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Figure S1. GP/AP, Ni/AP and CPNi/AP’s conductivity chart.

Figure S2. (a)-(b) SEM images of A4 paper and (c)-(d) GC/AP at different 
magnifications.

Figure S3. SEM images of (a) Pt Plate, (b) Ni Plate, and (c) Ni/AP.



Figure S4. (a) TEM images, (b) HAADF-TEM images of CPNi/AP, and (c)-(d) 
corresponding Ni and P EDS images.

Figure S5. XRD patterns of Ni Plate, cracked phosphorus doped nickel plating on 
carbon cloth (CPNi/CC) at 30° to 60° magnification intervals.

Figure S6. Raman spectra of the blank A4 paper and GP/AP.



Figure S7. XPS survey spectrum of CPNi/AP.

Figure S8. TG curves of CPNi/AP and Ni/AP.

Figure S9. (a) HER polarization curves and (b) Tafel plots of 20% Pt/C and CPNi/AP 
in 1.0M KOH solution at a scan rate of 1 mV s-1.



Figure S10. CV curves of (a) Pt plate, (b) Ni plate, (c) Ni/AP and (d) CPNi/AP with 
different current density.

Figure S11. XPS survey spectra of CPNi/AP before and after the chronopotentiometry 
tests with a constant current density of 10 mA cm-2 for 100 h.



Figure S12. High-resolution XPS spectra of (a) Ni 2p and (b) P 2p in CPNi/AP before 
and after the chronopotentiometry tests with a constant current density of 10 mA cm-2 
for 100 h.

Figure S13. XRD patterns of CPNi/AP before and after reaction.

Figure S14. SEM images of CPNi/AP at different magnifications after 100 h CP test.



Figure S15. Pore size distribution of CPNi/AP and Ni/AP.

Figure S16. The gas bubble contact angles of (a) Ni plate and (b) Ni/AP.

Figure S17. Adhesive forces measurements of the gas bubbles on (a) Ni plate and (b) 
Ni/AP. 



Figure S18. Contact angle of CPNi/AP.



Table S1. Selected summary of the HER performance of some NixP catalysts. 

Overpotential 
(mV)

Catalyst Substrate Electrolyte

ŋ10 ŋ100

Synthetic method Ref.

Ni2P 
nanosheets

Glassy 
carbon

1 M KOH 168 Hydrothermal [1]

Ni5P4 
Nanocrystalline

Glassy 
carbon

1 M KOH 49 202 Solvothermal [2]

Ni12P5 hollow Glassy 
carbon

1 M KOH 208 Thermal 
decomposition

[3]

NiPx 
nanospheres

Glassy 
carbon

0.1 M 
buffer 

solution
230 360* Electrosynthesis [4]

NiP2 nanosheet 
arrays

Carbon 
cloth

0.5 M 
H2SO4

75 204 Hydrothermal [5]

Ni5P4 
nanosheets

Glassy 
carbon

1 M KOH 147 Ice-templating [6]

Ni2P Carbon 
cloth

1 M KOH 114 290* Hydrothermal [7]

Ni2P Ni foam 1 M KOH 207 400* Hydrothermal [8]

Fe-Ni2P Ni foam 1 M KOH 75 226 Hydrothermal [9]

Ni-P Ni foam 1 M KOH 200 310 Hydrothermal [10]

Ni2P
Porous 
carbon

0.5 M 
H2SO4

194 Thermal 
decomposition [11]

Ni-P Carbon 
nanotubes 1 M KOH 126 Powder sintering [12]

NiP Glassy 
carbon 1 M KOH 155 400* Hydrothermal [13]

HP Ni-P RDE 1 M KOH 99 144 Electrodeposition [14]

Ni2P/Ni12P5 Ni foam 1 M KOH 95 203 Hydrothermal [15]

CPNi/AP A4 paper 1 M KOH 101 183 Electrodeposition Current 
work

* Based on estimation of the LSV curves in the article.



Table S2. The Rct values for different electrodes in 1 M KOH.

Electrode Electrolyte Rct (Ω)

Pt plate 7.2

Ni plate 12.6

Ni/AP 5.3

CPNi/AP

1 M KOH

2.0

Table S3. Table of volume change of Ni27-xPx. 

The volume of lattice （Å3）The 

numbe

r of x in 

Ni27-xPx

Atomic 
structure 
model 1

Atomic 
structure 
model 2

Atomic 
structure 
model 3

Atomic 
structure 
model 4

Atomic 
structure 
model 5

Average 

volume(Å3)

0 291.33 291.33

1 290.80 290.42 290.77 290.42 290.60

2 289.54 289.54 289.54 289.54 287.89 289.21

3 288.33 288.63 288.48
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