Supplementary Information (SI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2025

The Base-free Multicomponent Polymerization of Elemental Sulfur, Difluoromethylene Phosphobetaine and Amines Toward Electron-Deficient Aromatic Polythioureas

Yongjiang Yu,^a Wang Chen,^a Rongrong Hu,^{a,*} Ben Zhong Tang^{b,c}

^aState Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
^bSchool of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong

518172, China

^cAIE Institute, Guangzhou 510530, China

KEYWORDS: Elemental Sulfur, Difluorocarbene, Polythiourea, Multicomponent Polymerization, Refractive Index

Table and Contents

Materials and Instruments

Synthetic Procedures and Characterization Data

Figure S1. HRMS spectrum of the reaction solution of *p*-toluidine, sulfur, and PDFA in DMAc.

Figure S2. Proposed mechanism for the MCP of amine, sulfur and PDFA.

Figure S3. Crystal stacking and H-bond diagram of compound 4d-4i.

Table S1. Effect of solvent on the polymerization

Table S2. Effect of base on the polymerization

Table S3. Effect of reaction time on the polymerization

Table S4. Effect of concentration of 5a on the polymerization

Figure S4. FT-IR spectra of (A) p-toluidine, (B) model molecular 4h, (C) diamine

monomer 5a, and (D) P1.

Figure S5. Stack *in situ* FT-IR spectra of monomer 5a, P1, PDFA, and Ph₃P=S in DMSO.

Figure S6. The normalized GPC curves of the aromatic polythioureas.

Figure S7. (A) ¹H NMR and (B) ¹³C NMR spectra of 5a, model molecular 4h, and P1 in DMSO-*d*₆.

Figure S8. ¹H NMR spectra of P1-P5 in DMSO- d_6 .

Figure S9. ¹H NMR spectra of P6-P10 in DMSO-*d*₆.

Figure S10. ¹³C NMR spectra of P1-P5 in DMSO-*d*₆.

Figure S11. ¹³C NMR spectra of P6-P10 in DMSO-*d*₆.

Figure S12. X-ray photoelectron spectra of S 2p energy band of (A) elemental sulfur,

(B) model compound **4h** and (C) polythiourea **P1**.

Figure S13. FT-IR spectra of P2-P5.

Figure S14. FT-IR spectra of P6-P10.

Figure S15. DSC curve of P10. *T*g: glass transition temperature.

Table S5. Refractive indices and chromatic dispersions.

Figure S16. Transmittance spectra of P1, P2, P5-P7, P9 and P10. Insert pictures were

dry solid and spin-coated film of P10 on quartz.

Table S6. Single crystal data of compounds 4d-4f

Table S7. Single crystal data of compounds 4g-4i

Figure S17. ¹H NMR spectrum of 4a in DMSO-*d*₆.

Figure S18. ¹³C NMR spectrum of 4a in DMSO-*d*₆.

Figure S19. HR-MS spectrum of 4a.

Figure S20. ¹H NMR spectrum of 4b in DMSO-*d*₆.

Figure S21. ¹³C NMR spectrum of 4b in DMSO-*d*₆.

Figure S22. ¹H NMR spectrum of 4c in DMSO- d_6 .

Figure S23. ¹³C NMR spectrum of 4c in DMSO-*d*₆.

Figure S24. HR-MS spectrum of 4c.

Figure S25. ¹H NMR spectrum of 4d in DMSO-d₆.

