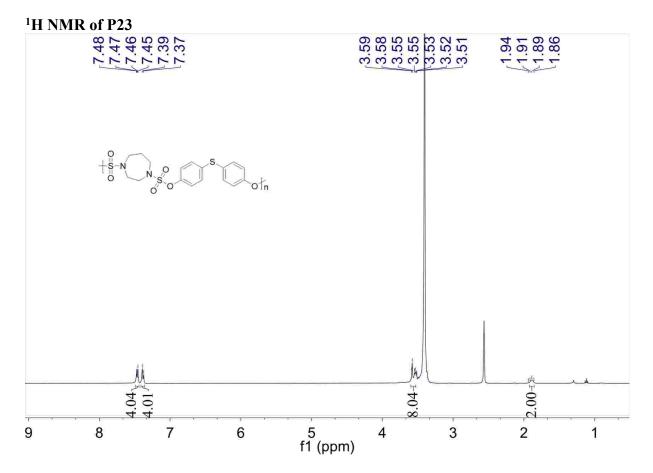


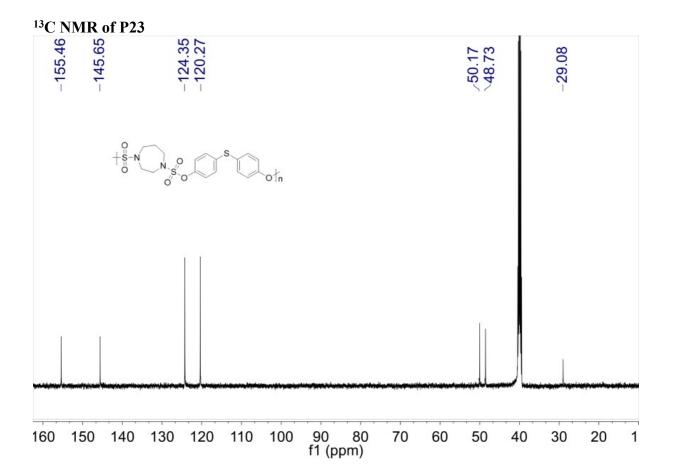


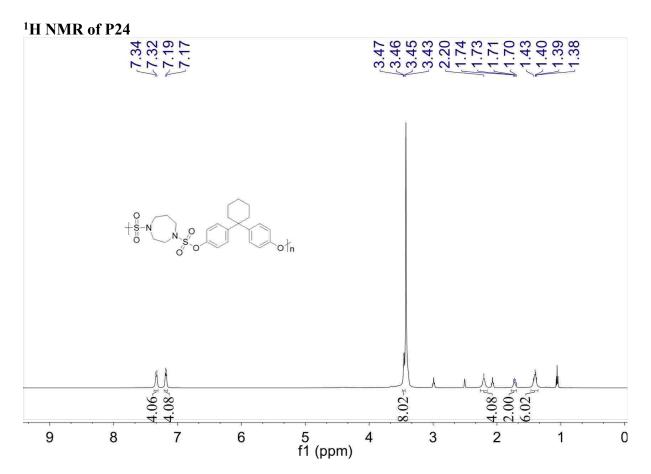

¹H NMR of P20

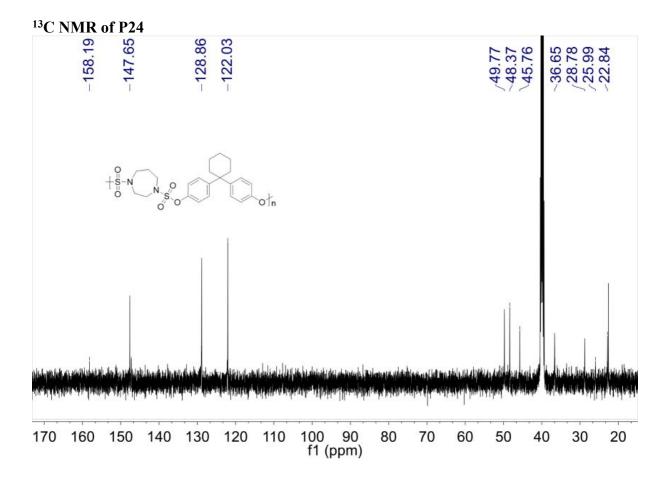


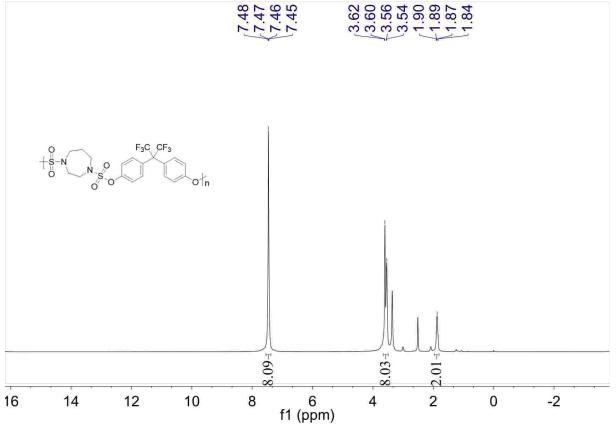


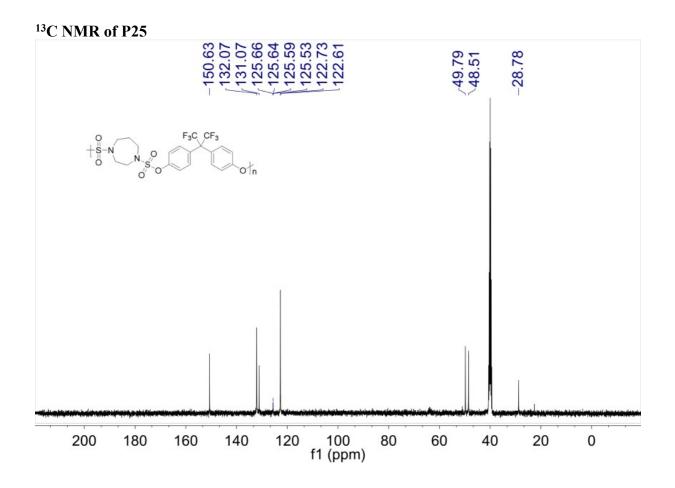


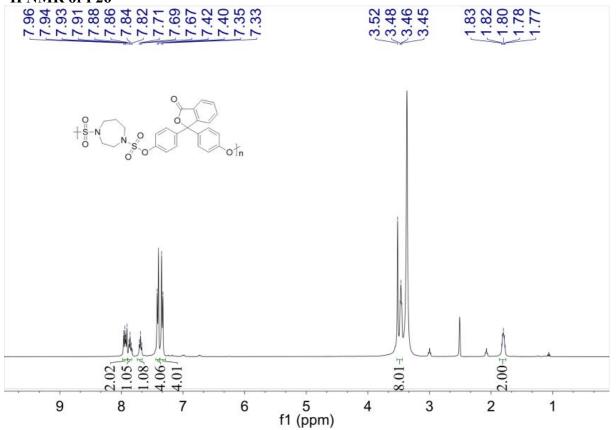


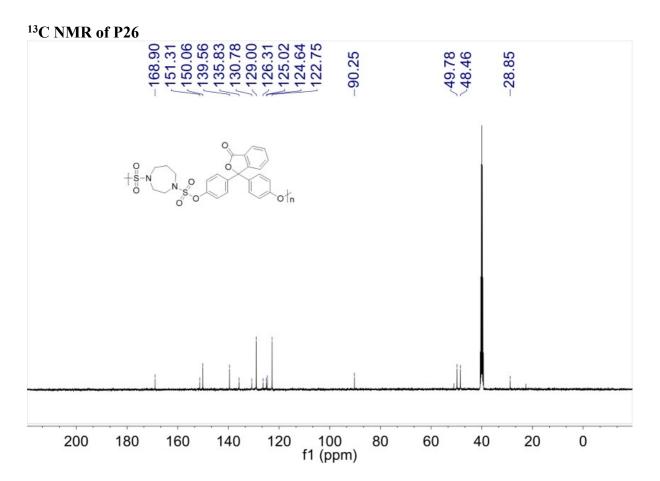

¹H NMR of P22

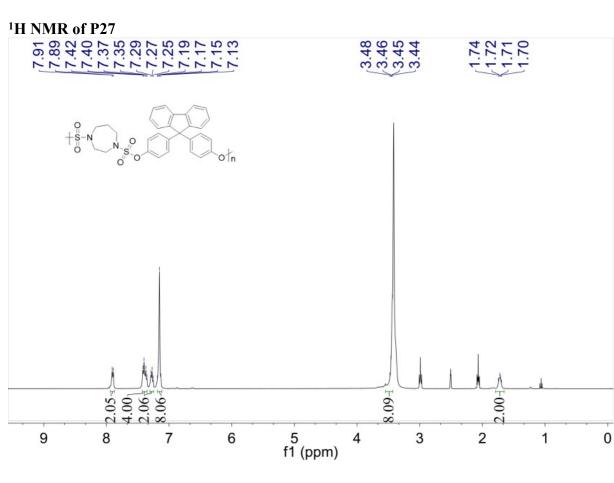


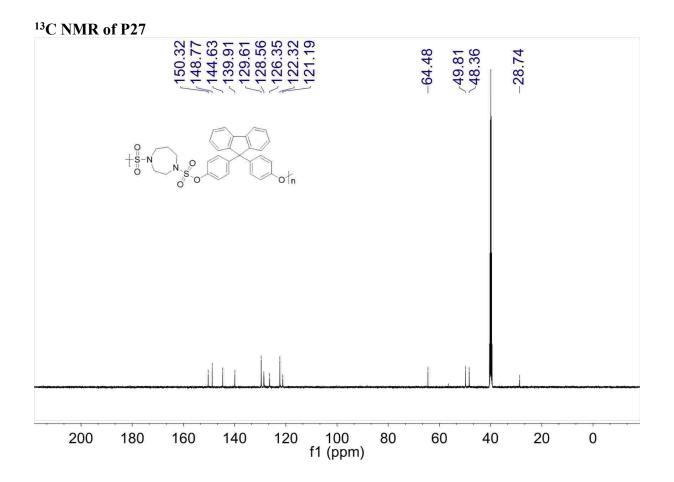


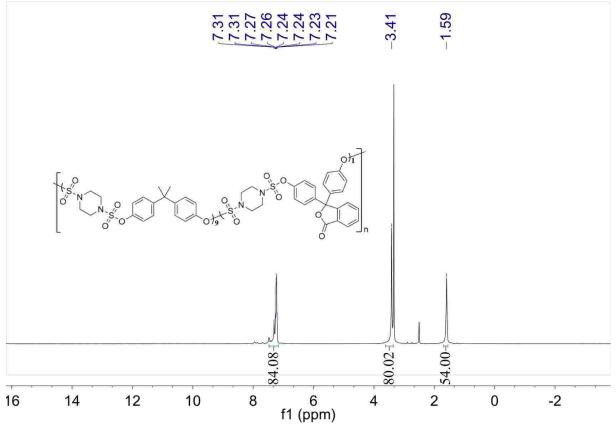


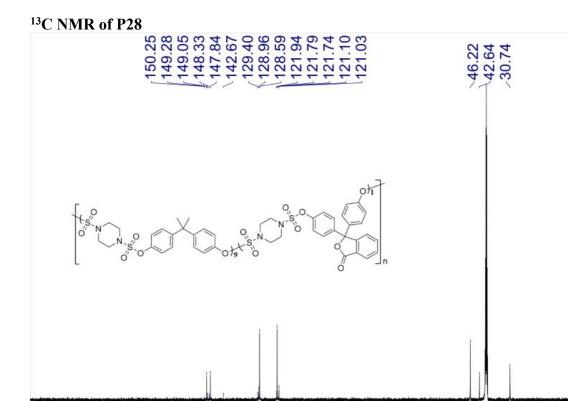


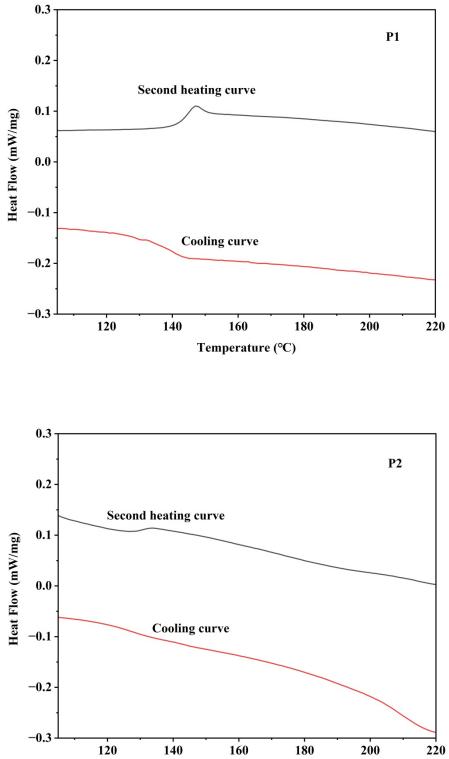

