Electronic Supplementary Information (ESI)

Chiral lanthanide hexaazamacrocycles for circularly polarized luminescence, high relaxivity and magnetic resonance imaging

Yuxin Tang,^a Minghong Jian,^c Baobing Tang,^b Zhenhua Zhu,^d Zhenxin Wang,^c and Yunling Liu*^b

Abstract: Multifunctional lanthanide complexes have been extensively studied in recent years owing to their widespread applications in physics, chemistry and biology, including quantum information processing, molecular spintronics and multifunctionality includes theranostics. The chirality, luminescence, magnetism, ferroelectricity and fluorescence/magnetic resonance imaging etc. Although various of N- and O-donor ligands have shown the ability to synthesize these complexes, Schiff bases are still the mostly widely used in constructing the air stable species. Herein, we report the facile gram-level synthesis of three pairs of lanthanide macrocycle enantiomers via a in situ [2+2] imine condensation with trivalent lanthanide ion as template. Eu(III)-based compounds, **R/S-Eu** and **R/S-Eu-Ph₃PO**, both shown efficient circularly polarized luminescence (CPL) with maximum dissymmetry factors (q_{lum}) of 0.098 and 0.110, respectively. The latter exhibited stronger emission intensity and longer luminescence lifetime than the former due to the lower vibrational coordination structures around Eu(III) ion. Gd(III)-based species, R/S-Gd, possess a relatively high relaxivity up to 35.04 and 34.09 mM⁻¹ S⁻¹ for R- and S-enantiomer, benefitting from the presence of one coordinated water molecule and abundant intermolecular H-bonds. In addition, the results of MTT assay and in vitro experiments demonstrated the low toxicity and efficient MRI of Gd(III)-chelates to A549 cells.

Table of Contents

Table S1. Crystal Data and Structure Refinement for R-Gd and S-Gd	4
Table S2. Crystal Data and Structure Refinement for R-Eu and S-Eu	5
Table S3. Crystal data and structure refinement for R-Eu-Ph ₃ PO and S-Eu-Ph ₃ PO	6
Table S4. Crystal data and structure refinement for R-Y	7
Table S5. Selected bond distances (Å) for complexes R-Gd and S-Gd	8
Table S6. Selected bond angles (°) for complexes R-Gd and S-Gd	8
Table S7. Selected bond distances (Å) for complexes R-Eu and S-Eu.	9
Table S8. Selected bond angles (°) for complexes R-Eu and S-Eu.	9
Table S9. Selected bond distances (Å) for complexes R-Eu-Ph ₃ PO and S-Eu-Ph ₃ PO	.10
Table S10. Selected bond angles (°) for complexes R-Eu-Ph ₃ PO and S-Eu-Ph ₃ PO	.10
Table S11. The CShM values calculated by SHAPE 2.1 for R-Gd and S-Gd	.11
Table S12. The CShM values calculated by SHAPE 2.1 for R-Eu and S-Eu	.12
Table S13. The CShM values calculated by SHAPE 2.1 for R/S-Eu-Ph ₃ PO	.12
Table S14. The CShM values calculated by SHAPE 2.1 for R-Y	.13
Table S15. CPL brightness for R/S-Eu and R/S-Eu-Ph ₃ PO	.13
Fig. S1 The intermolecular H-bonds in S-Gd	.14
Fig. S2 The variable-temperature magnetic susceptibilities of S-Gd	.14
Fig. S3 The variable-temperature magnetic susceptibilities of R-Gd.	.14
Fig. S4 CD spectra of R/S-Eu in CH ₃ OH (c = 1×10^{-5} mol L ⁻¹).	.15
Fig. S5 CD spectra of R/S-Eu-Ph ₃ PO in CH ₃ OH (c = 1 × 10^{-5} mol L ⁻¹)	.15
Fig. S6 Thermogravimetric analysis of S-Eu.	.16
Fig. S7 Thermogravimetric analysis of S-Gd.	.16
Fig. S8 Phosphorescence spectrum of S-Gd	.17
Fig. S9 Quantum yield of S-Eu in CH ₃ OH at room temperature.	.18
Fig. S10 Quantum yield of S-Eu in H ₂ O at room temperature	.18
Fig. S11 Quantum yield of S-Eu-Ph ₃ PO in CH ₃ OH at room temperature	.19
Fig. S12 Quantum yield of S-Eu-Ph ₃ PO in H ₂ O at room temperature	.19
Fig. S13 Circularly polarized luminescence (g _{lum}) spectra of R/S-Eu	.20
Fig. S14 Circularly polarized luminescence (g_{lum}) spectra of R/S-Eu-Ph ₃ PO	.20
Fig. S15 Decay curve of S-Eu in D ₂ O at room temperature	.21
Fig. S16 HR-MALDI-TOF spectrum of S-Gd in CH ₃ OH at room temperature	.21
Fig. S17 HR-ESI-MS & simulated spectra of S-Eu-Ph ₃ PO and ¹ H spectrum of isostructu	ral
Y(III) compound	.22
Fig. S18 Relaxivity determined from concentration-dependent T_1 -weighted N	ЛR
measurements at 1.2 T of R-Gd at room temperature	.22
Fig. S19 Cell viabilities of A549 cells after incubated with various concentrations of $Gd(I$	II)-
based compounds for 24 h	.23
References	.23