- Figure S26. ¹³C NMR spectrum of 4d in DMSO-d₆.
- Figure S27. ¹⁹F NMR spectrum of 4d in DMSO- d_6 .
- Figure S28. HR-MS spectrum of 4d.
- Figure S29. ¹H NMR spectrum of 4e in DMSO-*d*₆.
- Figure S30. ¹³C NMR spectrum of 4e in DMSO-*d*₆.
- Figure S31. ¹H NMR spectrum of 4f in DMSO-*d*₆.
- Figure S32. ¹³C NMR spectrum of 4f in DMSO- d_6 .
- Figure S33. HR-MS spectrum of 4f.
- Figure S34. ¹H NMR spectrum of 4g in DMSO-*d*₆.
- Figure S35. ¹³C NMR spectrum of 4g in DMSO-*d*₆.
- Figure S36. HR-MS spectrum of 4g.
- Figure S37. ¹H NMR spectrum of 4h in DMSO-*d*₆.
- Figure S38. ¹³C NMR spectrum of 4h in DMSO-*d*₆.
- Figure S39. HR-MS spectrum of 4h.
- Figure S40. ¹H NMR spectrum of 4i in DMSO-*d*₆.
- Figure S41. ¹³C NMR spectrum of 4i in DMSO-*d*₆.
- Figure S42. ¹H NMR spectrum of Ph₃P=S in CDCl₃.
- Figure S43. ¹³C NMR spectrum of Ph₃P=S in CDCl₃.
- Figure S44. ³¹P NMR spectrum of Ph₃P=S in CDCl₃.
- Figure S45. ¹H NMR spectrum of P1 in DMSO-*d*₆.
- Figure S46. ¹³C NMR spectrum of P1 in DMSO- d_6 .
- Figure S47. ¹H NMR spectrum of P2 in DMSO-*d*₆.
- Figure S48. ¹³C NMR spectrum of P2 in DMSO-*d*₆.
- Figure S49. ¹H NMR spectrum of P3 in DMSO-*d*₆.
- Figure S50. ¹³C NMR spectrum of P3 in DMSO-*d*₆.
- Figure S51. ¹H NMR spectrum of P4 in DMSO-*d*₆.
- Figure S52. ¹³C NMR spectrum of P4 in DMSO-*d*₆.
- Figure S53. ¹H NMR spectrum of P5 in DMSO-*d*₆.
- Figure S54. ¹³C NMR spectrum of P5 in DMSO-*d*₆.

Figure S55. ¹H NMR spectrum of P6 in DMSO-*d*₆.

Figure S56. ¹³C NMR spectrum of P6 in DMSO-*d*₆.

Figure S57. ¹H NMR spectrum of P7 in DMSO-*d*₆.

Figure S58. ¹³C NMR spectrum of P7 in DMSO-*d*₆.

Figure S59. ¹H NMR spectrum of P8 in DMSO-*d*₆.

Figure S60. ¹³C NMR spectrum of P8 in DMSO-*d*₆.

Figure S61. ¹H NMR spectrum of P9 in DMSO-*d*₆.

Figure S62. ¹³C NMR spectrum of P9 in DMSO-*d*₆.

Figure S63. ¹H NMR spectrum of P10 in DMSO-*d*₆

Figure S64. ¹³C NMR spectrum of P10 in DMSO-*d*6.

Materials and Instruments

Sublimated sulfur purchased from Alfa 4.4'was Aesar: diamines diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 1,4-phenylenediamine, 2,5dimethyl-1,4-phenylenediamine, 4,4'-diaminodiphenylsulfone, 1.4bis(aminomethyl)benzene, dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), and dimethylformamide (DMF) were purchased from Energy Chemical Ltd.; bis(4aminophenyl) sulfide was purchased from TCI, 4,4'-(ethane-1,2-diylbis(oxy))dianiline purchased Bide Pharmatech 4,4'and *p*-toluidine were from Ltd.; dimethylbenzophenone was purchased from Meryer (Shanghai) Biochemical Technology Ltd.; 2,2-difluoro-2-triphenylphosphaniumylacetate was purchased from Shanghai Topbiochem Ltd.; methanol and tetrahydrofuran (THF) were purchased from Shanghai Titan Scientific Co., Ltd.; chlorobenzene was purchased from Aladdin; single side polished wafer was purchased Lige. All reactants and reagents were used without further purification, unless otherwise specified.

¹H, ¹³C, ¹⁹F, and ³¹P NMR spectra were estimated on a Brucker Avance 400 MHz, 500 MHz or 600 MHz NMR spectrometer using deuterated dimethyl sulfoxide (DMSO-*d*₆) or CDCl₃ and tetramethylsilane (TMS, $\delta = 0$) as internal reference. FT-IR spectra were determined on a Bruker Vector 33 FT-IR spectrometer by potassium bromide pellet technique. High resolution mass spectra measurements were carried out on a Bruker maxis impact mass spectrometer. The weight average molecular weights (M_w) and polydispersity indices (PDI = M_w/M_n) of the polymers were estimated by a Waters 1515 gel permeation chromatography system. DMF/LiBr solution (0.05 M LiBr) was used as eluent at a flow rate of 1 mL/min. A set of monodispersed PMMA, covering the M_w range of 10³-10⁶ g/mol, were utilized as standards for molecular weight calibration. Thermogravimetric analysis was carried out on a Netzsch TG STA449F5 at a heating rate of 10 °C/min in a nitrogen flow. Kinetic data analysis was obtained through in situ IR technique, and the polymerization spectra were recorded on a ReactIR 15 from Mettler Toledo AutoChem.

Synthetic Procedures and Characterization Data

Typical procedure of the multicomponent reaction of sulfur, amines, and PDFA.