¹H NMR of P25

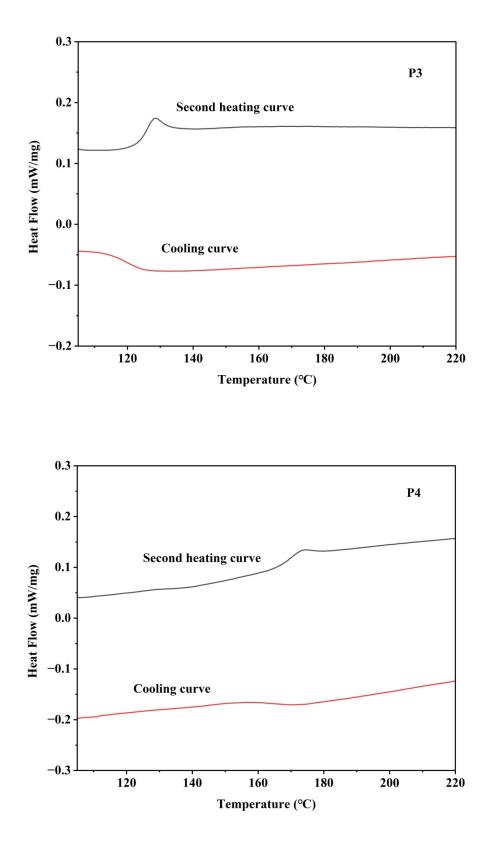


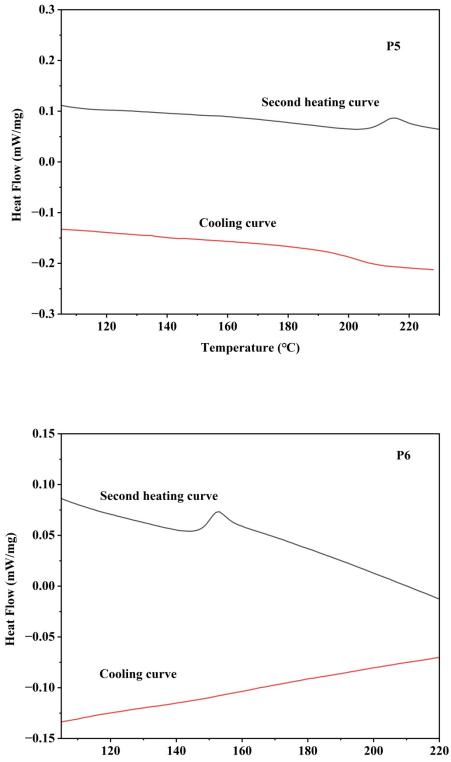







¹H NMR of P28

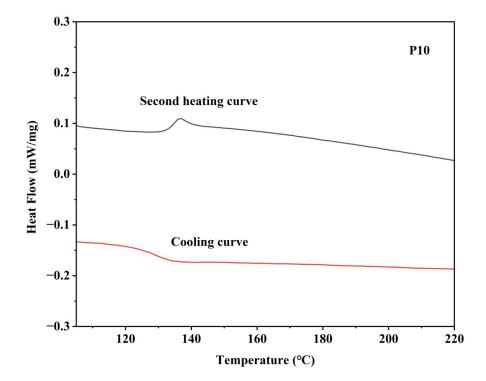


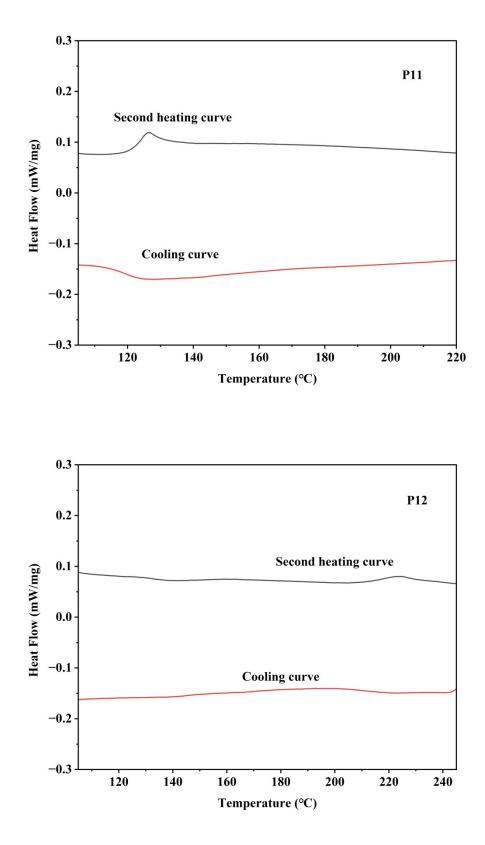

200 180 160 140 120 100 80 60 40 20 0 f1 (ppm)

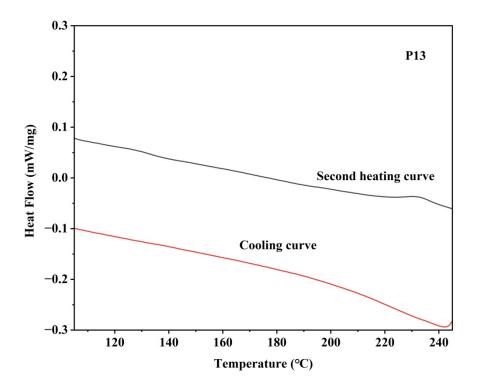
7.3 Copies of the DSC curves of polymers

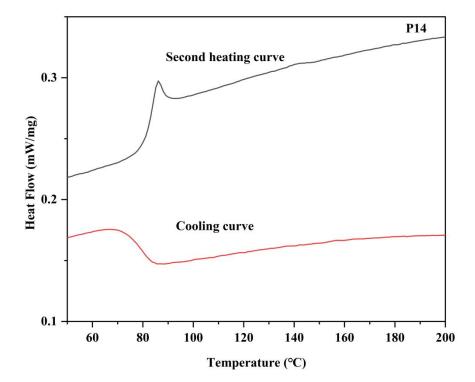


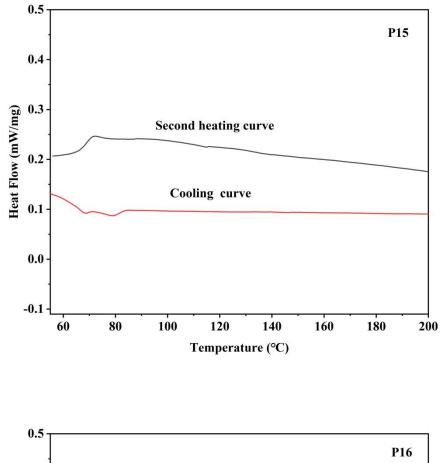

Temperature (°C)

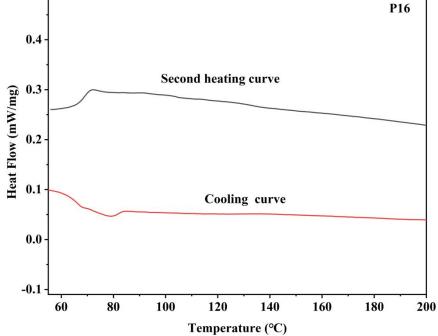


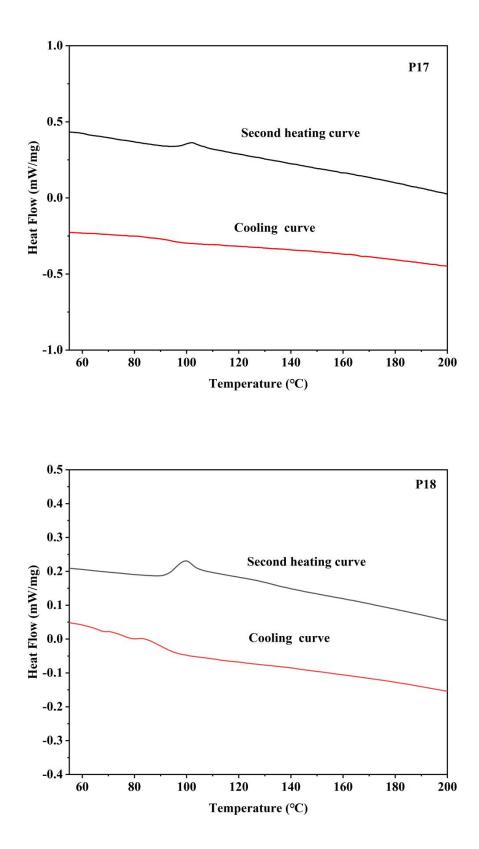


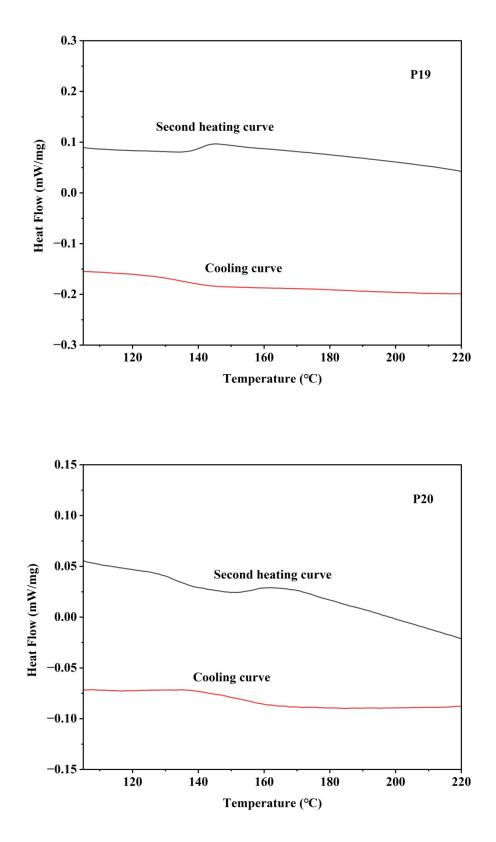

Temperature (°C)