Compound reference	R-Gd	S-Gd
Chemical formula	$C_{92}H_{104}O_{10}N_{12}CI_6Gd_2$	$C_{92}H_{104}O_{10}N_{12}Cl_6Gd_2$
Formula Mass	2065.07	2065.07
Temperature (K)	180.0	180.0
Crystal system	monoclinic	monoclinic
Space group	<i>P</i> 2 ₁	P 2 ₁
<i>a</i> (Å)	18.1664(4)	18.1673(4)
b (Å)	10.6762(2)	10.6796(2)
<i>c</i> (Å)	25.5474(6)	25.5480(5)
α (°)	90	90
β (°)	101.5720(10)	101.6180(10)
γ (°)	90	90
Unit cell volume (Å ³)	4854.15(18)	4855.25(17)
Ζ	2	2
$ ho_{ m calc}$ (g/cm ³)	1.413	1.413
μ / mm ⁻¹	1.580	1.580
F (000)	2100.0	2100.0
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
Reflections collected	58921	47035
Independent reflections	16980	16953
R _{int}	0.0411	0.0319
GOF on <i>F</i> ²	1.059	1.052
$R_1 (I \ge 2\sigma (I))$	0.0350	0.0340
wR_2 (all data)	0.0950	0.0934
Flack parameter 0.000(4)		0.002(4)
CCDC number	2313860	2313872

 Table S1. Crystal Data and Structure Refinement for R-Gd and S-Gd.

Compound reference	R-Eu	S-Eu
Chemical formula	C ₉₃ H ₁₀₆ O ₁₀ N ₁₂ Cl ₆ Eu ₂	C ₉₃ H ₁₀₈ O ₁₁ N ₁₂ Cl ₆ Eu ₂
Formula Mass	2068.51	2086.53
Temperature (K)	180.0	180.0
Crystal system	monoclinic	monoclinic
Space group	<i>P</i> 2 ₁	<i>P</i> 2 ₁
<i>a</i> (Å)	18.1911(5)	18.1836(4)
b (Å)	10.6843(2)	10.6889(3)
<i>c</i> (Å)	25.5720(7)	25.5445(7)
α (°)	90	90
β (°)	101.6420(10)	101.5940(10)
γ (°)	90	90
Unit cell volume (Å ³)	4867.9(2)	4863(6)
Z	2	2
$ ho_{ m calc}$ (g/cm ³)	1.411	1.425
μ / mm ⁻¹	1.502	1.505
F (000)	2112.0	2132.0
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
Reflections collected	54896	48433
Independent reflections	17147	17076
R _{int}	0.0464	0.0593
GOF on F ²	1.049	1.059
$R_1 (I \ge 2\sigma (I))$	0.0388	0.0432
wR_2 (all data)	0.1065	0.1072
Flack parameter	0.005(5)	0.001(6)
CCDC number	2313859	2313857