Sublimed sulfur (45 mg, 1.4 mmol), 1a (135 mg, 1.0 mmol) and PDFA (249 mg, 0.7 mmol) were reacted directly in 1 mL DMAc under nitrogen at 60 °C for 0.5 h in a 10 mL Schlenk tube equipped with a magnetic stirrer. The solution was cooled to room temperature and 10 mL of water was added. Ethyl acetate was used to extract the solution three times $(3 \times 5 \text{ mL})$. The organic layers were combined, and the solvent was removed by vacuum rotary evaporation, and the crude product was then purified by silica gel column chromatography with petroleum ether/ethyl acetate (v/v = 4/1) to produce model compound 4a as a white solid in 91% yield obtained based on amine. **4a**: ¹H NMR (400 MHz, DMSO- d_6) δ (TMS, ppm): 10.08 (s, 2H), 8.06 (s, 2H), 7.75 (t, J = 7.7Hz, 4H), 7.49 (t, J = 7.9 Hz, 2H), 2.57 (s, 6H). ¹³C NMR (100 MHz, DMSO- d_6) δ (TMS, ppm): 197.97 (C=O), 180.57 (C=S), 140.25, 137.56, 129.29, 128.96, 124.95, 123.65, 27.25. HRMS: [M+H⁺] Calc. 313.1005, Found 313.1009. Byproduct Ph₃P=S, white solid, the yield was calculated base on PDFA. yield: 90%. ¹H NMR (400 MHz, CDCl₃) δ (TMS, ppm): 7.75-7.69 (m, 6H), 7.54-7.49 (m, 3H), 7.47-7.42 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (TMS, ppm): 133.49, 132.64, 132.47, 132.36, 131.70, 131.67, 128.72, 128.59. ³¹P NMR (202 MHz, CDCl₃): δ 43.33. HRMS (ESI): [M+Na⁺] Calc. 317.0524, Found 317.0536.

4b: white solid, yield 84%. ¹H NMR (500 MHz, DMSO-*d*₆) δ (TMS, ppm): 10.45 (s, 2H), 7.76 (m, 8H), 7.74-7.72 (m, 4H), 7.69-7.66 (m, 2H), 7.58-7.55 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ (TMS, ppm): 199.83 (C=O), 184.33 (C=S), 148.85, 142.63, 137.61, 137.43, 135.85, 134.63, 133.76, 127.07.

4c: white solid, yield 89%. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 10.35 (s, 2H), 7.92 (d, *J* = 8.5 Hz, 4H), 7.70 (d, *J* = 8.4 Hz, 4H), 4.32-4.27 (m, 4H), 1.31 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (TMS, ppm): 179.15 (C=S), 165.30 (C=O), 143.82, 129.76, 125.10, 122.05, 60.51, 14.20. HRMS: [M+H⁺] Calc. 373.1217, Found 373.1219.

4d: white solid, yield 78%. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 10.37 (s, 2H), 7.76 (d, *J* = 8.5 Hz, 4H), 7.70 (d, *J* = 8.6 Hz, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (TMS, ppm): 179.69 (C=S), 143.07, 125.69, 124.43, 124.11, 123.02. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (TMS, ppm): -60.48. HRMS: [M+H⁺] Calc. 365.0542, Found 365.0545.

4e: white solid, yield 64%. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 10.24 (s, 2H), 7.99 (s, 2H), 7.78-7.76 (m, 2H), 7.62-7.56 (m, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (TMS, ppm): 190.35, 180.15, 140.13, 129.90, 128.69, 126.94, 118.56, 111.23.

4f: light yellow solid, yield 90%. ¹H NMR (600 MHz, DMSO-*d*₆) δ (TMS, ppm): 9.67 (s, 2H), 8.22 (d, *J* = 9.1 Hz, 4H), 7.72 (d, *J* = 8.8 Hz, 4H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ (TMS, ppm): 151.63 (C=S), 145.68, 141.53, 125.14, 117.98. HRMS: [M+H⁺] Calc. 319.3150, Found 319.3034.

4g: white solid, yield 85%. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 10.51 (s, 2H), 7.89 (d, *J* = 8.4 Hz, 4H), 7.80 (d, *J* = 8.5 Hz, 4H), 3.20 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (TMS, ppm): 179.53 (C=S), 144.00, 135.68, 127.74, 122.63, 43.72. HRMS [M+Na⁺] Calc. 407.0164, Found 407.0165.