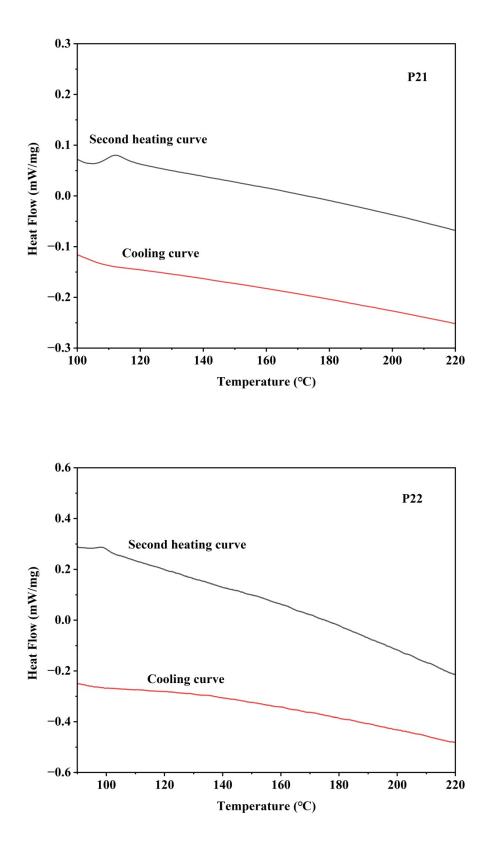


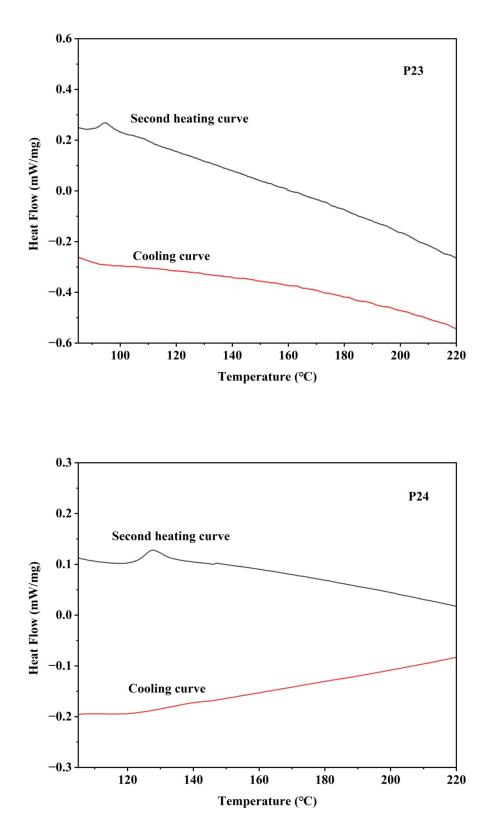


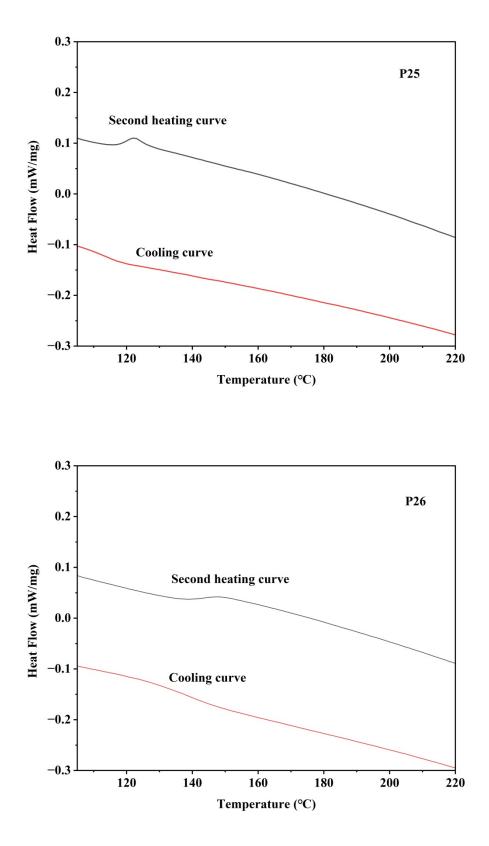


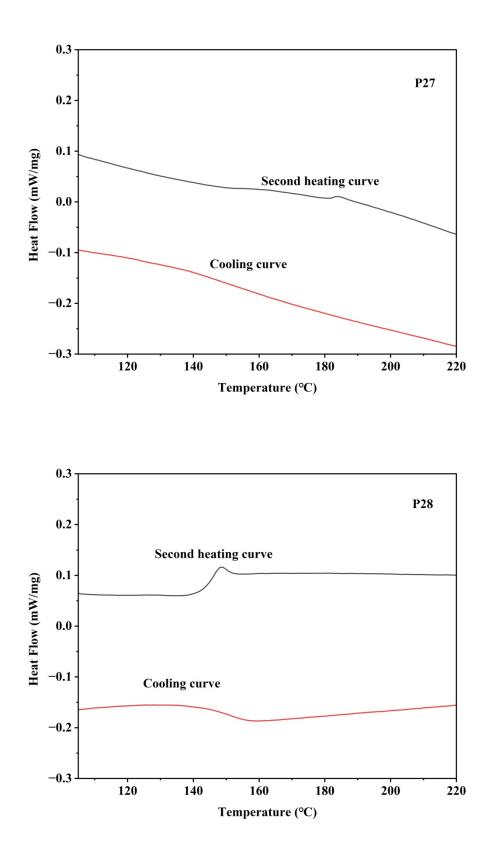


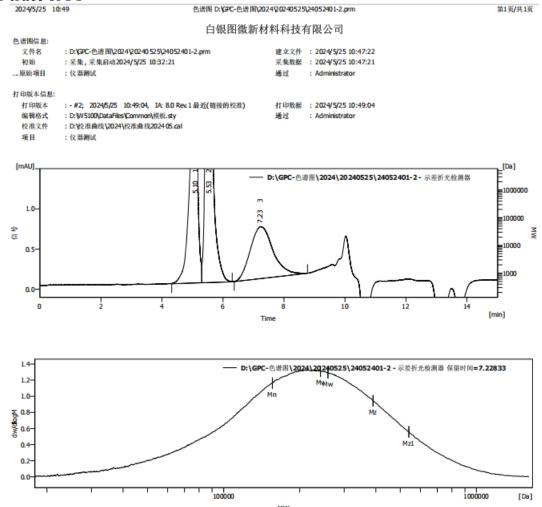




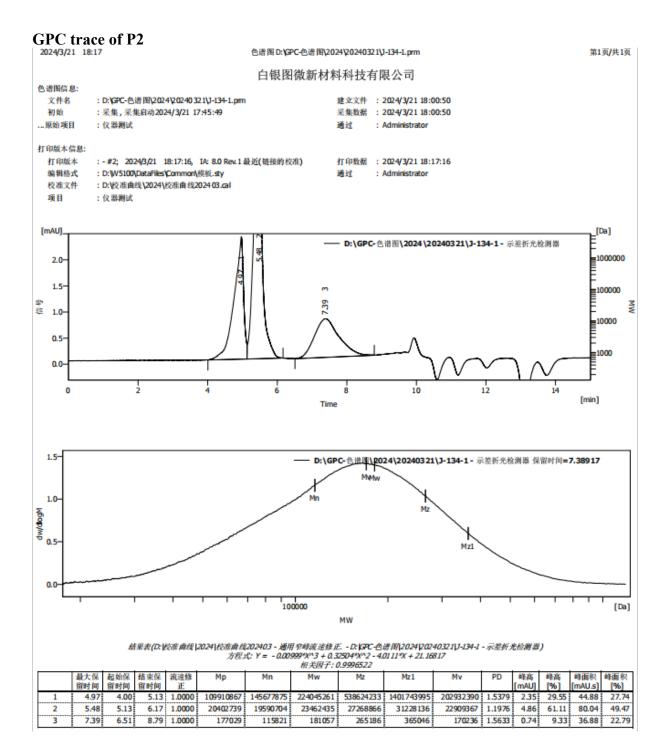








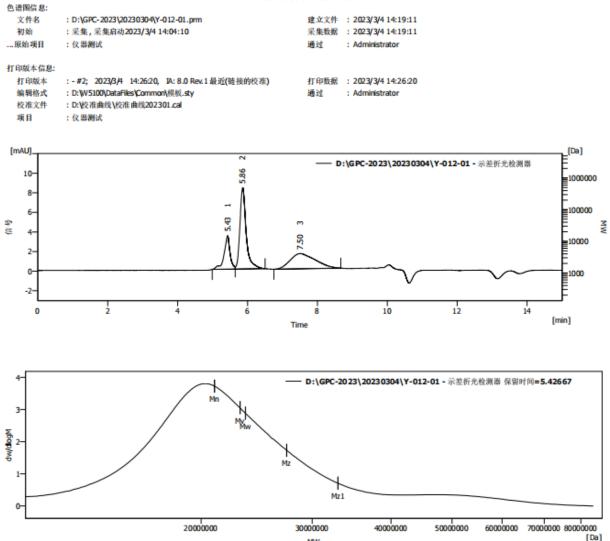
7.4 Copies of the GPC traces of polymers


GPC trace of P1

MW

結果表(D:|校准曲线|2024|校准曲线202405-通用空峰漉達修正,-D:|3PC-色谱图|2024|20240525|24052401-2-示差折光检测器) 方程式:Y=-0.006647X*3+0.235654*2-3.24007%+18.97824 相关因子:0.9996642

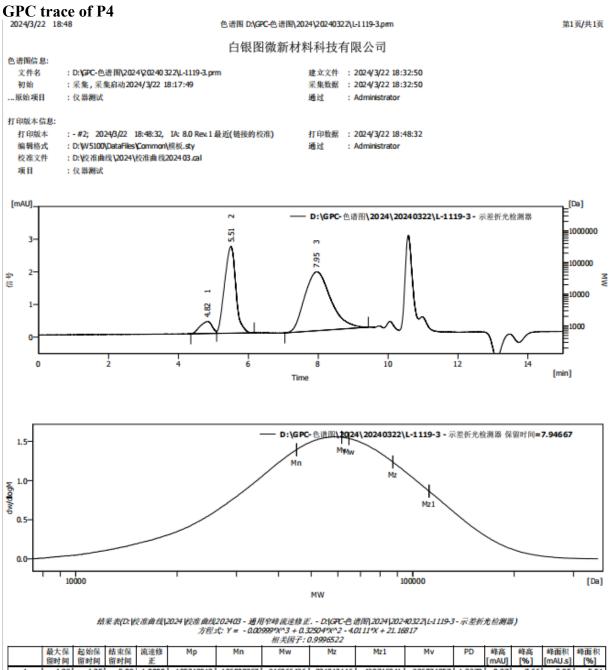
								10.2023.2.1.1								
Γ					流速修	Мр	Mn	Mw	Mz	Mz1	Mv	PD	峰高	峰高		峰面积
L		留时间	留时间	留时间	Æ								[mAU]	[%]	[mAU.s]	[%]
Γ	1	5.10	4.32	5.30	1.0000	51548732	61097410	73963056	101670612	164201655	71252148	1.2106	3.16	29.97	49.34	29.73
	2	5.53	5.30	6.30	1.0000	14360788	12393445	13881244	15038429	16044891	13695090	1.1200	6.73	63.88	82.84	49.91
	3	7.23	6.37	8.77	1.0000	247460	155952	258696	390224	540430	241791	1.6588	0.65	6.15	33.79	20.36



