Supporting Information

Rapid Joule heating synthesis of Ni doped into porous honeycomb C_3N_4 with greatly improved photocatalytic H_2 production

Zehui Zhao¹, Guangmin Ren¹, Zisheng Zhang², Xiangchao Meng¹ and Zizhen Li^{1,2*}

¹Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China

² Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario, K1N6N5, Canada

*Corresponding author.

E-mail address: lizizhen@ouc.edu.cn

S1. Experimental Section

1.1. Chemicals

Nickel nitrate hexahydrate $(Ni(NO₃)₂·6H₂O, AR)$ was purchased from Sinopharm Chemical Reagent Co., Ltd. (China) and used without further purification. Melamine $(C_3H_6N_6, \geq 99.0\%)$ was ordered from Sinopharm Chemical Reagent Co., Ltd. (China) and used for preparing catalysts. Tetraethyl orthosilicate $(C_8H_{20}O_4Si, >99\%)$ was purchased from Macklin Biochemical Technology Co., Ltd (China). Ethanol absolute (C_2H_6O, AR) and ammonia solution (NH₄OH, AR) were ordered from Sinopharm Chemical Reagent Co., Ltd. (China). Nafion (5%) was purchased from Aladdin Ltd. (Shanghai, China). Ultrapure water used throughout all experiments was purified through an ACMATE system.

1.2. Materials synthesis

Synthesis of $SiO₂$ *<i>nanospheres*: $SiO₂$ *nanospheres* were prepared according to the reported synthesis method.¹ Specifically, 55 mL of absolute ethanol, 15 mL of deionized water, 3 mL of tetraethyl orthosilicate and 4 mL of ammonia solution were added into a beaker and stirred for 5 h to obtain a milky white suspension. The powder sample was separated and washed. Then, the sample was vacuum dried at 80°C for 12 h to obtain solid powder $SiO₂$.

Synthesis of honeycomb C_3N_4 *(HCN)*: HCN was prepared by using a hard template approach. Firstly, 5 g of melamine and 2.4 g of $SiO₂$ hard template were uniformly mixed and then put into a crucible. Subsequently, the ceramic crucible was covered with a layer of tin foil. The mixed precursors were heated to 550°C in a muffle furnace

(CHEM^N, BFC-1200-7.2L) at a heating rate of 10°C/min and kept under air atmosphere for 2 h. Melamine underwent pyrolysis and thermal polymerization during heating to generate honeycomb porous C_3N_4 , while the product was filled into the voids of the SiO₂ template. The obtained C_3N_4/SiO_2 was then treated with 100 mL of 2 mol/L NaOH for 12 h to etch away the $SiO₂$ nanosphere templates, and then the synthesized product was centrifuged and washed several times with distilled water and ethanol. Finally, the obtained product was dried at 60°C for 12 h and yellow C_3N_4 with a honeycomb structure was collected, which was labeled as HCN.

Synthesis of C_3N_4 *(BCN)*: For comparison, the silica template was not used and the C_3N_4 was obtained by replacing the mixed precursor with melamine powder in the above step. Typically, 10 g of melamine was put into a ceramic crucible covered with a layer of tin foil, and then heated to 550°C at a heating rate of 10°C/min in a muffle furnace for 4 h under an air atmosphere. Then, the yellow C_3N_4 was collected after cooling down to room temperature, which was labeled as BCN.

Synthesis of honeycomb C_3N_4 - V_N (HCN- V_N): Firstly, HCN was placed in a molybdenum boat and put into the Joule heating equipment (In-situ High-tech, CIS-JH3.2), then evacuated and passed into Ar gas. Next, $HCN-V_N$ was synthesized by the rapid Joule heating treatment under an argon atmosphere. A high pulse voltage of 30 V was applied instantaneously to the HCN, and a strong pulse current of 300 A caused the HCN to rapidly reach the specified temperature within 10 seconds to obtain $HCN-V_N$. The heating rate was shown in Fig. S1a.