4h: white solid, yield 93%. ¹H NMR (500 MHz, DMSO-*d*₆) δ (TMS, ppm): 9.58 (s, 2H), 7.33 (d, *J* = 8.3 Hz, 4H), 7.13 (d, *J* = 8.1 Hz, 4H), 2.27 (s, 6H, CH₃). ¹³C NMR (125 MHz, DMSO-*d*₆) δ (TMS, ppm): 179.63 (C=S), 136.86, 133.60, 128.87, 123.90, 20.52. HRMS: [M+Na⁺] Calc. 279.0932, Found 279.0923.

4i: white solid, yield 62%.¹H NMR (500 MHz, DMSO-*d*₆) δ (TMS, ppm): 7.85 (s, 2H), 7.15-7.11 (m, 8H), 4.61 (s, 4H), 2.27 (s, 6H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ (TMS, ppm): 135.89, 128.79, 127.24, 46.91, 20.68.

Typical procedure of the multicomponent polymerizations of sulfur, diamines, and PDFA.

Diamine **5a** (0.5 mmol, 99 mg), sublimed sulfur (1.3 mmol, 42 mg), PDFA (0.65 mmol, 232 mg) were reacted in 1 mL DMAc under nitrogen at 60 °C for 1 h in a 10 mL

Schlenk tube equipped with a magnetic stir bar. The reaction solution was cooled to room temperature and was diluted with 4 mL DMAc, and then dropwise added 100 mL methanol through a cotton filter for precipitation. The precipitates were filtrated and washed with methanol (3×50 mL), and then the precipitates were dried under vacuum to obtain absolute weight and a white solid **P1** was obtained in 93% yield. $M_w = 65900$ g/mol $M_w/M_n = 1.85$. FT-IR (KBr disk) v (cm⁻¹): 3355, 3222, 1595, 1537, 1509, 1412, 1315, 1254, 1017, 926, 814, 715, 500. ¹H NMR (500 MHz, DMSO- d_6) δ (TMS, ppm): 9.67 (s, 2H), 7.36 (d, J = 9.0 Hz, 4H), 7.18 (d, J = 9.2 Hz, 4H), 3.86 (s, 2H). ¹³C NMR (125 MHz, DMSO- d_6) δ (TMS, ppm): 179.49, 137.49, 137.41, 128.61, 123.84, 40.10.

Characterization of polythioureas P2-P10

P2: a white solid was obtained in 89% yield. $M_{\rm w} = 33500 \text{ g/mol}, M_{\rm w}/M_{\rm n} = 1.50$. FT-IR (KBr disk), $v \,(\text{cm}^{-1})$: 3233, 1600, 1539, 1495, 1337, 1212, 1161, 1011, 876, 830, 505. ¹H NMR (500 MHz, DMSO- d_6) δ (TMS, ppm): 8.86 (s, 2H), 6.61 (d, J = 8.6 Hz, 4H), 6.15 (d, J = 8.5 Hz, 4H). ¹³C NMR (125 MHz, DMSO- d_6) δ (TMS, ppm): 179.98, 153.62, 134.83, 125.98, 118.46.

P3: a light-yellow solid was obtained in 89% yield. $M_w = 29100 \text{ g/mol}, M_w/M_n = 1.82$. FT-IR (KBr disk), v (cm⁻¹): 3352, 2078, 1641, 1583, 1400, 1397, 1309, 1246, 1177, 1081, 1012, 922, 821, 766, 567, 498. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 9.95 (s, 2H), 7.50 (d, J = 8.3 Hz, 4H), 7.29 (d, J = 8.1 Hz, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (TMS, ppm): 179.28, 138.83, 131.06, 130.12, 124.26.

P4: a white solid was obtained in 99% yield. M_w = 46800 g/mol, M_w/M_n = 1.93. FT-IR (KBr disk), *v* (cm⁻¹): 3208, 1690, 1550, 1506, 1337, 1295, 1218, 1167, 1046, 923, 827, 722, 677, 518. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 9.45 (s, 2H), 7.33 (d, *J* = 8.3 Hz, 4H), 6.95 (d, *J* = 8.6 Hz, 4H), 4.29 (s, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (TMS, ppm): 180.14, 155.55, 132.49, 126.06, 114.30, 66.53.

P5: a white solid was obtained in 98% yield. $M_w = 36900 \text{ g/mol}, M_w/M_n = 2.06$. FT-IR (KBr disk), $v \text{ (cm}^{-1}$): 3214, 2034, 1600, 1505, 1408, 1307, 1246, 1014, 932, 830, 681,

504. ¹H NMR (500 MHz, DMSO-*d*₆) δ (TMS, ppm): 9.78 (s, 2H), 7.45 (s, 4H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ (TMS, ppm): 179.43, 135.85, 123.74.

