Supporting information

Electrodeposited Superaerophobic Nickel Catalyst on Pencil-Drawn Paper: A

Novel Approach for Highly Efficient and Stable Hydrogen Evolution

Qian Sun¹, Xiaoyu Hao¹, Tianyi Zhang¹, Zelin Ma¹, Kui Hu⁶, Ming Yang^{4,5*}, Xiaolei Huang^{3*}, Xuqin Liu^{1,2*}

¹ State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.

² Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai,
264006, China

³ Institute of Material and Chemistry, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China.

⁴ Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.

⁵ Research Centre on Data Sciences & Artificial Intelligence, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.

⁶ Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.

Figure S1. GP/AP, Ni/AP and CPNi/AP's conductivity chart.

Figure S2. (a)-(b) SEM images of A4 paper and (c)-(d) GC/AP at different magnifications.

Figure S3. SEM images of (a) Pt Plate, (b) Ni Plate, and (c) Ni/AP.

Figure S4. (a) TEM images, (b) HAADF-TEM images of CPNi/AP, and (c)-(d) corresponding Ni and P EDS images.

Figure S5. XRD patterns of Ni Plate, cracked phosphorus doped nickel plating on carbon cloth (CPNi/CC) at 30° to 60° magnification intervals.

Figure S6. Raman spectra of the blank A4 paper and GP/AP.

Figure S7. XPS survey spectrum of CPNi/AP.

Figure S9. (a) HER polarization curves and (b) Tafel plots of 20% Pt/C and CPNi/AP in 1.0M KOH solution at a scan rate of 1 mV s⁻¹.

Figure S10. CV curves of (a) Pt plate, (b) Ni plate, (c) Ni/AP and (d) CPNi/AP with different current density.

Figure S11. XPS survey spectra of CPNi/AP before and after the chronopotentiometry tests with a constant current density of 10 mA cm⁻² for 100 h.

Figure S12. High-resolution XPS spectra of (a) Ni 2p and (b) P 2p in CPNi/AP before and after the chronopotentiometry tests with a constant current density of 10 mA cm⁻² for 100 h.

Figure S13. XRD patterns of CPNi/AP before and after reaction.

Figure S14. SEM images of CPNi/AP at different magnifications after 100 h CP test.

Figure S16. The gas bubble contact angles of (a) Ni plate and (b) Ni/AP.

Figure S17. Adhesive forces measurements of the gas bubbles on (a) Ni plate and (b) Ni/AP.

Figure S18. Contact angle of CPNi/AP.

Catalyst	Substrate	Electrolyte	Overpotential (mV)		(mV) Synthetic method	
		_	\mathfrak{y}_{10}	\mathfrak{y}_{100}		
Ni ₂ P nanosheets	Glassy carbon	1 М КОН	168		Hydrothermal	[1]
Ni ₅ P ₄ Nanocrystalline	Glassy carbon	1 М КОН	49	202	Solvothermal	[2]
$Ni_{12}P_5$ hollow	Glassy carbon	1 М КОН	208		Thermal decomposition	[3]
NiP _x nanospheres	Glassy carbon	0.1 M buffer solution	230	360*	Electrosynthesis	[4]
NiP ₂ nanosheet arrays	Carbon cloth	0.5 M H ₂ SO ₄	75	204	Hydrothermal	[5]
Ni ₅ P ₄ nanosheets	Glassy carbon	1 M KOH	147		Ice-templating	[6]
Ni ₂ P	Carbon cloth	1 М КОН	114	290*	Hydrothermal	[7]
Ni ₂ P	Ni foam	1 М КОН	207	400*	Hydrothermal	[8]
Fe-Ni ₂ P	Ni foam	1 М КОН	75	226	Hydrothermal	[9]
Ni-P	Ni foam	1 M KOH	200	310	Hydrothermal	[10]
Ni ₂ P	Porous carbon	0.5 M H ₂ SO ₄	194		Thermal decomposition	[11]
Ni-P	Carbon nanotubes	1 М КОН	126		Powder sintering	[12]
NiP	Glassy carbon	1 M KOH	155	400*	Hydrothermal	[13]
HP Ni-P	RDE	1 M KOH	99	144	Electrodeposition	[14]
Ni ₂ P/Ni ₁₂ P ₅	Ni foam	1 M KOH	95	203	Hydrothermal	[15]
CPNi/AP	A4 paper	1 М КОН	101	183	Electrodeposition	Current work

Table S1. Selected summary of the HER performance of some Ni_xP catalysts.

* Based on estimation of the LSV curves in the article.

Electrode	Electrolyte	$R_{ct}(\Omega)$
Pt plate	1 M KOH	7.2
Ni plate		12.6
Ni/AP		5.3
CPNi/AP		2.0

Table S2. The R_{ct} values for different electrodes in 1 M KOH.

