Gelation-induced controlled synthesis of TiO_2 with tunable phase transition for efficient photocatalytic hydrogen evolution

Wenwei Lei, *a Ying Wang, a Hongji Wang, Norihiro Suzuki, b Chiaki Terashima *c

and Akira Fujishima^c

^a Hebei Key Laboratory of Nano-biotechnology, School of Environmental and

Chemical Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China

^b Department of Natural Sciences, School of Engineering, Tokyo Denki University, 5 Senjyu Asahi-cho, Adachi-ku, Tokyo 120-8551, Japan

^c Research Center for Space System Innovation, Tokyo University of Science, 2641

Yamazaki, Noda, Chiba 278-8510, Japan

^d Institute of Photochemistry and Photomaterials, University of Shanghai for Science and Technology, Shanghai 2000093, P.R. China

Corresponding Authors.

E-mail: leiww@ysu.edu.cn (Wenwei Lei); terashima@rs.tus.ac.jp (Terashima)

Table of Contents

1.Supplementary Methods
2.Supplementary Figures4
Fig. S1 SEM morphology images of A _x R _y -TiO ₂ obtained under different synthesis conditions
Fig. S2 Nitrogen adsorption-desorption isotherms of commercial P25 and A ₇₆ /R ₂₄ -TiO ₂
Fig. S3 Full XPS spectra of commercial P25 and A ₇₆ /R ₂₄ -TiO ₂ 6
Fig. S4 EPR spectra measured at room temperature of commercial P25 and A_{76}/R_{24} -TiO ₂
Fig. S5 Hydrogen production from photocatalyst as a function of time8
Fig. S6 Photocatalytic decomposition of methylene blue
Fig. S7 XRD and XPS tests of A_{76}/R_{24} -TiO ₂ before and after 6 cycles (24h) of photocatalytic H ₂ production
Fig. S8 Photoelectrochemical responses of commercial P25 and A_{76}/R_{24} -TiO ₂ 11
Fig. S9 EIS of commercial P25 and A_{76}/R_{24} -TiO ₂ under AM1.5 irradiation12
Fig. S10 PL spectra of commercial P25 and A_{76}/R_{24} -TiO ₂ 13
3.Supplementary Tables14
Table S1 Comparison of the H ₂ evolution efficiency for the TiO ₂ -based catalysts without using any co-catalysts 14
Table S2 Comparison of the H ₂ evolution efficiency for the TiO ₂ -based catalysts with co-catalysts
Table S3 Comparison of methods that can modulate the composition of the TiO2 phase
4.Supplementary References16

1. Supplemental Methods

Materials: Commercial P25 was obtained from Degussa (Germany). Polyvinyl alcohol (PVA, average Mw 130,000, 99+% hydrolyzed) was obtained from Sigma–Aldrich. N-methyl pyrrolidone (NMP) was obtained from TCI. TiCl₄ was obtained from Wako. All the chemicals used without further purification.

Characterization :

The obtained catalysts were characterized morphologically and structurally by field emission scanning electron microscopy (FE-SEM; JSM-7600 F, JEOL, Japan) as well as transmission electron microscopy. The phase structure changes of the catalysts were investigated by X-ray diffractometer (XRD; Ultima IV, Rigaku, Japan) and Raman scattering spectrometer (NRS-5100, Jasco, Japan). Ultraviolet-visible-near-infrared (UV-vis-NIR) spectra were performed with a JASCO V-670 spectrophotometer. The surface elemental composition and changes were analyzed by XPS (ESCA-3400, Shimadzu, Japan). The photocurrent density of the catalyst films was measured with a constant potential meter (Versa STAT 4, METEK, USA) under a three-electrode system at a constant voltage of 0.8 V. The catalyst films were analyzed by XPS (ESCA-3400, Shimadzu, Japan). Silver/silver chloride and platinum wires were used as reference and counter electrodes, respectively. The electrolyte solution was 0.5 M Na₂SO₄. A thin film of catalyst for the working electrode was prepared by sonication by dispersing 20 mg of catalyst into 5 mL of 95 v/v% ethanol. Then 3 mL of the mixture was dropped onto fluorine-doped tin oxide (FTO) glass, and the catalyst was homogeneously dispersed onto the FTO surface by the scraping method. The catalystmodified FTO glass was then dried at 70 °C for 24 hours.