Synthesis of Ni/honeycomb C_3N_4 - V_N *(Ni/HCN-V_N)*: Generally, 0.50 g of HCN and the

specified amount of $Ni(NO₃)₂·6H₂O$ were dispersed in 10 mL of deionized water and impregnated under a constant temperature water bath at 60°C for 4 h to obtain a suspension. The suspension was then separated by centrifugation and dried overnight in a vacuum drying oven at 80°C. The resulting product was named Ni_x/C_3N_4 (x = 1.0, 1.5, 2.0, 2.5, 3.0), where x represented the percentage of the actual mass of nickel in the composite. For comparison, we also prepared Fe_2/C_3N_4 , Co_2/C_3N_4 , Ni_2/C_3N_4 , Cu_2/C_3N_4 with a mass fraction of 2.0 using Fe(NO₃)₃. 9H₂O, Co(NO₃)₂. 6H₂O and CuCl₂ as precursors.

The above obtained samples were centrifuged and dried, and calcinated by the rapid Joule heating method with the same parameters as for the preparation of $HCN-V_N$, for different impregnation amounts, different loading metals, and different heating temperatures, where the best active sample was named $Ni/HCN-V_N$. The changed of the sample colors throughout the process were seen in Fig. S2.

Synthesis of Ni/honeycomb C_3N_4 -*d-V_N* (*Ni/HCN-d-V_N*): In addition, to compare the conventional tube furnace method with the rapid Joule heating method, samples heated in a $Ni/C₃N₄$ tube furnace (CHEM^N TFH-1200-60-440) were also prepared (denoted as $Ni/HCN-d-V_N$). The tube furnace heating rate was shown in Fig. S1b.

1.3. Characterizations

A powder X-ray diffractometer Bruker D8 Advance was used to determine X-ray diffraction (XRD) patterns, with a scanning angle in the range of 5-90° and a scanning speed of 10°/min. A TESCAN MIRA LMS equipped with EDS capabilities was used to obtain the scanning electron microscope (SEM), the samples were sprayed with gold before scanning. A JEOL JEM-2100Plus Electron Microscope with a spherical aberration corrector was used to obtain the transmission electron microscopy (TEM), high-resolution TEM (HRTEM). A Bruker EMX plus-6/1 was used to obtain the electron paramagnetic resonance (EPR) spectra at 100 K. The XPS tests were determined on the Thermo Scientific Escalab 250Xi X-ray photo-electron spectrometer with Al K α source. The in-situ XPS tests were also conducted on a Thermo Scientific Escalab 250Xi X-ray photo-electron spectrometer with Al K α source, a 300 W Xe lamp was used as the light source in in-situ XPS tests. A Bruker TENSOR 27 FT-IR spectrophotometer over the range $4000-400$ cm⁻¹ at 2 cm⁻¹ resolution was used to determine Fourier transform infrared (FT-IR) spectra. A UV-vis spectrophotometer (PUXI TU-1901) was used to determine the UV-Vis diffuse reflectance spectroscopy (DRS) and UV-Vis absorption spectrum, with a wavelength testing range of 200-800 nm, a high-speed scanning speed, and the measurement of absorption values. The Brunauer-Emmett-Teller (BET) were recorded using Micromeritics ASAP 2460 gas sorption analyzer at 77 K.

1.4. Photocatalytic H² production tests

Photocatalytic water splitting was carried out on an all-glass automatic online trace gas analysis system (Lab-solar-6A, Beijing Perfectlight). The light source was a 300 W Xe lamp (PLS-SXE300+, Perfectlight). The produced gas sample was analyzed using a gas chromatograph (7900, Techcomp, China). Before the test, the reactor needed to be vacuumed. As for the reaction, 50 mg of the sample was dispersed into 100 mL of 10 vol.% methanol aqueous solution through ultra-sonication. The mixture was