GPC trace of P3 2023/3/4 14:26

色谱图 D:\GPC-2023\20230304\Y-012-01.pm

第1页/共1页

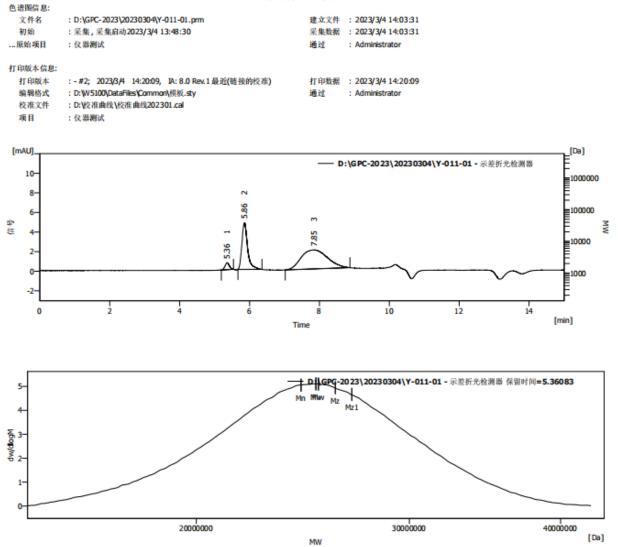


MW

結果表(D:||仮准曲线|| 校准曲线202301 - 通用窄峰流速修正, - D:||**GPC-2023**[20220304||/-012-01 - 示差折光检测器) 方程式: Y = -0.01016*X*3 + 0.32541*X*2 - 3.96692*X + 20.87943 相关因子: 0.9996180

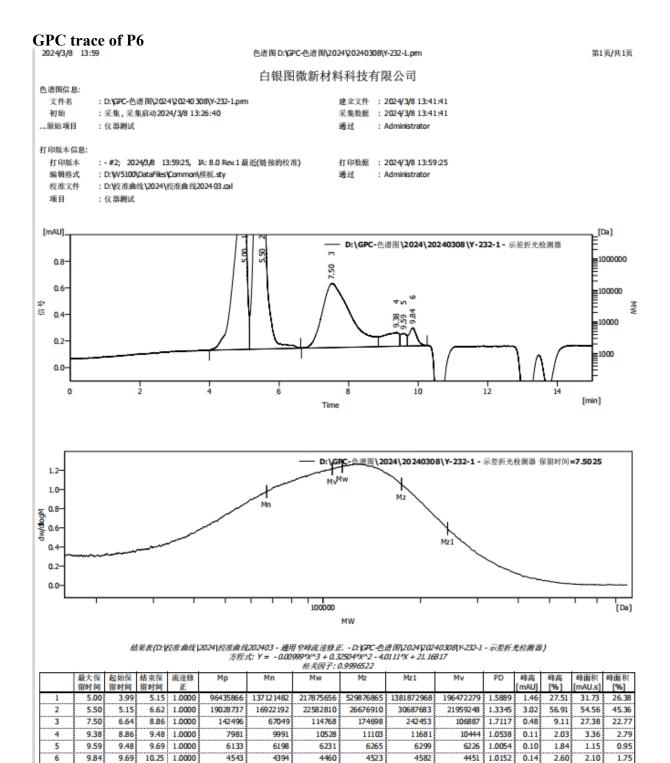
							10.0000	. 0.3330200							
	最大保	起始保	结束保留	流速修	Мр	Mn	Mw	Mz	Mz1	Mv	PD	峰高	峰高	峰面积	峰面积
	留时间	留时间	时间	Æ	_							[mAU]	[%]	[mAU.s]	[%]
1	5.43	4.99	5.65	1.0000	20451257	21014511	23526811	27345668	32973863	23064248	1.1196	3.41	25.68	40.67	18.25
2	5.86	5.65	6.50	1.0000	5770568	4933366	5453729	5858241	6198416	5388015	1.1055	8.31	62.54	103.73	46.55
3	7.50	6.75	8.67	1.0000	137884	90636	128319	174381	223201	122102	1.4158	1.57	11.78	78.43	35.20

99

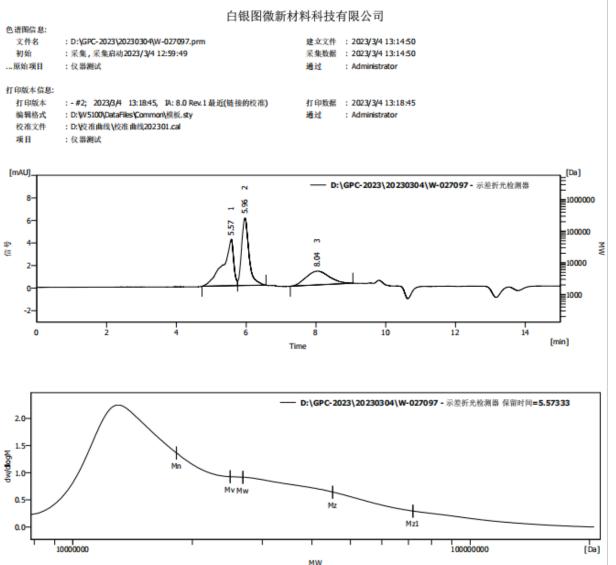

н.			起始保		流速修	Mp	Mn	Mw	Mz	Mz1	Mv	PD	峰高	峰高	峰面积	峰面积
L		留时间	留时间	留时间	Æ								[mAU]	[%]	[mAU.s]	[%]
	1	4.82	4.35	5.09	1.0000	185348913	186000767	246966426	331813146	428746841	236074857	1.3278	0.37	7.66	8.95	5.51
	2	5.51	5.09	6.17	1.0000	18593161	17648631	21987522	26902479	32208415	21306821	1.2458	2.66	54.92	59.24	36.46
	3	7.95	7.04	9.43	1.0000	64339	45246	64700	87373	111854	61617	1.4299	1.81	37.42	94.29	58.03

GPC trace of P5 2023/3/4 14:20

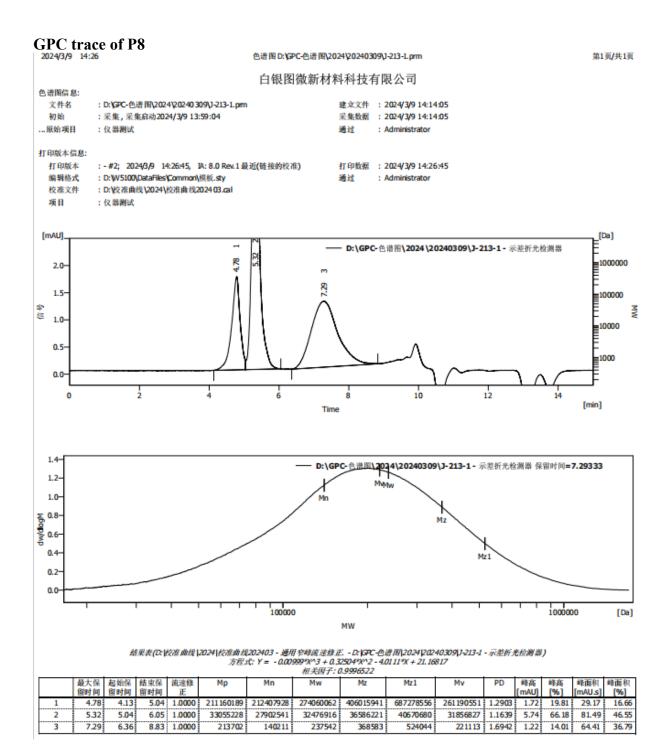
色谱图 D:\GPC-2023\20230304\Y-011-01.pm

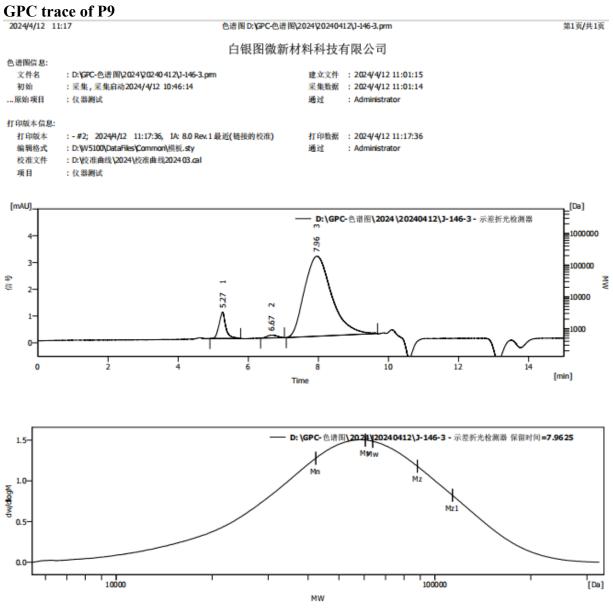

第1页/共1页

結果表(D:||仮准曲线|| 校准曲线202301 - 通用窄峰流速修正, - D:||QPC-2023|20220304||-011-01 - 示差折光检测器) 方程式: Y = -0.01016*X*3 + 0.32541*X*2 - 3.96692*X + 20.87943 相关因子: 0.9996180


							相大四丁	. u.99990100							
	最大保	起始保	结束保留	流速修	Мр	Mn	Mw	Mz	Mz1	Mv	PD	峰高	峰高	峰面积	峰面积
	留时间	留时间	时间	正								[mAU]	[%]	[mAU.s]	[%]
1	5.36	5.19	5.54	1.0000	25071643	24415428	25231918	26058272	26887862	25108991	1.0334	0.72	9.68	6.25	3.84
2	5.86	5.67	6.36	1.0000	5864403	5200110	5590861	5908243	6177246	5539738	1.0751	4.79	64.21	54.47	33.45
3	7.85	7.02	8.87	1.0000	75337	60233	80921	106217	133231	77497	1.3435	1.95	26.11	102.09	62.71

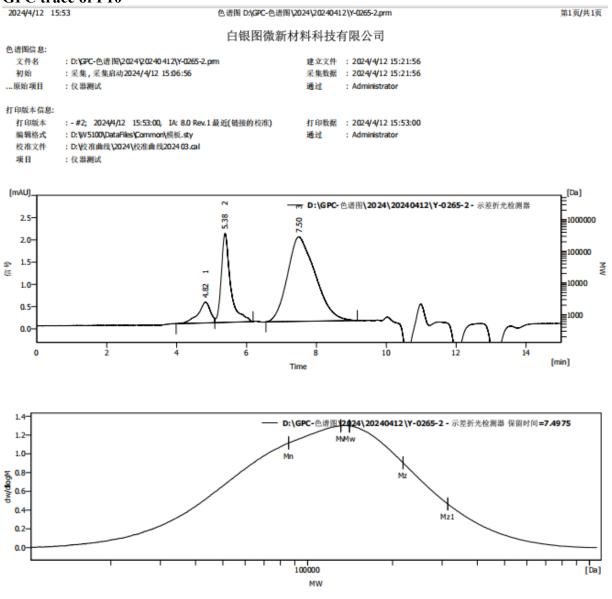
GPC trace of P7 2023/3/4 13:18


色谱图 D:\GPC-2023\20230304\W-027097.prm


第1页/共1页

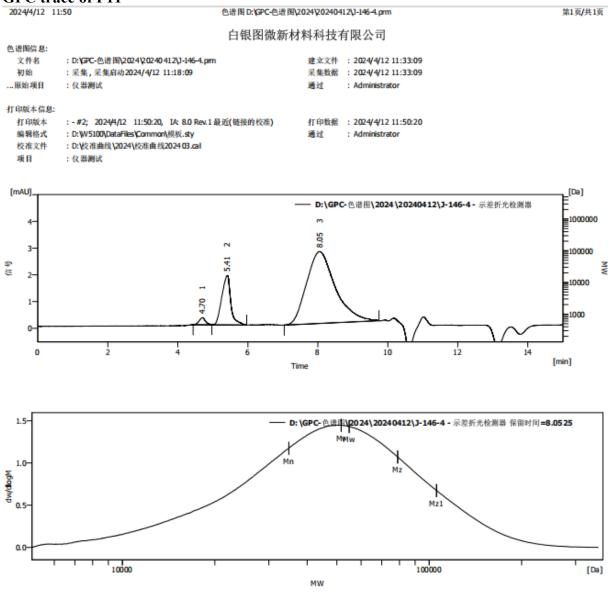
結果表(D:\核准曲线\校准曲线202301 - 通用空峰流速修正 - D:\GPC-2023\20230304\W-027097 - 示差折光检测器) 方程式: Y = -0.01016*X*3 + 0.32541*X*2 - 3.96692*X + 20.87943 根关因子: 0.9996180

								mxea i	. 0.99990200							
Γ		最大保	起始保	結束保留	流速修	Мр	Mn	Mw	Mz	Mz1	Mv	PD	峰高	峰高	峰面积	峰面积
L		留时间	留时间	时间	Æ								[mAU]	[%]	[mAU.s]	[%]
Γ	1	5.57	4.73	5.75	1.0000	13140054	18244171	26809237	45131561	71871617	24913576	1.4695	4.13	36.37	88.36	37.70
Γ	2	5.96	5.75	6.57	1.0000	4343045	3735929	4156970	4505431	4807171	4101529	1.1127	5.99	52.80	88.44	37.74
	3	8.04	7.27	9.06	1.0000	54274	45015	57291	71706	87089	55307	1.2727	1.23	10.83	57.56	24.56