2. Supplementary Figures

Fig. S1. The SEM images of (a) A_{100} -TiO₂, (b) A_{92}/R_8 -TiO₂ (c) A_{44}/R_{56} -TiO₂ and (d) A_{7}/R_{93} -TiO₂

Fig. S2. The nitrogen adsorption–desorption isotherms of (a) the commercial P25 and (b) A₇₆/R₂₄-TiO₂. The insets image is the corresponding pore size distribution curves.

Fig. S3. The full X-ray photoelectron spectra (XPS) spectra of (a) the commercial P25 and (b) A_{76}/R_{24} -TiO₂.

Fig. S4. The EPR spectra measured at room temperature of (a) the commercial P25 and (b) A_{76}/R_{24} -TiO₂.

Fig. S5. Hydrogen production from various TiO_2 photocatalysts as a function of time under AM 1.5 light irradiation, (a) A_{100} -TiO₂, (b) A_{92}/R_8 - TiO₂, (c) A_{76}/R_{24} - TiO₂, (d) A_{44}/R_{56} - TiO₂, and (e) A_7/R_{93} - TiO₂.

Fig. S6. The photocatalytic decomposition of methylene blue (10 mg L^{-1}) use (a) the commercial P25 and (b) A_{76}/R_{24} -TiO₂.

Fig.S7. XRD and XPS tests of A_{76}/R_{24} -TiO₂ before and after 6 cycles (24h) of photocatalytic H₂ production. (a) XRD patterns; High-resolution Ti 2p (b) and O1s (c) XPS spectra.

Fig. S8. The photoelectrochemical responses of (a) the commercial P25 and (b) A_{76}/R_{24} -TiO₂ under AM1.5 irradiation.

Fig. S9. Electrochemical impedance spectroscopy (EIS) of (a) the commercial P25 and (b) A_{76}/R_{24} -TiO₂ under AM1.5 irradiation

Fig. S10. The photoluminescence spectra of (a) the commercial P25 and (b) A_{76}/R_{24} -TiO₂.

3. Supplementary Tables

Table S1. Table Caption Comparison of the H_2 evolution efficiency for the TiO₂-based

Photocatalyst (mg)	Light source	Reactant solution	$H_2 \times 10^{-3}$ (mmol h ⁻¹)	Ref.
Hy-500, 20 mg	AM1.5 (100 mWcm ⁻²)	11%TEOA/ H ₂ O	69.6	S1
blue TiO ₂ , 20 mg	AM1.5 (100 mWcm ⁻²)	50% CH ₃ OH/H ₂ O	69.2	S2
Bi_2O_2Se/TiO_2 , 20mg	300 W Xe lamp	5%glycerol/H ₂ O	24.8	S3
TiO ₂ @MOF FS, 10 mg	AM1.5 (100 mWcm ⁻²)	8%TEOA/ H ₂ O	4.4	S4
TiO_2 nanorod, 5 mg	solar light	5%glycerol/ H ₂ O	3.535	S5
H-Graphene-TiO ₂ , 3 mg	150 W Xe lamp $310 < \lambda < 625 \text{ nm}$	20% CH ₃ OH/H ₂ O	3.51	S6
HC-TiO ₂ , 20 mg	300 W Xe lamp	10%TEOA/ H ₂ O	0.6608	S7
TiO ₂ /TiH ₂ , 2 mg	AM1.5 (100 mWcm ⁻²)	50% CH ₃ OH/H ₂ O	0.44	S8
anatase/rutile, 2 mg	AM1.5 (100 mWcm ⁻²)	50% CH ₃ OH/H ₂ O	0.43	S9
Grey TiO ₂ , 2 mg	AM1.5 (100 mWcm ⁻²)	50% CH ₃ OH/H ₂ O	0.306	S10
A ₇₆ /R ₂₄ -TiO ₂ , 30 mg	AM1.5 (100 mWcm ⁻²)	20% CH ₃ OH/H ₂ O	68.1	This work

catalysts without using any co-catalysts.