magnetically stirred. The distance between the lamp and the surface of the suspension was kept at 5 cm. To eliminate the thermal effect from Xe lamp, the temperature of the reactor was maintained at 25°C during the reaction by circulating water. The amount of produced H_2 was carried into GC for analysis by Argon gas. The concentration of produced H_2 was calibrated by peak area, and the concentration-peak area curve was calibrated using a standard hydrogen with a series of concentrations, the standard curve was $y = 253.12x + 6329.47$ (Fig. S3). In addition, the catalyst was centrifuged and used again in cycling experiments to test the hydrogen production rate to evaluate the reproducibility information of $Ni/HCN-V_N$. In addition, the apparent quantum efficiency (AQE) of Ni/HCN-V_N was calculated using equations (1), (2) and (3). The average radiation intensities at 365 nm, 420 nm and 500 nm measured using an irradiance meter were $46.15 \text{ mW} \cdot \text{cm}^{-2}$, $21.20 \text{ mW} \cdot \text{cm}^{-2}$ and $16.56 \text{ mW} \cdot \text{cm}^{-2}$.

$$
AQE = \frac{2 \times the number of evolved hydrogen molecules}{the number of incident photons} \times 100\% \quad (1)
$$

The number of evolved hydrogen molecules = N_A × M (2)

The number of incident photons =
$$
\frac{E\lambda}{hc}
$$
 (3)

where N_A and M is the Avogadro's constant and the H_2 production rate (mol/s), respectively; E, λ , h and c represent the power of lamp source, wavelength, the Planck constant (6.626×10⁻³⁴ Js) and the speed of light (3.0×10⁸ ms⁻¹), respectively.

1.5. Electrochemical tests

The electrochemical measurements were analyzed on a CHI 660E electrochemical workstation with a three-electrode system. The working electrode was an electrode holder with a conductive glass sheet coated with catalyst, the counter electrode was a platinum electrode, and the reference electrode was a saturated Ag/AgCl electrode. A 300 W Xe light was used as the light source to measure the photocurrent response and electrochemical impedance spectra (EIS) of different samples in $0.5 M Na₂SO₄$ aqueous solution. All working electrodes were obtained by the following method: 10 mg of catalyst and 20 μL of Nafion solution were ultrasonically dispersed in 200 μL of deionized water, and 50 μL of the solution was uniformly applied on 1×1 cm² FTO glass and dried at room temperature.

1.6. Theoretical calculations

DFT calculations were performed using the CASTEP module in the Materials Studio software. The exchange-correlation interactions are treated as Perdew - Burke - Ernzerhof (PBE) generalized functions in the generalized gradient approximation (GGA). The cutoff energy and the Monkhorst - Pack K-point are set to 500 eV and $3 \times$ 3×1 , respectively. During the structural optimization, the energy convergence criterion is 1.0×10 - 5eV/atom and the maximum displacement convergence criterion is 0.001 Å. A vacuum region of 20 Å is used to avoid interlayer interactions. The van der Waals forces (vdW) were corrected using the Grimme method (DFT-D2). The adsorption energy of the adsorption system was defined as $Eads = E(Ni/HCN-V_N/H) - E(Ni/HCN-V_N/H)$ V_N) - E(H), where E(H) is the energy of the H, E(Ni/HCN-V_N/H) and E(Ni/HCN-V_N) are the total energy of the Ni/HCN- V_N surface with and without the adsorbed H, respectively. Generally, the closer the hydrogen adsorption energy is to 0, the better the proton adsorption and hydrogen desorption behavior of the adsorption system.

To reveal the mechanism of HER on the surface of $Ni/HCN-V_N$ the first principle

calculations were performed, by using the projector augmented wave pseudopotentials and Perdew-Birke-Ernerhof exchange-correlation as implemented in Vienna *ab initio* simulation package (VASP).^{2,3} The generalized gradient approximation method of Perdew-Burke-Ernzerhof (PBE) functional was used to describe the exchange-related interaction between electrons.⁴ The van der Waals (vdW) correction with the Grimme approach (DFT-D2) was included in the interaction between single molecule/atoms and substrates6.⁵ The convergence criteria for the total energy and the Hellmann-Feynman force were 10^{-5} eV and 0.02 eV, respectively.