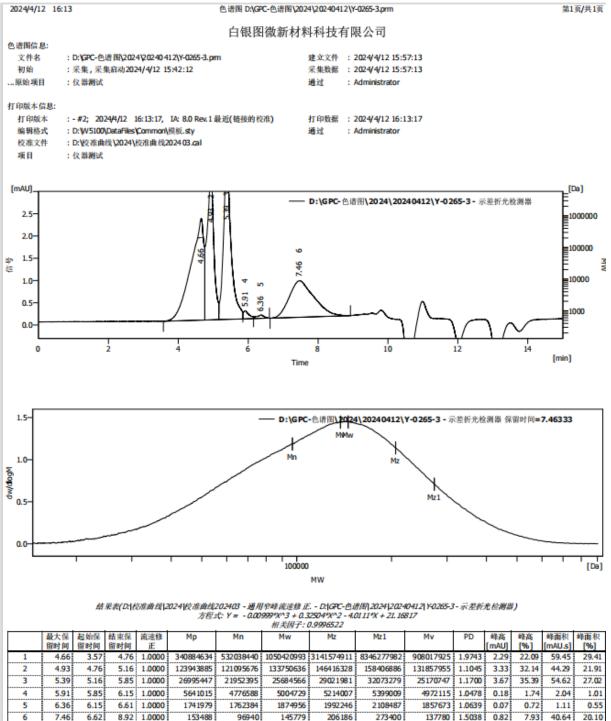


結果表(D:V控准曲线\2024\校准曲线202403 - 通用空峰流速修正 - D:VGPC-色谱图\2024\20240412\J-146-3 - 示差折光检测器) 方程式: Y = -0.00999%^3 + 0.32504%^2 - 4.0111% + 21.16817 相关因子: 0.9996522

							10.2003.0.1								
			结束保	流速修	Мр	Mn	Mw	Mz	Mz1	Mv	PD	峰高	峰高	峰面积	峰面积
	留时间	留时间	留时间	正	_							[mAU]	[%]	[mAU.s]	[%]
1	5.27	4.91	5.78	1.0000	39832628	35715451	40964198	45757751	50597919	40242957	1.1470	0.99	24.20	13.15	7.42
2	6.67	6.35	7.03	1.0000	811410	745745	813064	885748	961247	802572	1.0903	0.11	2.62	2.18	1.23
3	7.96	7.08	9.69	1.0000	62637	42308	63859	88134	113588	60532	1.5094	3.00	73.18	161.74	91.34


GPC trace of P10

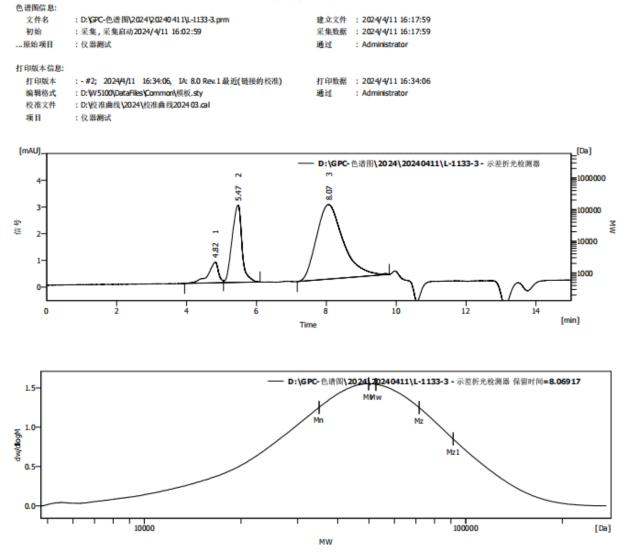
結果表(D:\校准曲线\2024\校准曲线202403-通用空峰流速修正-D:\GPC-色谱图\2024\20240412\Y-0265-2-示差折光检测器) 方程式:Y = -0.00999%*3+0.32504%*2-4.0111*X+21.16817 相关因子:0.9996522


															·
	最大保	起始保	结束保	流速修	Мр	Mn	Mw	Mz	Mz1	Mv	PD	峰高	峰高	峰面积	峰面积
	留时间	留时间	留时间	Æ								[mAU]	[%]	[mAU.s]	[%]
1	4.82	3.98	5.09	1.0000	184790135	192957708	325647971	739384792	1592047185	292417143	1.6877	0.47	10.72	11.46	7.45
2	5.38	5.09	6.19	1.0000	27573145	17871547	24568663	29774278	34246399	23737332	1.3747	2.01	45.80	37.03	24.07
 3	7.50	6.56	9.17	1.0000	143848	85603	140675	218070	314463	131149	1.6433	1.90	43.48	105.38	68.48

GPC trace of P11

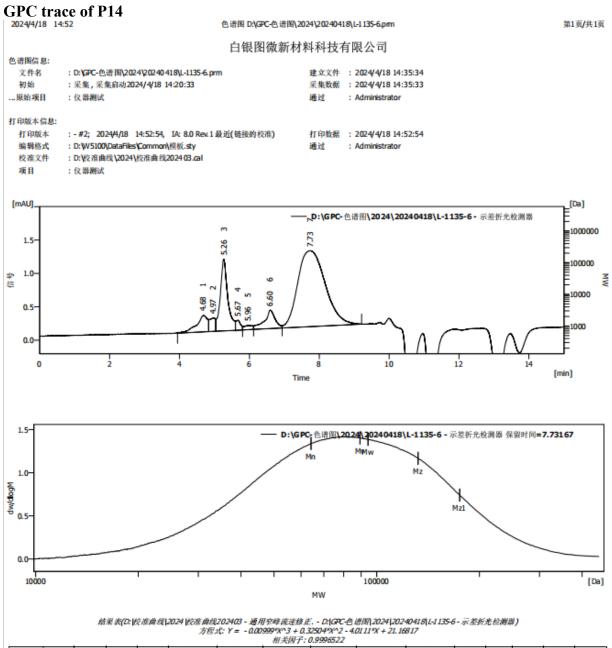
結果表(D:||佐准曲线|2024||佐准曲线202403 - 通用 窄峰流速修正. - D:||GPC-色谱图||2024|20240412||3-146-4 - 示差折光检测器|) 方程式: Y = -0.00999%*3 + 0.32504%*2 - 4.0111*X + 21.16817 相关因子: 0.9996522

	最大保 留时间	起始保 留时间	结束保 留时间	流速修 正	Мр	Mn	Mw	Mz	Mz1	Mv	PD	峰高 [mAU]	峰高 [%]	峰面积 [mAU.s]	峰面积 [%]
1	4.70	4.44	4.97	1.0000	284484574	266751670	299031655	333176071	368951956	294104306	1.1210	0.27	5.57	3.43	1.81
2	5.41	4.97	5.97	1.0000	24876779	24170745	29066437	34137444	39643699	28343982	1.2025	1.85	38.51	32.97	17.35
3	8.05	7.04	9.75	1.0000	53883	34883	54877	78918	105684	51687	1.5732	2.69	55.92	153.63	80.84

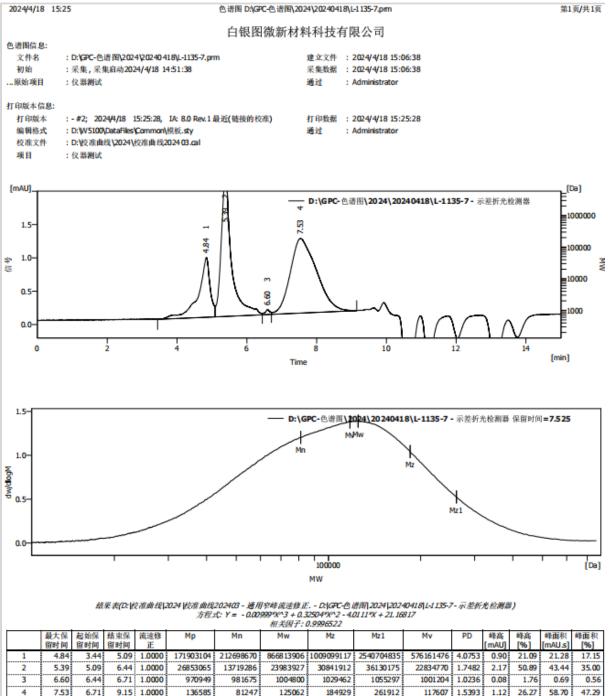


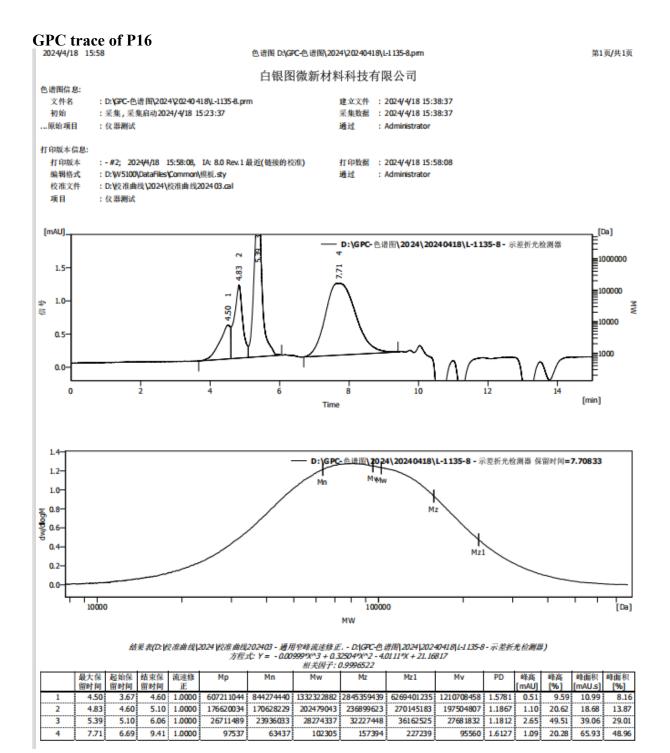
GPC trace of P13 2024/4/11 16:34

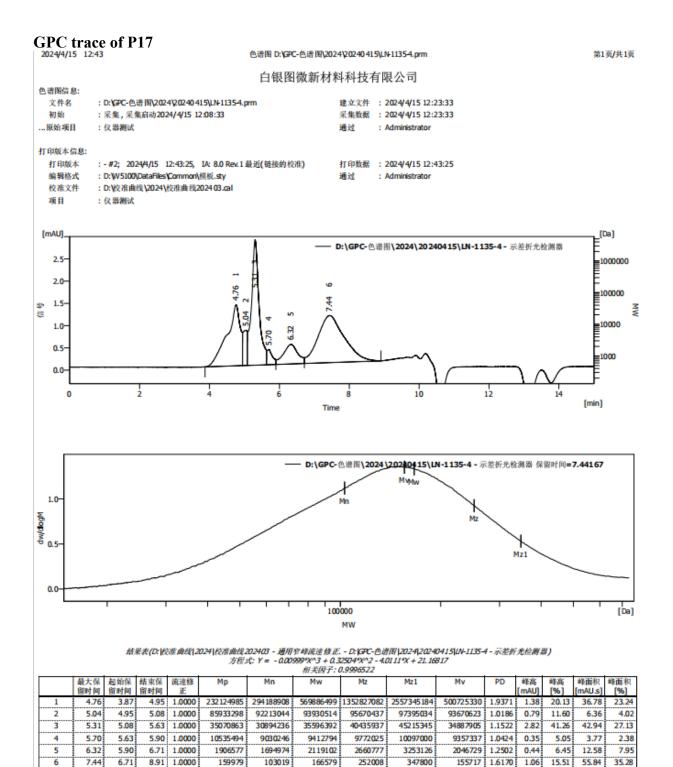
色谱图 D:\GPC-色谱图\2024\20240411\L-1133-3.pm