P6: a white solid was obtained in 78% yield. M_w = 32500 g/mol, M_w/M_n = 1.55. FT-IR (KBr disk), *v* (cm⁻¹): 3180, 2918, 2076, 1623, 1509, 1459, 1344, 1226, 1306, 884, 702. ¹H NMR (500 MHz, DMSO-*d*₆) δ (TMS, ppm): 9.03 (s, 2H), 7.14 (s, 2H), 2.17 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (TMS, ppm): 180.96, 135.82, 132.71, 129.88, 17.35.

P7: a yellow solid was obtained in 43% yield. $M_w = 10400 \text{ g/mol}, M_w/M_n = 1.66$. FT-IR (KBr disk), $v (\text{cm}^{-1})$: 3270, 3055, 1542, 1508, 1420, 1380, 1337, 1288, 1174, 1109, 1019, 958, 753. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 7.91 (s, 2H), 7.23 (s, 4H), 4.64 (s, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (TMS, ppm): 137.84, 127.23, 46.81.

P8: a white solid was obtained in 70% yield. $M_{\rm w} = 5700$ g/mol, $M_{\rm w}/M_{\rm n} = 1.15$. FT-IR (KBr disk), v (cm⁻¹): 3266, 3061, 1696, 1548, 1419, 1375, 1337, 1287, 1015, 956, 734. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 7.95 (s, 2H), 7.39-7.18 (m, 4H), 4.67 (s, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (TMS, ppm): 177.32, 139.25, 128.30, 126.23, 125.77, 47.00.

P9: a white solid was obtained in 76% yield. $M_w = 7900 \text{ g/mol}, M_w/M_n = 1.29$. FT-IR (KBr disk), $v (\text{cm}^{-1})$: 3568, 3365, 1637, 1591, 1530, 1495, 1315, 1147, 1104, 736, 681, 551. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 10.49 (s, 2H), 7.90 (d, J = 8.3 Hz, 4H), 7.74 (d, J = 8.5 Hz, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (TMS, ppm): 179.39, 143.97, 136.13, 128.10, 122.84.

P10: a white solid was obtained in 85% yield, $M_{\rm w} = 18600$ g/mol, $M_{\rm w}/M_{\rm n} = 1.66$. FT-IR (KBr disk), v (cm⁻¹) 3266.57, 1644.32, 1598.02, 1521.24, 1404.94, 1310.09, 1284.12, 1246.86, 1172.33, 1147.19, 1017.64, 927.31, 855.05. ¹H NMR (500 MHz, DMSO-*d*₆) δ (TMS, ppm): 10.44 (s, 2H), 7.77 (s, 8H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ (TMS, ppm): 193.31, 178.98, 143.25, 132.49, 130.32, 121.78.

Figure S1. HRMS spectrum of the reaction solution of *p*-toluidine, sulfur, and PDFA in DMAc. The mixture of *p*-toluidine (1.0 mmol), elemental sulfur (1.3 mmol, $1/8 S_8$), and PDFA (0.65 mmol) dissolved in DMAc (1 mL) was stirred at 60 °C for 20 min under nitrogen atmosphere, which was cooled in an ice bath, and the mixture was filtered through a 200 µm filter for high-resolution mass spectrometry (HRMS) analysis.

Figure S2. Proposed mechanism for the MCR of amine, sulfur and PDFA.

Figure S3. Crystal stacking and H-bond diagram of compounds 4d-4i.

entry	solvent	yield (%)	$M_{ m w}$ (g/mol)	$M_{ m w}/M_{ m n}$
1	DMF	60	10200	1.24
2	DMAc	84	16800	1.34
3	DMSO	56	18700	1.53
4	THF	60	10000	1.26

Table S1. Effect of solvent on the polymerization^a

^{*a*}**5a** (0.5 mmol), $Ph_3P^+CF_2CO_2^-$ (0.65 mmol), $1/8S_8$ (1.3 mmol) in 1 mL solvent and the mixture was stirred for 3 h at 40 °C under N₂.

entry	base	yield (%)	$M_{ m w}$ (g/mol)	$M_{ m w}/M_{ m n}$
1	K ₂ CO ₃	91	38500	1.29
2	Na ₂ CO ₃	98	33400	1.38
3	NaOH	89	25600	1.35
4	KF	79	14400	1.24
5	TEA	96	29300	1.36
6	-	94	53900	1.82

Table S2. Effect of base on the polymerization^{*a*}

^{*a*}**5a** (0.5 mmol), $Ph_3P^+CF_2CO_2^-$ (0.65 mmol), $1/8S_8$ (1.3 mmol) in 1 mL DMAc and the mixture was stirred for 3 h at 60 °C, under N₂.