S2. Supporting figures

Fig. S1. Real heating curves of (a) Joule heating method and (b) tube furnace method.

Fig. S2. The color of (a) BCN, (b) HCN, (c) HCN-V_N and (d) Ni/HCN-V_N.

Fig. S3. Standard curve for H₂ calibration by peak area.

Fig. S4. The SEM image of BCN.

Fig. S5. The diameter size distribution of SiO₂.

Fig. S6. The SEM image of HCN-V_N.

Fig. S7. The enlarged SEM image of Ni/HCN-d-V_N.

Fig. S8. (a) SEM image, (b-d) corresponding EDX elemental mapping profiles of Ni/HCN-V_N with C (green), N (blue), and Pt (red) distribution.

Fig. S9. XPS spectra survey of HCN, HCN-V_N, and Ni/HCN-V_N.

Fig. S10. FT-IR spectrum of BCN, HCN, HCN-V_N and Ni/HCN-V_N.

Fig. S11. (a) XRD patterns of Ni/HCN-V_N before and after recycling tests and (b)

SEM image of Ni/HCN-V_N after recycling tests.

Fig. S12. Bader charge density difference for H* adsorption of Ni/HCN-V_N.

S3. Supporting tables

Table S1. Photocatalytic H_2 production performance comparison of C_3N_4 -based photocatalyst.

Photocatalyst	Light source	Reaction system	H_2 production rate (μ mol g ⁻¹ h ⁻¹)	Ref.
Pt/NV-CN	300 W Xe lamp	Methanol (10 vol%)	323.90	$\overline{6}$
$Eu/g-C_3N_4$	300 W Xe lamp	TEOA (15 vol%)	128.8	$\overline{7}$
$(P, Mo)-g-C_3N_4$	300 W Xe lamp $(\lambda > 420$ nm)	TEOA (5 vol\%)	118	8
$Co_3O_4/g-C_3N_4$	300 W Xe lamp	Triethanolamine (15 $vol\%$)	105.06	9
Pd/NV-CN	300 W Xe lamp	Methanol (10 vol%)	287.94	10
$MoS2/g-$ $C_3N_4/NCDs$	300 W Xe lamp $(\lambda > 420$ nm)	TEOA (10 vol%)	212.41	11
Pt/K ⁺ /cyano $group/g-C_3N_4$	300 W Xe lamp $(\lambda > 420$ nm)	TEOA (10 vol%)	332	12
$g - C_3 N_4 / W S_2$	300 W Xe arc lamp $(\lambda \geq 420 \text{ nm})$	Methanol (25 vol%)	101	13
2D BP/2D C_3N_4	300 W Xenon lamp $(\lambda > 400$ nm)	BPA(10 mg/L)	259.04	14
$g - C_3N_4/Au/BiVO_4$	300W xenon lamp $(\lambda \geq 420 \text{ nm})$	Triethanolamine (20 $vol\%$)	410.0	15
$2D/2D C_3N_4/M_0S_2$	300W Xenon lamp $(\lambda > 400$ nm)	Methyl alcohol (10 $vol\%$)	385.04	16
$Ni(OH)2(Q)g-$ C_3N_4/h alloysite	300W Xenon lamp $(\lambda > 400$ nm)	CH ₃ OH (10 vol%)	122.8	17
Pt-PEDOT/ C_3N_4	300 W Xe lamp $(\lambda > 400$ nm)	TEOA (10 vol%)	327	18
$Pt@Au/g-C_3N_4$	500 W HBO lamp $(\lambda \geq 420 \text{ nm})$	TEOA (10 vol%)	116	19
$g-C_3N_4/Graphene/$ MoS ₂	visible light $(\lambda > 420 \text{ nm})$	TEOA (0.1 M)	317	20
$MoS_2/g-C_3N_4$	300 W Xe lamp $(\lambda > 400$ nm)	TEOA (10 vol%)	252	21
Au-PtO/g-C ₃ N ₄	350 W Xe arc lamp $(\lambda > 400$ nm)	Methanol (25 vol%)	338	22
$Pt/carbon/g-C3N4$	350 W Xe lamp $(\lambda \geq 420 \text{ nm})$	TEOA (15 vol%)	212.8	23
Pt -CoP/g-C ₃ N ₄	300 W Xe lamp	Methanol (10 vol%)	281.25	24
$Ni/HCN-V_N$	300 W Xe lamp	Methanol (10 vol%)	420.02	This work