Table S2. Table Caption Comparison of the H_2 evolution efficiency for the TiO₂-based

Photocatalyst	Light source	Reactant solution	Co-catalyst	$H_2 \times 10^{-3}$ (mmol h ⁻¹)	Ref
S-doped H-TiO ₂ , 100 mg	AM 1.5G	25% CH ₃ OH/H ₂ O	0.5% Pt	25.8	S11
Co_3O_4 QDs/TiO ₂ , 50 mg	AM 1.5G	10% CH ₃ OH/H ₂ O	1% Pt	86.755	S12
Ni-a/TiO ₂ , 50 mg	300W Xe lamp	10% CH ₃ OH/H ₂ O	Atomic Ni (1.11 wt%)	94.5	S13
$\rm TiO_2hierarchicalmicrospheres$, 10 mg	AM 1.5G	10% CH ₃ OH/H ₂ O	Atomic Pt (0.36 wt%)	117	S14
Black TiO_2 microspheres , 20 mg	AM 1.5G	20%CH ₃ OH/H ₂ O	1% Pt	130.8	S15
Co-TiO_2 , 100 mg	300 W xenon arc lamp	20% CH ₃ OH/H ₂ O	Atomic Co (1.11 wt%)	168.2	S16
Cu–TiO ₂ ,10 mg	300 W xenon arc lamp	20% CH ₃ OH/H ₂ O	Atomic Cu (0.75 wt%)	177.7	S17
triphase anatase-rutile-brookite ${\rm TiO_2}$, $50~{\rm mg}$	300 W Xe arc lamp	25% CH ₃ OH/H ₂ O	1% Au	178.5	S18
Sub-10 nm rutile TiO $_2$ Nanoparticles, 100 mg	AM 1.5G	10% CH ₃ OH/H ₂ O	1% Pt	195.4	S19
H-TiO ₂ , 20 mg	AM 1.5G	50% CH ₃ OH/H ₂ O	0.6%Pt	200	S20
Hydrogenated titanate nanotube,100 mg	AM 1.5G	20% CH ₃ OH/H ₂ O	1% Pt	215	S21
${\rm TiO}_2$ ultrathin nanosheets $$ 30 mg	AM 1.5G	20% CH ₃ OH/H ₂ O	1% Pt	540.69	S22
Dehiscent mesoporous rutile $\rm TiO_2$, $50~\rm mg$	AM 1.5G	25% CH ₃ OH/H ₂ O	1% Pt	610.8	S23
Ordered Meso-TiO ₂ -25 microspheres , 50mg	AM 1.5G	25% CH ₃ OH/H ₂ O	1% Pt	630	S24
Al reduced H-TiO ₂ , 100 mg	AM 1.5G	25% CH ₃ OH/H ₂ O	0.5% Pt	640	S25
A ₇₆ /R ₂₄ -TiO ₂ , 30 mg	AM 1.5G	20% CH ₃ OH/H ₂ O	1% Pt	562.56	This work

catalysts with co-catalysts.

Table S3. Comparison of methods that can modulate the composition of the TiO_2 phase.

Photocatalyst	Temperature	Pressure	Time	Materials	Cost	H_2 production with/without cocatalyst / (µmol h ⁻¹)	Reference
P25	1800°C	High	***	TiCl ₄	High	131/2.415ª (30 mg)	Degussa P25
Ordered Meso- TiO ₂ -25 microspheres	400°C	Normal	~ 31 h	Pluronic F127, HCl, HOAc, TBOT, THF	Normal	630/*** (50 mg)	Chem. Sci., 2019, 10, 1664-1670.
anatase/rutile TiO ₂	500°C	20 bar	1 h- 3 day	TiO ₂ (anatase, rutile and mixed phase), purity H ₂ (purity 99.999 %).	High	***/0.215 (2 mg)	Angew. Chem., Int. Ed., 2014, 53, 14201- 14205
triphase anatase- rutile-brookite TiO ₂	100°C	Normal	~ 38 h	HCl, HOAc, TiCl ₄ , PEI	Normal	178.5/***(50 mg)	Adv. Energy Mater., 2019, 9, 1901634
A ₇₆ /R ₂₄ -TiO ₂	500°C	Normal	$\sim ~30~h$	TiCl ₄ , PVA, NMP	Low	563/68.19 (30 mg)	This work

Note: ^a The P25 photocatalytic hydrogen production values were measured in our laboratory. ***Represents a failure of the data to be found in the literature.