Table S3. Effect of reaction time on the polymerization^a

entry	t	yield (%)	M _w (g/mol)	$M_{ m w}/M_{ m n}$
1	10 min	87	42000	1.70
2	0.5 h	93	53200	1.70
3	1.0 h	93	65900	1.85
4	2.0 h	94	54100	1.71
5	3.0 h	94	53900	1.82
6	4.0 h	95	48100	1.67

^{*a*}**5a** (0.5 mmol) as standard, $Ph_3P^+CF_2CO_2^-$ (0.65 mmol), 1/8S₈ (1.3 mmol) in 1 mL DMAc and the mixture was stirred at 60 °C under N₂.

Table S4. Effect of concentration of 5a on the polymerization^a

entry	[5 a]/M	yield (%)	$M_{ m w}$ (g/mol)	$M_{ m w}/M_{ m n}$
1	0.25	93	25600	1.51
2	0.5	93	65900	1.85
3	1.0	80	17000	1.36

^{*a*}**5a** (0.5 mmol) as standard, $Ph_3P^+CF_2CO_2^-$ (0.65 mmol), 1/8S₈ (1.3 mmol) in 2 mL, 1 mL, and 0.5 mL of DMAc and the mixture was stirred at 60 °C for 1 h under N₂.

Figure S4. FT-IR spectra of (A) *p*-toluidine, (B) model molecular **4h**, (C) diamine monomer **5a**, and (D) **P1**.

Figure S5. Stack *in situ* FT-IR spectra of monomer **5a**, **P1**, PDFA, and Ph₃P=S in DMSO.

Figure S6. The normalized GPC curves of the aromatic polythioureas.

Figure S7. (A) ¹H NMR and (B) ¹³C NMR spectra of 5a, model molecular 4h, and P1 in DMSO- d_6 .

Figure S8. ¹H NMR spectra of P1-P5 in DMSO-*d*₆.

Figure S9. ¹H NMR spectra of P6-P10 in DMSO-*d*6.

Figure S10. ¹³C NMR spectra of P1-P5 in DMSO-*d*₆.

Figure S11. ¹³C NMR spectra of P6-P10 in DMSO-*d*₆.

Figure S12. X-ray photoelectron spectra of S 2p energy band of (A) elemental sulfur, (B) model compound **4h** and (C) polythiourea **P1**.

Figure S13. FT-IR spectra of P2-P5.

Figure S14. FT-IR spectra of P6-P10.

Figure S15. DSC curve of P10. T_g : glass transition temperature.

entry	thickness (nm)	n 633	VD	D	VD'	D'
P1	118	1.7196	15.99	0.0626	46.78	0.0214
P2	143	1.7430	17.10	0.0585	7.50	0.1333
P3	149	1.7918	8.04	0.1245	46.62	0.0215
P6	36	1.7588	13.65	0.0732	246.13	0.0041
P7	90	1.6628	12.64	0.0791	34.68	0.0288
P9	164	1.7337	11.84	0.0844	7.51	0.1332
P10	125	1.8133	6.71	0.1489	46.33	0.0216

Table S5. Refractive indices and chromatic dispersions

^{*a*}Abbreviation: n = refractive index, $v_D =$ Abbé number = $(n_D - 1)/(n_F - n_C)$, where n_D , n_F , and n_C are the RI values at wavelengths of Fraunhofer D, F, and C spectral lines of 589.2, 486.1, and 656.3 nm, respectively; $v_D' =$ modified Abbé number = $(n_{1319} - 1)/(n_{1064} - n_{1550})$, where n_{1319} , n_{1064} , and n_{1550} are the *n* values at the wavelengths of 1064, 1319, and 1550 nm, $D = 1/v_D$, $D' = 1/v_D'$.

Figure S16. Transmittance spectra of P1, P2, P5-P7, P9 and P10. Insert pictures were dry solid and spin-coated film of P10 on quartz.