	C [wt $%$]	N [wt %]	Ni [wt %]
HCN	43.96	56.04	
$HCN-V_N$	44.82	55.18	
$Ni/HCN-V_N$	45.01	53.03	1.96

Table S2. Surface composition of HCN, HCN-V_N and Ni/HCN-V_N as determined by means of XPS.

References

- 1. Q. M. Ahkam, E. U. Khan, J. Iqbal, A. Murtaza and M. T. Khan, Synthesis and characterization of cobalt-doped SiO₂ nanoparticles, *Physica B: Condensed Matter*, 2019, **572**, 161-167.
- 2. G. Kresse and J. Furthmiiller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, *Computational Materials Science*, 1996, **6**, 15-50.
- 3. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set, *Physical Review B*, 1996, **54**, 11169-11186.
- 4. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, *Phys. Rev. Lett.*, 1996, **77**, 3865-3868.
- 5. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, *J. Chem. Phys.*, 2010, **132**, 154104.
- 6. Z. H. Zhao, G. M. Ren, Z. S. Zhang, X. C. Meng and Z. Z. Li, Rapid Joule heating synthesis of Pt clusters on C_3N_4 with abundant nitrogen vacancies for highly-efficiently photocatalytic H₂ production, *Sep. Purif. Technol.*, 2024, 330, 125393.
- 7. Y. M. Li, C. X. Lai, J. B. Zhong and J. Z. Li, Largely elevated photocatalytic hydrogen generation over Eu doped g-C3N⁴ photocatalyst, *Int. J. Hydrogen Energy*, 2023, **48**, 24356-24368.
- 8. D. Chen, J. Liu, Z. Jia, J. Fang, F. Yang, Y. Tang, K. Wu, Z. Liu and Z. Fang, Efficient visible-light-driven hydrogen evolution and Cr(VI) reduction over porous P and Mo co-doped $g - C_3N_4$ with feeble N vacancies photocatalyst, *J. Hazard. Mater.*, 2019, **361**, 294-304.
- 9. Z. D. Xu, J. B. Zhong, J. F. Chen, M. J. Li, L. Zeng and H. Yang, Construction of S-scheme $Co_3O_4/g-C_3N_4$ heterojunctions with boosted photocatalytic H₂ production performance, *Surfaces and Interfaces*, 2023, **38**, 102838.
- 10. Y. Yao, G. Ren, Z. Li, H. Bai, X. Hu and X. Meng, Nitrogen Vacancy-Induced Deposition of Pd Nanoparticles onto g-C3N⁴ with Greatly Improved Photocatalytic Activity in H² Evolution, *Solar RRL*, 2021, **5**, 2100145.
- 11. Y. Jiao, O. Huang, J. Wang, Z. He and Z. Li, A novel $MoS₂$ quantum dots (ODs) decorated Z-scheme $g - C_3N_4$ nanosheet/N-doped carbon dots heterostructure photocatalyst for photocatalytic hydrogen evolution, *Applied Catalysis B: Environmental*, 2019, **247**, 124-132.
- 12. J. Yang, Y. Liang, K. Li, G. Yang, K. Wang, R. Xu and X. Xie, Cyano and potassium-rich g- C_3N_4 hollow tubes for efficient visible-light-driven hydrogen evolution, *Catalysis Science & Technology*, 2019, **9**, 3342-3346.
- 13. M. S. Akple, J. Low, S. Wageh, A. A. Al-Ghamdi, J. Yu and J. Zhang, Enhanced visible light photocatalytic H₂-production of $g - C_3N_4/WS_2$ composite heterostructures, *Appl. Surf. Sci.*, 2015, **358**, 196-203.
- 14. X. Zhang, J. J. Deng, J. Yan, Y. H. Song, Z. Mo, J. C. Qian, X. Y. Wu, S. Q.