第1页/共1页

白银图微新材料科技有限公司
HKERMANNATTIKEKAN




結果表(D:||佐准曲线|2024||佐准曲线202403 - 通用空棒流速修正. - D:||GPC-色谱图||2024||20240411||L-1133-3 - 示差折光检测器|) 万程式: Y = -0.00999%*3 + 0.32504%*2 - 4.0111*X + 21.16817 相关因子: 0.9996522


	-														
	最大保		结束保	流速修	Мр	Mn	Mw	Mz	Mz1	Mv	PD	峰高	峰高	峰面积	峰面积
	留时间	留时间	留时间	正								[mAU]	[%]	[mAU.s]	[%]
1	4.82	3.94	5.06	1.0000	182572873	222290275	369422395	884821334	1977046680	330498744	1.6619	0.78	12.07	15.91	7.18
2	5.47	5.06	6.10	1.0000	20615222	20067611	24401172	29115940	34338465	23742664	1.2159	2.90	44.74	56.71	25.58
3	8.07	7.17	9.80	1.0000	52420	35004	52572	71686	91467	49916	1.5019	2.79	43.19	149.06	67.24

-								and a second second second								
Γ		最大保	起始保	结束保	流速修	Мр	Mn	Mw	Mz	Mz1	Mv	PD	峰高	峰高	峰面积	峰面积
L		留时间	留时间	留时间	正								[mAU]	[%]	[mAU.s]	[%]
	1	4.68	3.94	4.84	1.0000	308434827	357448663	577184015	1247738647	2473175574	521391809	1.6147	0.25	7.80	5.31	5.62
	2	4.97	4.84	5.04	1.0000	108635442	118499111	123583610	128835127	133999705	122804450	1.0429	0.20	6.39	2.34	2.47
-	3	5.26	5.04	5.60	1.0000	40050062	34219521	39397086	44619516	49766251	38627270	1.1513	1.07	34.04	16.04	16.96
	4	5.67	5.60	5.80	1.0000	11485062	10641487	10912112	11174645	11423377	10872172	1.0254	0.15	4.73	1.40	1.48
	5	5.96	5.80	6.12	1.0000	5000313	4731123	5017986	5318844	5614623	4973623	1.0606	0.07	2.14	1.09	1.15
	6	6.60	6.12	6.93	1.0000	969039	978000	1177281	1461714	1802285	1141118	1.2038	0.28	8.81	5.96	6.30

7.39

6.45

8.78 1.0000

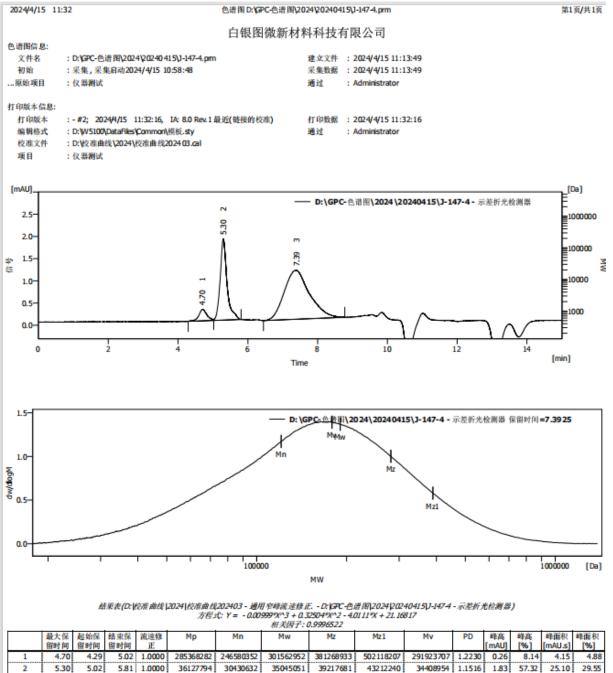
175887

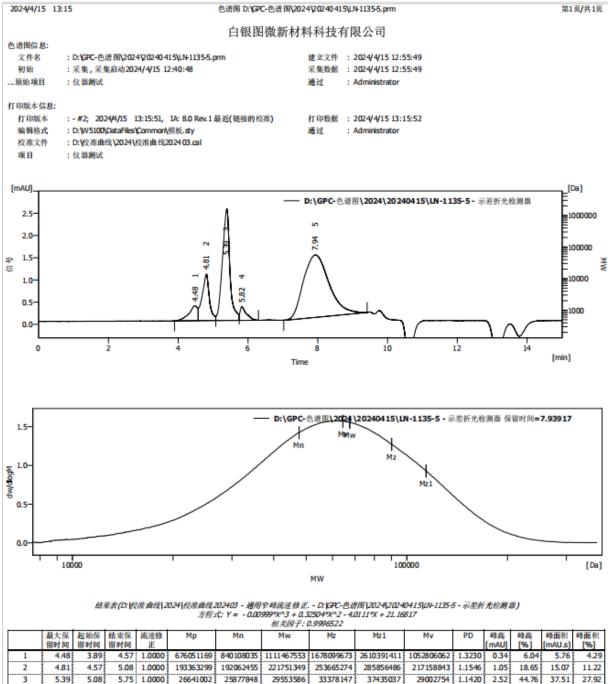
120906

190417

281565

389346


178760 1.5749


34.53

1.10

55.70

65.57

6084254

67513

6501125

90101

6841322

114233

6017303 1.0882

64411 1.4169

0.31

1.41

5.52

25.03

3.93

72.08

2.93

53.65

6.30 1.0000

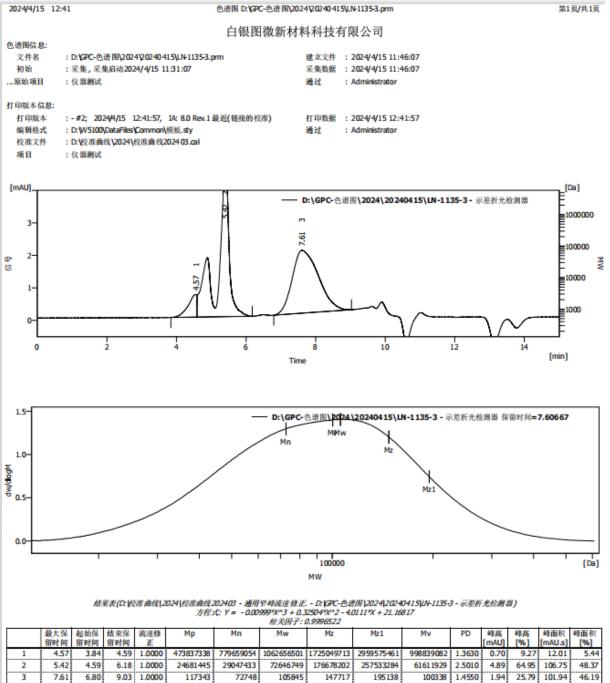
9.42 1.0000

7258572

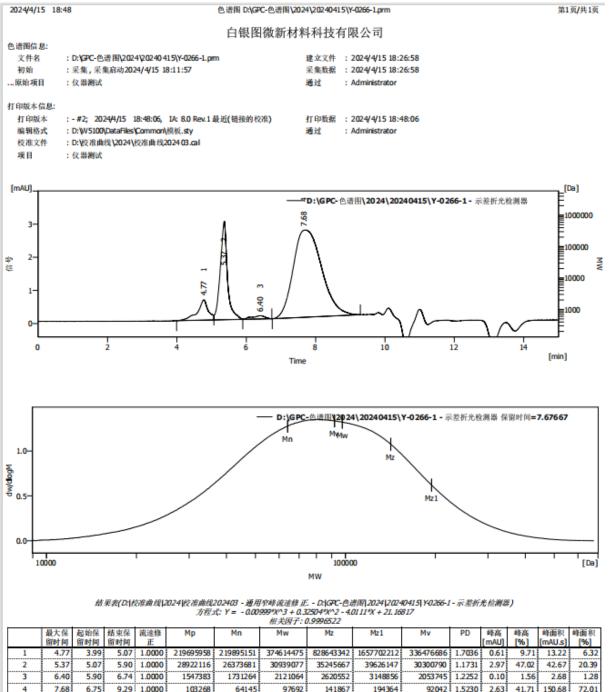
65164

5590945

47648


5.75

7.02

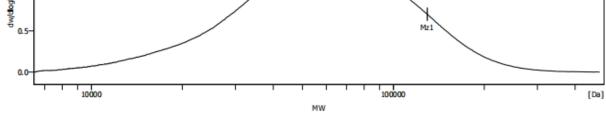

5.82

7.94

4

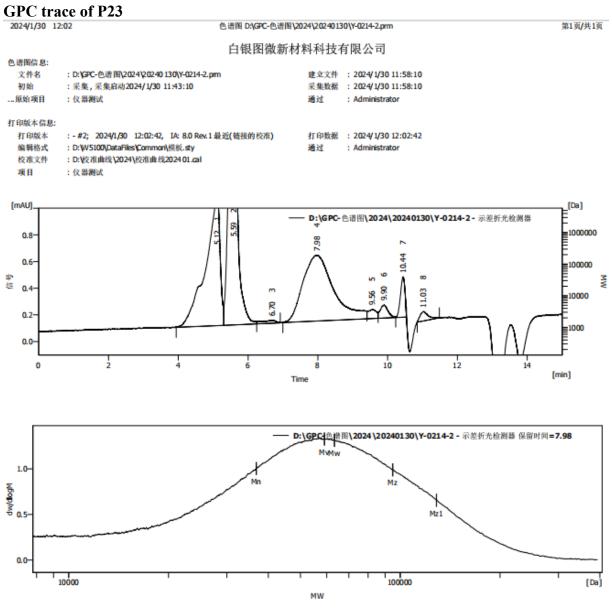
4

2.63


GPC trace of P22 2024/4/15 19:20

色谱图 D:\GPC-色谱图\2024\20240415\Y-0266-2.prm

第1页/共1页


白银图微新材料科技有限公司
LINCELINAMIATALICHICAR

色谱图信息:	白银图微新	材料科技有限公司	
巴语面信息: 文件名 初始 原始项目	: D:\GPC-色谱图\2024\20240415\Y-0266-2.pm :采集,采集启动2024/4/15 18:46:31 :仅器测试	建立文件 : 2024/4/15 19:01:31 采集数据 : 2024/4/15 19:01:31 通过 : Administrator	
打印版本信息: 打印版本 编辑格式 校准文件 项目	: - #2; 2024/4/15 19:20:23, IA: 8.0 Rev.1 最近(链接的校准) : D:\W5100\DataFiles\Common\模板.sty : D:\V2准曲线\2024\校准曲线2024/03.cal : 仅 祭澜试	打印贩据 : 2024/4/15 19:20:23 通过 : Administrator	
[mAU]			(Da)
3- 年 年 0- 0	6 4 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- D:\GPC-色谱图\2024\20240415\Y-0266-2-示差折光检测器	100000 10000 10000 10000 10000 (min)
1.5- 1.0- 50	— D: M	\GPC-色谱理\2024\20240415\Y-0266-2-示差折光检测器 保留时间= M₩₩ Mz	7.93917
Modby		~ \	