	4d	4 e	4 f
CCDC number	2407294	2407295	2407296
Empirical formula	$C_{15}H_{10}F_6N_2S$	$C_{15}H_{10}N_4S$	C17H18N4O5S
Formula weight	364.31	278.33	390.41
Temperature [K]	302.36(10)	300.55(10)	149.99(10)
Crystal system	monoclinic	orthorhombic	triclinic
Space group (number)	$P2_{1}/c$ (14)	<i>Fdd</i> 2 (43)	P - 1 (2)
a [Å]	14.2700(3)	24.3010(9)	6.9039(2)
<i>b</i> [Å]	7.5957(2)	13.2694(4)	10.6650(3)
<i>c</i> [Å]	14.4949(3)	8.6371(3)	12.8313(6)
α/β/γ [°]	90/102.715(2)/90	90/90/90	69.245(4)/89.785(3)/83.280(2)
Volume [Å ³]	1532.58(6)	2785.12(16)	876.67(6)
Ζ	4	8	2
$\rho_{\rm calc} [\rm g cm^{-3}]$	1.579	1.328	1.479
$\mu [\mathrm{mm}^{-1}]$	2.521	2.016	1.990
F(000)	736	1152	408
Crystal size [mm ³]	0.1×0.11×0.12	0.1×0.11×0.12	0.02×0.01×0.01
Crystal colour	colourless	colourless	yellow
Crystal shape	cube	plate	block
Dediction	Cu K_{α}	$Cu K_{\alpha}$	Cu Ka
Radiation	(λ=1.54184 Å)	(λ=1.54184 Å)	(λ=1.54184 Å)
20 man an [0]	6.35 to 147.17	12.76 to 146.97	7.37 to 148.50
20 range []	(0.80 Å)	(0.80 Å)	(0.80 Å)
	$-17 \leq h \leq 17$	$-20 \leq h \leq 29$	$-5 \le h \le 8$
Index ranges	$-5 \le k \le 8$	$-16 \le k \le 16$	$-13 \le k \le 13$
	$-17 \le l \le 17$	$-10 \le l \le 10$	$-15 \le l \le 15$
Reflections collected	9056	2627	7774
	2973	1188	3349
Independent reflections	$R_{\rm int} = 0.0203$	$R_{\rm int} = 0.0125$	$R_{\rm int} = 0.0186$
	$R_{\rm sigma} = 0.0193$	$R_{\rm sigma} = 0.0126$	$R_{ m sigma} = 0.0217$
Completeness to $\theta = 67.684^{\circ}$	99.1	99.0	98.0 %
Data / Restraints / Parameters	2973 / 0 / 219	1188 / 2 / 93	3349/1/244
Goodness-of-fit on F^2	1.089	1.082	1.077
Final <i>R</i> indexes	$R_1 = 0.0602$	$R_1 = 0.0644$	$R_1 = 0.0364$
$[I \ge 2\sigma(I)]$	$wR_2 = 0.1760$	$wR_2 = 0.1885$	$wR_2 = 0.1016$
Final R indexes	$R_1 = 0.0638$	$R_1 = 0.0651$	$R_1 = 0.0377$
[all data]	$wR_2 = 0.1795$	$wR_2 = 0.1902$	$wR_2 = 0.1028$
Largest peak/hole [eÅ ⁻³]	0.61/-0.58	0.83/-0.39	0.28/-0.31

 Table S6. Single crystal data of compounds 4d-4f

	4 g	4h	4i
CCDC number	2407300	2245406	2407301
Empirical formula	C17H22N2O5S4	$C_{15}H_{16}N_2S$	$C_{17}H_{20}N_2S$
Formula weight	462.60	256.36	284.41
Temperature [K]	301.31(10)	150.00(10)	100.02(10)
Crystal system	monoclinic	orthorhombic	orthorhombic
Space group (number)	<i>C</i> 2/ <i>c</i> (15)	Pbcn (60)	<i>Pbca</i> (61)
<i>a</i> [Å]	23.2186(4)	11.6219(2)	10.7780(2)
<i>b</i> [Å]	11.0403(2)	13.9013(2)	9.33460(10)
<i>c</i> [Å]	8.7466(2)	8.4102(2)	30.4546(4)
α/β/γ [°]	90/108.1020(10)/90	90/90/90	90/90/90
Volume [Å ³]	2131.13(7)	1358.75(4)	3063.99(8)
Ζ	4	4	8
$ ho_{ m calc} [m g cm^{-3}]$	1.442	1.253	1.233
$\mu \ [\mathrm{mm}^{-1}]$	4.371	1.965	1.790
<i>F</i> (000)	968	544	1216
Crystal size [mm ³]	0.08×0.08×0.12	$0.02 \times 0.01 \times 0.01$	0.08×0.1×0.12
Crystal colour	clear colourless	colourless	colourless
Crystal shape	needle	needle	plate
Dediction	Cu <i>K</i> _α (λ=1.54178	$\operatorname{Cu} K_{\alpha}$	Cu K_{α}
Kaulation	Å)	(λ=1.54184 Å)	(λ=1.54184 Å)
20 man an [0]	8.01 to 147.29	9.92 to 147.93	5.80 to 154.57
	(0.80 Å)	(0.80 Å)	(0.79 Å)
	$-28 \le h \le 26$	$-13 \le h \le 14$	$-13 \le h \le 10$
Index ranges	$-13 \le k \le 13$	$-16 \le k \le 17$	$-11 \le k \le 11$
	$-6 \le 1 \le 10$	$-5 \le l \le 9$	$-35 \le l \le 38$
Reflections collected	5086	4973	15574
	2015	1331	3129
Independent reflections	$R_{\rm int} = 0.0215$	$R_{\rm int} = 0.0177$	$R_{\rm int} = 0.0336$
	$R_{\mathrm{sigma}} = 0.0244$	$R_{\rm sigma} = 0.0162$	$R_{\rm sigma} = 0.0242$
Completeness to $\theta = 67.684^{\circ}$	96.8	98.8 %	99.9
Data / Restraints / Parameters	2015 / 4 / 150	1331/0/84	3129 / 0 / 183
Goodness-of-fit on F^2	1.096	1.058	1.072
Final <i>R</i> indexes	$R_1 = 0.0399$	$R_1 = 0.0340$	$R_1 = 0.0353$
$[I \ge 2\sigma(I)]$	$wR_2 = 0.1176$	$wR_2 = 0.0927$	$wR_2 = 0.0953$
Final R indexes	$R_1 = 0.0413$	$R_1 = 0.0352$	$R_1 = 0.0387$
[all data]	$wR_2 = 0.1192$	$wR_2 = 0.0937$	$wR_2 = 0.0980$
Largest peak/hole [eÅ ⁻³]	0.44 / -0.48	0.22/-0.33	0.30/-0.34