The (Å³) The volume of lattice Average numbe Atomic Atomic Atomic Atomic Atomic volume(Å³) r of x in structure structure structure structure structure model 2 model 3 model 4 model 5 model 1 $Ni_{27-x}P_x$ 0 291.33 291.33 290.771 290.60 290.80 290.42 290.42 2 289.54 289.54 289.54 289.54 287.89 289.21 3 288.33 288.63 288.48

Table 55. Table of volume change of $N_{127-x}P_x$.	Table S3.	Table of	volume	change	of Ni _{27-x} P _x	
--	-----------	----------	--------	--------	--------------------------------------	--

References

- [1] Q. Wang, Z. Liu, H. Zhao, H. Huang, H. Jiao and Y. Du, MOF-derived porous Ni2P nanosheets as novel bifunctional electrocatalysts for the hydrogen and oxygen evolution reactions. J. Mater. Chem. A, 2018, 6, 18720-18727.
- [2] A. Laursen, K. Patraju, M. Whitaker, M. Retuerto, T. Sarkar, N. Yao, K. V. Ramanujachary, M. Greenblatt and G. C. Dismukes, Nanocrystalline Ni5P4: a hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energ. Environ. Sci., 2015, 8, 1027-1034.
- Y. Pan, Y. Liu, J. Zhao, K. Yang, J. Liang, D. Liu, W. Hu, D. Liu, Y. Liu and C. Liu, Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution. J. Mater. Chem. A, 2015, 3, 1656-1665.
- [4] M. Chen, J. Qi, W. Zhang and R. Cao, Electrosynthesis of NiPx nanospheres for electrocatalytic hydrogen evolution from a neutral aqueous solution. Chem. Commun, 2017, 53, 5507-5510.
- [5] P. Jiang, Q. Liu and X. Sun, NiP2 nanosheet arrays supported on carbon cloth: an efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions, Nanoscale, 2014, 6, 13440-13445.
- [6] S. Lai, C. Lv, S. Chen, P. Lu, X. She, L. Wan, H. Wang, J. Sun, D. Yang, X. Zhao, Ultrathin nickel phosphide nanosheet aerogel electrocatalysts derived from Nialginate for hydrogen evolution reaction. J. Alloy. and Compd, 2020, 817, 152727.

[7] Y. Sun, W. Cao, X. Ge, X. Yang, Y. Wang, Y. Xu, B. Ouyang, Q. Shen and C. Li,Built-in electric field induced interfacial charge distributions of Ni2P/NiSe2

heterojunction for urea-assisted hydrogen evolution reaction, Inorg. Chem. Front.,2023, **10**, 6674-6682.

[8] M. Ma, W. Xia, W. Liu, X. Guo, D. Cao and D. Cheng, Constructing NiMoP nanorod arrays with a highly active Ni2P/NiMoP2 interface for hydrogen evolution in 0.5 M H2SO4 and 1.0 M KOH media, Mater. Chem. Front., 2023, 7, 4029-4039.

[9] J. Zhang, J. Wang, H. Zhang, Y. Hu and H. Jiang, Chunzhong Li, Hierarchically Heterostructured Ni(OH)2/Fe–Ni2P Nanoarray: A Synergistic Electrocatalyst for Accelerating Alkaline Hydrogen Evolution, ACS Sustainable Chem. Eng. 2023, **11**, 458–463.

[10] Q. Xu, P. Wang, L. Wan, Z. Xu, M. Z. Sultana and B. Wang, Superhydrophilic/Superaerophobic Hierarchical NiP2@MoO2/Co(Ni)MoO4 Core-Shell Array Electrocatalysts for Efficient HydrogenProduction at Large Current Densities, ACS Appl. Mater. Interfaces 2022, 14, 19448–19458.

[11] Y. Lin, J. Zhang, Y. Pan and Y. Liu, Nickel phosphide nanoparticles decorated nitrogen and phosphorus co-doped porous carbon as efficient hybrid catalyst for hydrogen evolution, Appl. Surf. Sci, 2017, **422**, 828–837.

[12] D. Li, W. Lan, Z. Liu and Y. Xu, Powder sintered Ni-P/CNTs composites as threedimensional self-supported efficient electrocatalysts for hydrogen evolution reaction, J. Alloys Compd., 2020, 825, 153920.

[13] Y. Hou, Z. Yuan, X. Yu, B. Ma, L. Zhao and D. Kong, Directly preparing welldispersed ultra-hydrophilic NiFeP nanoparticle/Mxene complexes from spent electroless Ni plating solution as efficient hydrogen evolution catalysts, J. Environ. Chem. Eng., 2023, 11, 109738.

[14] D. Song, D. Hong, Y. Kwon, H. Kim, J. Shin, H. Lee and E. Cho, Highly porous Ni-P electrode synthesized by an ultrafast electrodeposition process for efficient overall water electrolysis, J. Mater. Chem. A, 2020, 8, 12069-12079.

[15] T. Zhao, S. Wang, Y. Li, C. Jia, Z. Su, D. Hao, B. Ni, Q. Zhang and C. Zhao, Heterostructured V-Doped Ni₂P/Ni₁₂P₅ Electrocatalysts for Hydrogen Evolution in Anion Exchange Membrane Water Electrolyzers, Small, 2022, 18, 2204758.