結果表(D:{校准曲线\2024\校准曲线202403 - 通用窄峰流速修 正, - D:\GPC-色谱图\2024\20240415\Y0266-2-示差折光检测器) 方程式: Y = -0.00999%*3 + 0.32504%*2 - 4.0111*X + 21.16817 相关因子: 0.9996522

	111 / 123 / . 0.0000022														
	最大保	起始保	结束保	流速修	Mp	Mn	Mw	Mz	Mz1	Mv	PD	峰高	峰高	峰面积	峰面积
	留时间	留时间	留时间	Æ								[mAU]	[%]	[mAU.s]	[%]
1	4.44	3.77	4.53	1.0000	791289298	1084400418	1694586240	3253369588	5685435294	1548619045	1.5627	0.15	3.81	2.92	2.19
2	4.74	4.53	5.03	1.0000	245303551	224653187	262668940	302461670	341233793	256867167	1.1692	0.38	9.61	5.88	4.42
3	5.35	5.03	5.98	1.0000	30832124	27563840	32681592	37174462	41602008	31999906	1.1857	1.56	39.46	22.33	16.77
4	7.94	6.90	9.55	1.0000	65164	44817	68008	96417	129542	64277	1.5175	1.87	47.12	102.04	76.63

結果表(D:\校准曲线\2024\校准曲线202401 - 通用窄峰流達修 正 - D:\GPC-色谱图\2024\20240130\Y-0214-2 - 示茎折光检测器) 方程式: Y = - 0.01045%^3 + 0.3349%^2 - 4.07592% + 21.30064 相关因子: 0.9996367

	最大保	起始保	结束保	流速修	Мр	Mn	Mw	Mz	Mz1	Mv	PD	峰高	峰高	峰面积	峰面积
	留时间	留时间	留时间	Æ	-							[mAU]	[%]	[mAU.s]	[%]
1	5.12	3.94	5.30	1.0000	65389773	100359395	233140172	807212707	1881712869	194044719	2.3231	0.97	21.84	27.83	26.67
2	5.59	5.30	6.25	1.0000	14228378	13274349	15504989	17447305	19295115	15208463	1.1680	2.42	54.29	39.07	37.45
3	6.70	6.25	6.92	1.0000	768946	980013	1157983	1359183	1548262	1129079	1.1816	0.02	0.52	0.64	0.62
4	7.98	7.00	9.41	1.0000	61576	36827	63337	95003	128658	59095	1.7199	0.50	11.15	30.29	29.03
5	9.56	9.41	9.73	1.0000	6408	6381	6458	6535	6612	6446	1.0121	0.07	1.55	1.13	1.09
6	9.90	9.73	10.23	1.0000	4261	4170	4235	4296	4355	4225	1.0154	0.10	2.22	1.53	1.47