4. Supplemental References

- S1 Y. Jiang, H. Ning, C. Tian, B. Jiang, Q. Li, H. Yan, X. Zhang, J. Wang, L. Jing and H. Fu, Single-crystal TiO₂ nanorods assembly for efficient and stable cocatalyst-free photocatalytic hydrogen evolution, *Appl. Catal.*, *B*, 2018, 229, 1-7.
- S2 K. Zhang, L. Wang, J. K. Kim, M. Ma, G. Veerappan, C.-L. Lee, K.-j. Kong, H. Lee and J. H. Park, An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation, *Energy Environ. Sci.*, 2016, 9, 499-503.
- S3 D. Ding, Z. Jiang, D. Ji, M. Nosang Vincent and L. Zan, Bi₂O₂Se as a novel cocatalyst for photocatalytic hydrogen evolution reaction, *Chem. Eng. J.*, 2020, 400, 125931.
- S4 L. Sun, Y. Yuan, F. Wang, Y. Zhao, W. Zhan and X. Han, Selective wet-chemical etching to create TiO₂@MOF frame heterostructure for efficient photocatalytic hydrogen evolution, *Nano Energy*, 2020, 74, 104909.
- S5 N. L. Reddy, D. P. Kumar and M. V. Shankar, Co-catalyst free Titanate Nanorods for improved Hydrogen production under solar light irradiation, *J. Chem. Sci.* (*Bangalore, India*), 2016, **128**, 649-656.

- S6 T.-D. Nguyen-Phan, S. Luo, Z. Liu, A. D. Gamalski, J. Tao, W. Xu, E. A. Stach, D. E. Polyansky, S. D. Senanayake, E. Fujita and J. A. Rodriguez, Striving Toward Noble-Metal-Free Photocatalytic Water Splitting: The Hydrogenated-Graphene-TiO₂ Prototype, *Chem. Mater.*, 2015, 27, 6282-6296.
- S7 G. Jia, Y. Wang, X. Cui and W. Zheng, Highly Carbon-Doped TiO₂ Derived from MXene Boosting the Photocatalytic Hydrogen Evolution, *ACS Sustainable Chem. Eng.*, 2018, 6, 13480-13486.
- S8 N. Liu, X. Zhou, N. T. Nguyen, K. Peters, F. Zoller, I. Hwang, C. Schneider, M. E. Miehlich, D. Freitag, K. Meyer, D. Fattakhova-Rohlfing and P. Schmuki, Black Magic in Gray Titania: Noble-Metal-Free Photocatalytic H₂ Evolution from Hydrogenated Anatase, *ChemSusChem*, 2017, **10**, 62-67.
- S9 N. Liu, C. Schneider, D. Freitag, U. Venkatesan, V. R. R. Marthala, M. Hartmann, B. Winter, E. Spiecker, A. Osvet, E. M. Zolnhofer, K. Meyer, T. Nakajima, X. Zhou and P. Schmuki, Hydrogenated Anatase: Strong Photocatalytic Dihydrogen Evolution without the Use of a Co-Catalyst, *Angew. Chem., Int. Ed.*, 2014, 53, 14201-14205.
- S10 X. Zhou, N. Liu, J. Schmidt, A. Kahnt, A. Osvet, S. Romeis, E. M. Zolnhofer, V. R. R. Marthala, D. M. Guldi, W. Peukert, M. Hartmann, K. Meyer and P. Schmuki, Noble-Metal-Free Photocatalytic Hydrogen Evolution Activity: The Impact of Ball Milling Anatase Nanopowders with TiH₂, *Adv. Mater.*, 2017, **29**, 1604747.
- S11 C. Yang, Z. Wang, T. Lin, H. Yin, X. Lü, D. Wan, T. Xu, C. Zheng, J. Lin, F. Huang, X. Xie and M. Jiang, Core-Shell Nanostructured "Black" Rutile Titania as Excellent Catalyst for Hydrogen Production Enhanced by Sulfur Doping, *J. Am. Chem. Soc.*, 2013, **135**, 17831-17838.
- S12 J. Liu, J. Ke, Y. Li, B. Liu, L. Wang, H. Xiao and S. Wang, Co₃O₄ quantum dots/TiO₂ nanobelt hybrids for highly efficient photocatalytic overall water splitting, *Appl. Catal.*, *B*, 2018, **236**, 396-403.
- S13 M. Xiao, L. Zhang, B. Luo, M. Lyu, Z. Wang, H. Huang, S. Wang, A. Du and L. Wang, Molten-Salt-Mediated Synthesis of an Atomic Nickel Co-catalyst on TiO₂ for Improved Photocatalytic H₂ Evolution, *Angew. Chem., Int. Ed.*, 2020, **59**, 7230-7234.
- S14 J. Xi, X. Zhang, X. Zhou, X. Wu, S. Wang, W. Yu, N. Yan, K. P. Loh and Q.-H. Xu, Titanium dioxide hierarchical microspheres decorated with atomically dispersed platinum as an efficient photocatalyst for hydrogen evolution, *J. Colloid Interface Sci.*, 2022, 623, 799-807.
- S15 C. Wang, X. Kang, J. Liu, D. Wang, N. Wang, J. Chen, J. Wang, C. Tian and H. Fu, Ultrathin black TiO₂ nanosheet-assembled microspheres with high stability for efficient solar-driven photocatalytic hydrogen evolution, *Inorg. Chem. Front.*, 2023, 10, 1153-1163.
- S16 X. Wu, S. Zuo, M. Qiu, Y. Li, Y. Zhang, P. An, J. Zhang, H. Zhang and J. Zhang, Atomically defined Co on two-dimensional TiO₂ nanosheet for photocatalytic hydrogen evolution, *Chem. Eng. J.*, 2021, **420**, 127681.