 Table S7. Single crystal data of compounds 4g-4i

Figure S18. ¹³C NMR spectrum of 4a in DMSO-*d*₆.

Figure S19. HR-MS spectrum of 4a.

Figure S20. ¹H NMR spectrum of 4b in DMSO-*d*₆.

Figure S22. ¹H NMR spectrum of 4c in DMSO-*d*₆.

Figure S23. ¹³C NMR spectrum of 4c in DMSO-*d*₆.

Figure S24. HR-MS spectrum of 4c.

Figure S26. ¹³C NMR spectrum of 4d in DMSO-*d*₆.

Figure S27. ¹⁹F NMR spectrum of 4d in DMSO- d_6 .

Figure S28. HR-MS spectrum of 4d.

Figure S30. ¹³C NMR spectrum of 4e in DMSO-*d*₆.

Figure S31. ¹H NMR spectrum of 4f in DMSO-d₆.

Figure S32. ¹³C NMR spectrum of 4f in DMSO-*d*₆.

Figure S33. HR-MS spectrum of 4f.

Figure S34. ¹H NMR spectrum of 4g in DMSO-*d*₆.

Figure S35. ¹³C NMR spectrum of 4g in DMSO-*d*₆.

Figure S36. HR-MS spectrum of 4g.

Figure S38. ¹³C NMR spectrum of 4h in DMSO-*d*6.

Figure S39. HR-MS spectrum of 4h.

Figure S40. ¹H NMR spectrum of 4i in DMSO-*d*₆.

Figure S42. ¹H NMR spectrum of Ph₃P=S in CDCl₃.

Figure S43. ¹³C NMR spectrum of Ph₃P=S in CDCl₃.

Figure S44. ³¹P NMR spectrum of Ph₃P=S in CDCl₃.

Figure S46. ¹³C NMR spectrum of P1 in DMSO-*d*6.

Figure S48. ¹³C NMR spectrum of P2 in DMSO-*d*₆.

Figure S49. ¹H NMR spectrum of P3 in DMSO-*d*₆.

Figure S50. ¹³C NMR spectrum of P3 in DMSO-*d*₆.

Figure S52. ¹³C NMR spectrum of P4 in DMSO-*d*₆.

Figure S53. ¹H NMR spectrum of P5 in DMSO-*d*₆.

Figure S54. ¹³C NMR spectrum of P5 in DMSO-*d*₆.

Figure S56. ¹³C NMR spectrum of P6 in DMSO-*d*₆.

Figure S58. ¹³C NMR spectrum of P7 in DMSO-*d*₆.

Figure S59. ¹H NMR spectrum of P8 in DMSO-*d*₆.

Figure S60. ¹³C NMR spectrum of P8 in DMSO-*d*₆.

Figure S62. ¹³C NMR spectrum of P9 in DMSO-*d*₆.

Figure S64. ¹³C NMR spectrum of P10 in DMSO-*d*₆.