8.03

4

7.13

9.81 1.0000

55701

37454

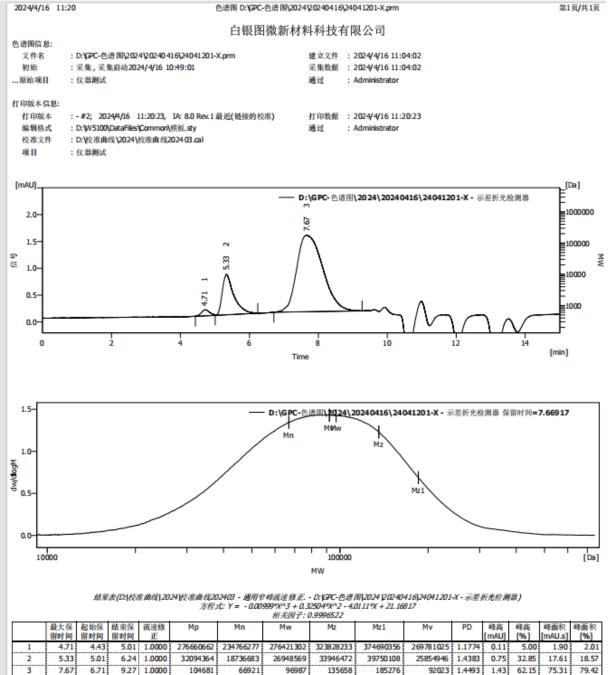
56578

78805

102646

53573


1.5106


2.30

72.53

125.85

87.54

5.98

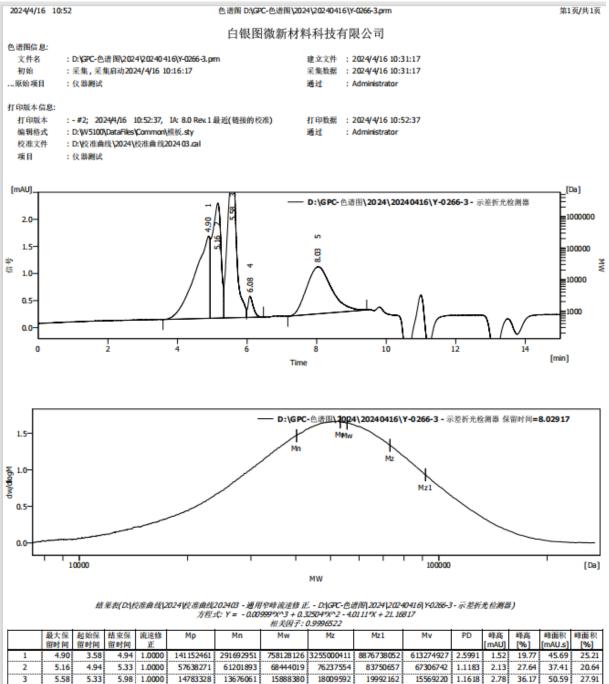
7.17

6.47 1.0000

9.44 1.0000

6.08

8.03


4

3532752

56011

3151472

40217

3289786

55594

3413334

73139

3523865

91867

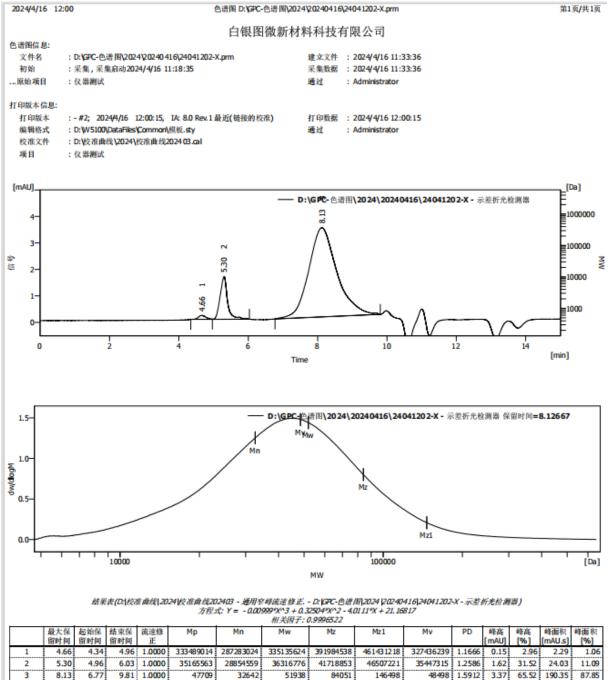
3270457 1.0439

53182 1.3824

0.39

0.87

5.09


11.33

4.13

43.44

2.28

23.96

3

7.25

6.34

8.61 1.0000

238202

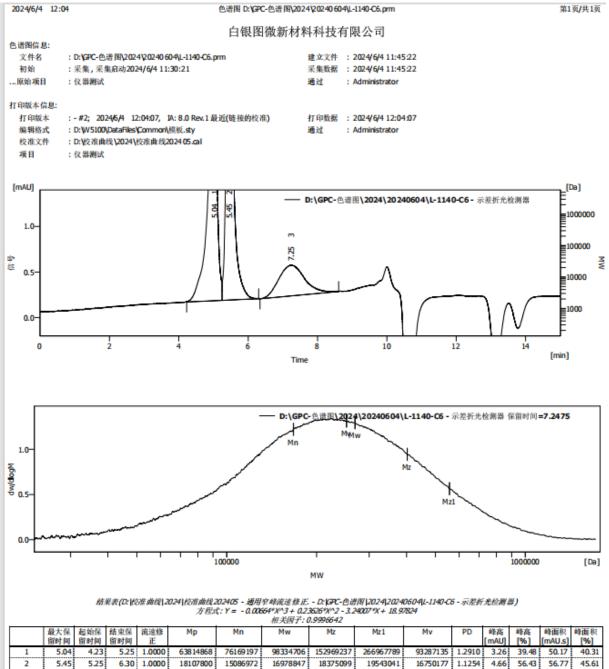
167420

269036

402493

557409

252009


1.6070

0.34

4.09

17.53

14.09

6.83

7.66

3

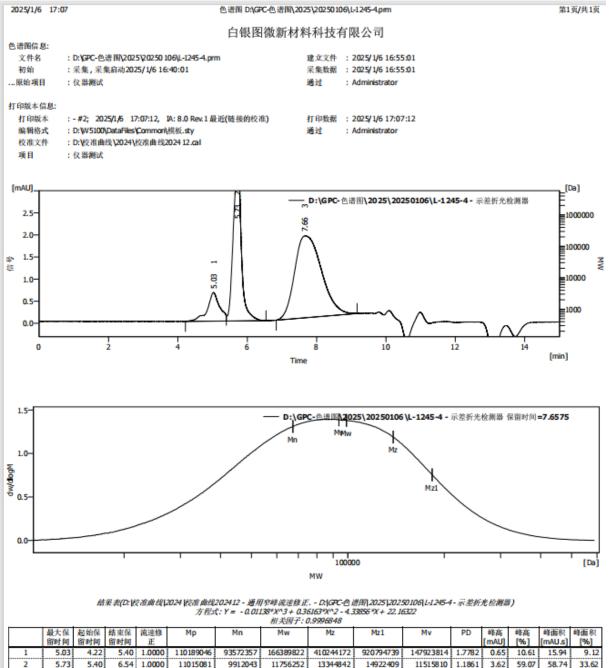
9.17 1.0000

109090

67406

99022

138601


183432

93808 1.4690

1.86

30.32 100.06

57.26

GPC trace of P1-100kg

9.82 1.0000

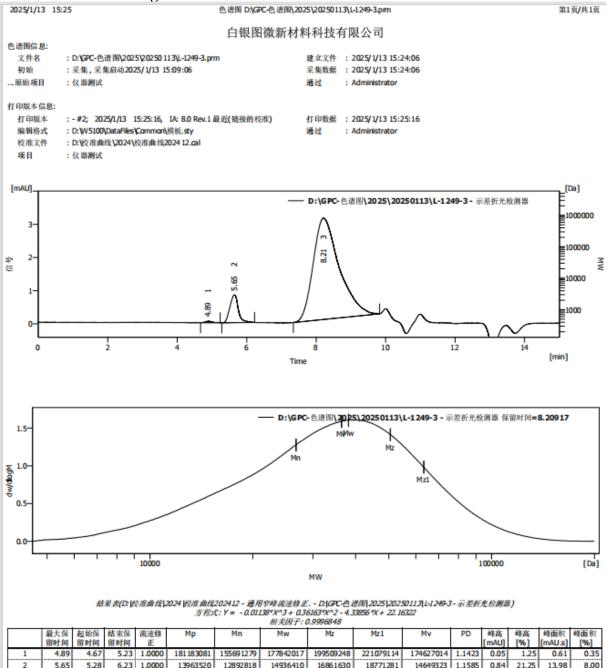
42102

26793

38125

50555

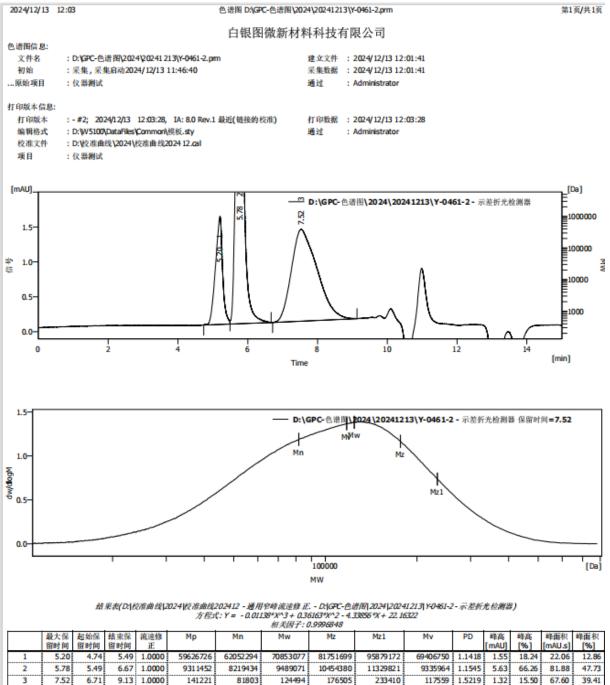
63348

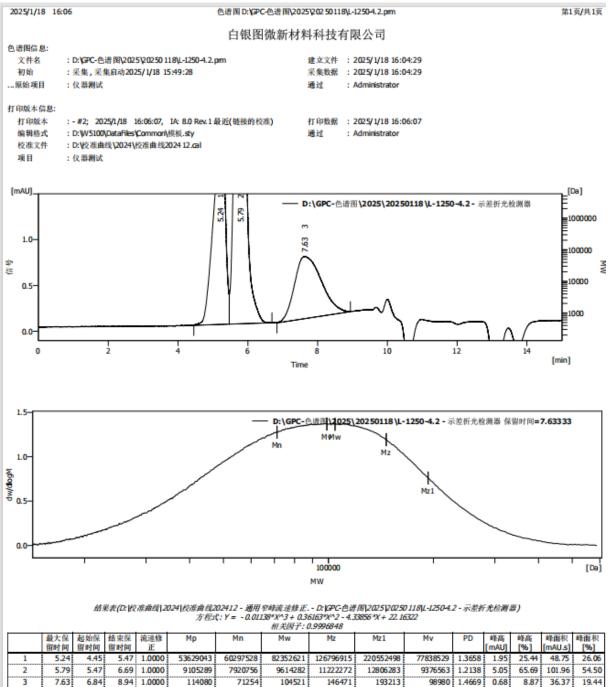

36383 1.4229

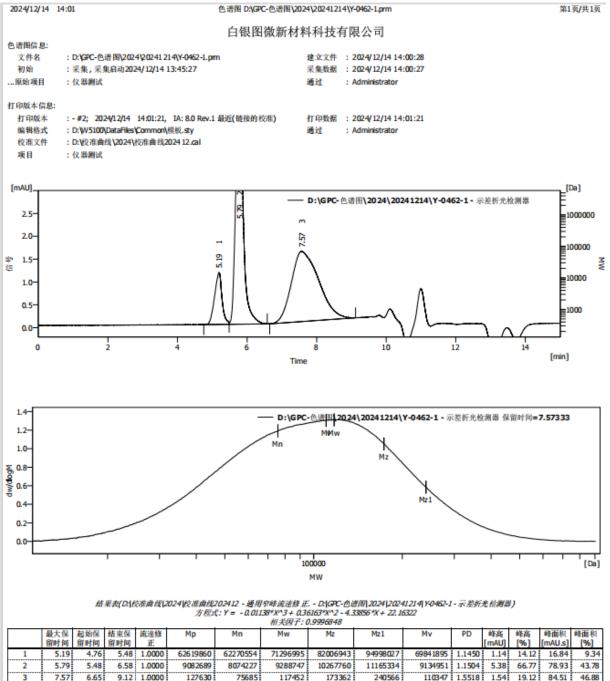
3.06

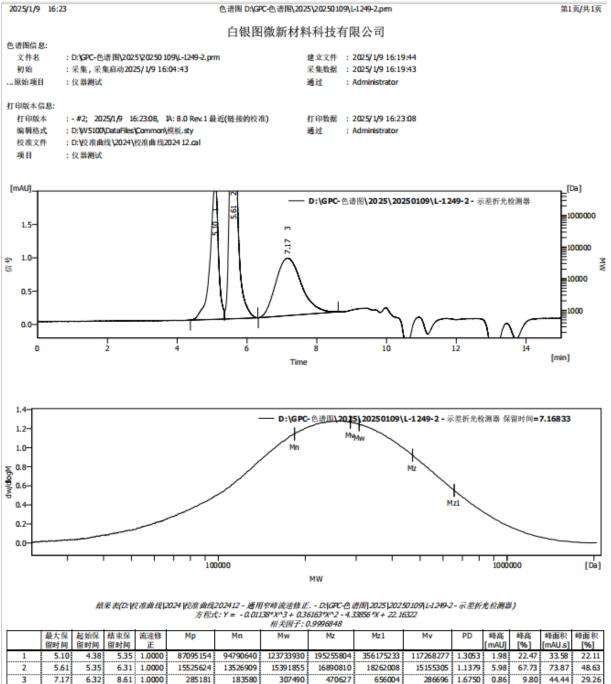
8.21

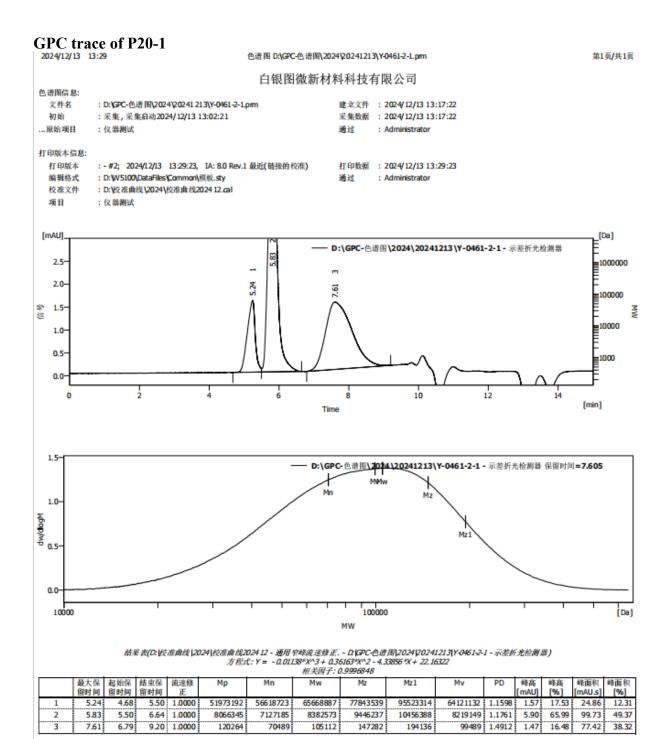
3

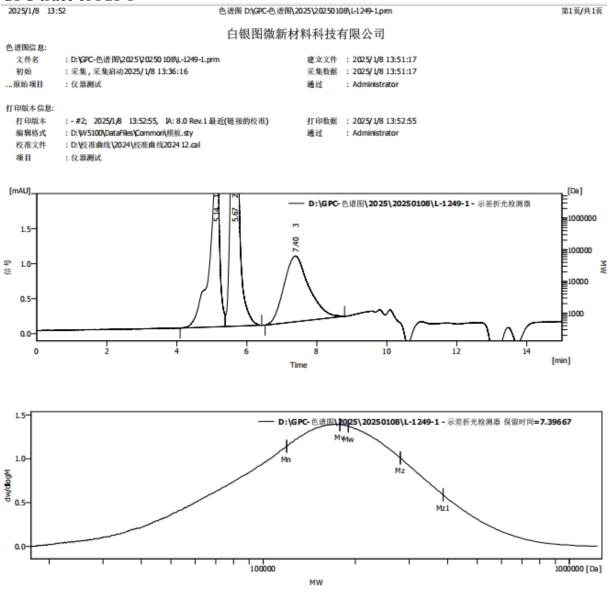

7.34

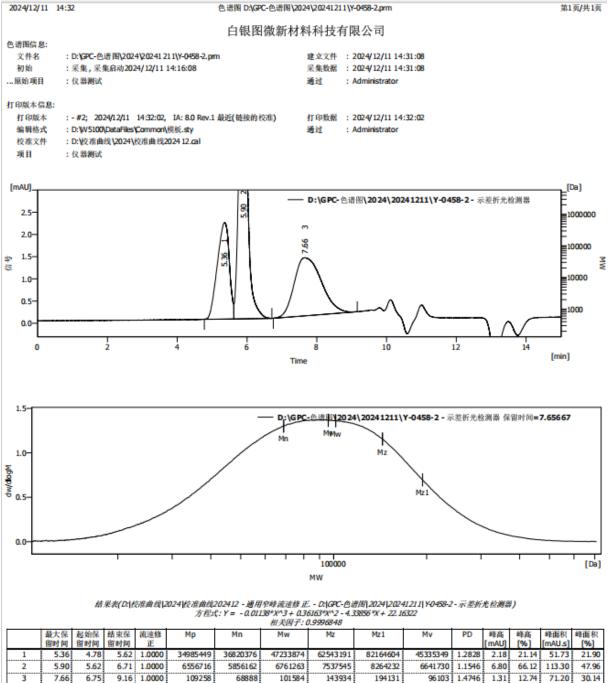



126


91.65


77.50 160.23





結果表(D:V技准曲线)2024 V技准曲线202412 - 通用字峰流速修正. - D:VGPC-色谱图)2025/20250108/L-1249-1 - 示差折光检测器) 方程式: Y = -0.01138*X*3 + 0.36163*X*2 - 4.33856*X + 22.16322 相关因子: 0.9996848

							100200000								
			结束保	流速修	Мр	Mn	Mw	Mz	Mz1	Mv	PD	峰高	峰高	峰面积	峰面积
	留时间	留时间	留时间	Æ								[mAU]	[%]	[mAU.s]	[%]
1	5.14	4.09	5.38	1.0000	74538373	91998565	152626643	394687859	1079206332	136041559	1.6590	2.92	30.37	49.60	28.17
2	5.67	5.38	6.42	1.0000	13028128	11765396	13561909	15061344	16490563	13330010	1.1527	5.76	59.85	79.65	45.25
3	7.40	6.52	8.79	1.0000	179406	119324	189650	280529	386883	177961	1.5894	0.94	9.78	46.79	26.58