- S17 Y. Ma, Y. Zhang, Y. Ma, T. Lv, B. Xiao, X. Kuang, X. Deng, J. Zhang, J. Zhao and Q. Liu, *In situ* Cu single atoms anchoring on MOF-derived porous TiO₂ for the efficient separation of photon-generated carriers and photocatalytic H₂ evolution, *Nanoscale*, 2022, 14, 15889-15896.
- S18 H. Xiong, L. Wu, Y. Liu, T. Gao, K. Li, Y. Long, R. Zhang, L. Zhang, Z.-A. Qiao, Q. Huo, X. Ge, S. Song and H. Zhang, Controllable Synthesis of Mesoporous TiO₂ Polymorphs with Tunable Crystal Structure for Enhanced Photocatalytic H₂ Production, *Adv. Energy Mater.*, 2019, **9**, 1901634.
- S19 L. Li, J. Yan, T. Wang, Z.-J. Zhao, J. Zhang, J. Gong and N. Guan, Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production, *Nat. Commun.*, 2015, 6, 5881.
- S20 X. Chen, L. Liu, P. Y. Yu and S. S. Mao, Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals, *Science*, 2011, **331**, 746-750.
- S21 Z. Zheng, B. Huang, J. Lu, Z. Wang, X. Qin, X. Zhang, Y. Dai and M.-H. Whangbo, Hydrogenated titania: synergy of surface modification and morphology improvement for enhanced photocatalytic activity, *Chem. Commun. (Cambridge, U. K.)*, 2012, 48, 5733.
- S22 S. Hu, P. Qiao, L. Zhang, B. Jiang, Y. Gao, F. Hou, B. Wu, Q. Li, Y. Jiang, C. Tian, W. Zhou, G. Tian and H. Fu, Assembly of TiO₂ ultrathin nanosheets with surface lattice distortion for solar-light-driven photocatalytic hydrogen evolution, *Appl. Catal.*, *B*, 2018, 239, 317-323.
- S23 K. Lan, R. Wang, W. Zhang, Z. Zhao, A. Elzatahry, X. Zhang, Y. Liu, D. Al-Dhayan, Y. Xia and D. Zhao, Mesoporous TiO₂ Microspheres with Precisely Controlled Crystallites and Architectures, *Chem*, 2018, 4, 2436-2450.
- S24 W. Zhang, H. He, Y. Tian, K. Lan, Q. Liu, C. Wang, Y. Liu, A. Elzatahry, R. Che, W. Li and D. Zhao, Synthesis of uniform ordered mesoporous TiO₂ microspheres with controllable phase junctions for efficient solar water splitting, *Chem. Sci.*, 2019, **10**, 1664-1670.
- S25 Z. Wang, C. Yang, T. Lin, H. Yin, P. Chen, D. Wan, F. Xu, F. Huang, J. Lin, X. Xie and M. Jiang, Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania, *Energy Environ. Sci.*, 2013, 6, 3007.