Yuan, H. M. Li and H. Xu, Cryo-mediated liquid-phase exfoliated 2D BP coupled with 2D C_3N_4 to photodegradate organic pollutants and simultaneously generate hydrogen, *Appl. Surf. Sci.*, 2019, **490**, 117-123.

- 15. M. T. Song, Y. H. Wu, G. P. Zheng, C. F. Du and Y. G. Su, Junction of porous $g - C_3N_4$ with BiVO₄ using Au as electron shuttle for cocatalyst-free robust photocatalytic hydrogen evolution, *Appl. Surf. Sci.*, 2019, **498**, 143808.
- 16. W. B. Li, L. Wang, Q. Zhang, Z. Y. Chen, X. Y. Deng, C. Feng, L. K. Xu and M. X. Sun, Fabrication of an ultrathin $2D/2D$ C_3N_4/M_0S_2 heterojunction photocatalyst with enhanced photocatalytic performance, *J. Alloys Compd.*, 2019, **808**, 151681.
- 17. M. Hojamberdiev, M. M. Khan, Z. Kadirova, K. Kawashima, K. Yubuta, K. Teshima, R. Riedel and M. Hasegawa, Synergistic effect of $g - C_3N_4$, Ni(OH)₂ and halloysite in nanocomposite photocatalyst on efficient photocatalytic hydrogen generation, *Renewable Energy*, 2019, **138**, 434-444.
- 18. Z. Xing, Z. Chen, X. Zong and L. Wang, A new type of carbon nitride-based polymer composite for enhanced photocatalytic hydrogen production, *Chem Commun (Camb)*, 2014, **50**, 6762-6764.
- 19. Y. Di, X. Wang, A. Thomas and M. Antonietti, Making Metal Carbon Nitride Heterojunctions for Improved Photocatalytic Hydrogen Evolution with Visible Light, *ChemCatChem*, 2010, **2**, 834-838.
- 20. Y.-J. Yuan, Y. Yang, Z. Li, D. Chen, S. Wu, G. Fang, W. Bai, M. Ding, L.-X. Yang, D.-P. Cao, Z.-T. Yu and Z.-G. Zou, Promoting Charge Separation in g- C_3N_4/G raphene/MoS₂ Photocatalysts by Two-Dimensional Nanojunction for Enhanced Photocatalytic H² Production, *ACS Applied Energy Materials*, 2018, **1**, 1400-1407.
- 21. H. Zhao, Y. Dong, P. Jiang, H. Miao, G. Wang and J. Zhang, In situ lightassisted preparation of $MoS₂$ on graphitic $C₃N₄$ nanosheets for enhanced photocatalytic H² production from water, *Journal of Materials Chemistry A*, 2015, **3**, 7375-7381.
- 22. J. Jiang, J. Yu and S. Cao, Au/PtO nanoparticle-modified $g-C_3N_4$ for plasmonenhanced photocatalytic hydrogen evolution under visible light, *J. Colloid Interface Sci.*, 2016, **461**, 56-63.
- 23. Q. Xu, B. Cheng, J. Yu and G. Liu, Making co-condensed amorphous carbon/g- C_3N_4 composites with improved visible-light photocatalytic H₂-production performance using Pt as cocatalyst, *Carbon*, 2017, **118**, 241-249.
- 24. Z. Pan, Y. Zheng, F. Guo, P. Niu and X. Wang, Decorating CoP and Pt Nanoparticles on Graphitic Carbon Nitride Nanosheets to Promote Overall Water Splitting by Conjugated Polymers, *ChemSusChem*, 2017, **10**, 87-90.