Table S2. Crystal Data and Structure Refinement for R-Eu and S-Eu

Compound reference	R-Eu-Ph₃PO	S-Eu-Ph₃PO
Chemical formula	$C_{82}H_{80}CI_3EuN_6O_{18}P_2$	$C_{82}H_{80}CI_3EuN_6O_{18}P_2$
Formula Mass	1757.77	1757.77
Temperature (K)	180.0	180.0
Crystal system	orthorhombic	orthorhombic
Space group	P212121	$P2_{1}2_{1}2_{1}$
a (Å)	13.3179(4)	13.3140(3)
b (Å)	21.3425(6)	21.3334(6)
c (Å)	27.7275(8)	27.7364(7)
α (°)	90	90
β (°)	90	90
γ (°)	90	90
Unit cell volume (ų)	7881.2(4)	7878.1(3)
Z	4	4
$ ho_{ m calc}$ (g/cm ³)	1.481	1.482
μ / mm ⁻¹	1.013	1.013
F (000)	3608.0	3608.0
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
Reflections collected	57344	54203
Independent reflections	13906	13912
R _{int}	0.0637	0.0828
GOF on <i>F</i> ²	1.061	1.068
<i>R</i> ₁ (I ≥2 σ (<i>I</i>))	0.0362	0.0434
w R_2 (all data)	0.0870	0.0935
Flack parameter	-0.006(5)	-0.011(6)
CCDC number	2326932	2326934

Table S3. Crystal data and structure refinement for R-Eu-Ph $_3$ PO and S-Eu-Ph $_3$ PO.

Compound reference	R-Y
Chemical formula	$C_{94}C_{16}H_{112}N_{12}O_{12}Y_2$
Formula Mass	1992.47
Temperature (K)	180.0
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁
a (Å)	18.1007(6)
b (Å)	10.6935(4)
c (Å)	25.4908(9)
α (°)	90
β (°)	101.5390(10)
γ (°)	90
Unit cell volume (ų)	4834.3(3)
Z	2
$ ho_{ m calc}$ (g/cm ³)	1.369
μ / mm ⁻¹	1.425
F (000)	2072.0
Radiation	ΜοΚα (λ = 0.71073)
Reflections collected	64570
Independent reflections	16956
R _{int}	0.0761
GOF on <i>F</i> ²	1.036
<i>R</i> ₁ (I ≥2 σ (<i>I</i>))	0.0496
wR ₂ (all data)	0.1361
Flack parameter	0.012(3)
CCDC number	2328816

Table S4. Crystal data and structure refinement for R-Y.

R-0	Gd	S-Gd
Gd1-Cl3	2.715(2)	Gd1-Cl3 2.7179(19)
Gd1-Cl4	2.662(2)	Gd1-Cl4 2.663(2)
Gd1-O2	2.424(5)	Gd1-O2 2.416(5)
Gd2-Cl1	2.671(2)	Gd2-Cl1 2.676(2)
Gd2-Cl2	2.705(2)	Gd2-Cl2 2.705(2)
Gd2-01	2.503(6)	Gd2-O1 2.501(6)
Gd1-N7	2.608(6)	Gd1-N7 2.604(6)
Gd1-N8	2.571(6)	Gd1-N8 2.578(6)
Gd1-N9	2.678(6)	Gd1-N9 2.667(6)
Gd1-N10	2.641(6)	Gd1-N10 2.637(6)
Gd1-N11	2.582(6)	Gd1-N11 2.595(6)
Gd1-N12	2.681(6)	Gd1-N12 2.679(6)
Gd2-N1	2.602(6)	Gd2-N1 2.596(6)
Gd2-N2	2.568(7)	Gd2-N2 2.571(7)
Gd2-N3	2.650(7)	Gd2-N3 2.652(6)
Gd2-N4	2.593(7)	Gd2-N4 2.597(6)
Gd2-N5	2.590(6)	Gd2-N5 2.590(6)
Gd2-N6	2.675(6)	Gd2-N6 2.688(6)

Table S5. Selected bond distances (Å) for complexes R-Gd and S-Gd.

Table S6. Selected bond angles (°) for complexes R-Gd and S-Gd.

R-Gd	S-Gd
Cl3-Gd1-Cl4 148.43(7)	Cl3-Gd1-Cl4 148.44(6)
O2-Gd1-Cl3 71.84(15)	O2-Gd1-Cl3 71.72(14)
O2-Gd1-Cl4 139.53(15)	O2-Gd1-Cl4 139.63(14)
CI1-Gd2-Cl2 146.18(7)	CI1-Gd2-Cl2 146.12(6)
O1-Gd2-Cl1 75.22(14)	O1-Gd2-Cl1 75.24(13)
O1-Gd2-Cl2 138.58(14)	O1-Gd2-Cl2 138.62(14)
N1-Gd2-N2 61.6(2)	N1-Gd2-N2 61.3(2)
N2-Gd2-N3 61.0(2)	N2-Gd2-N3 60.7(2)
N3-Gd2-N4 61.0(2)	N3-Gd2-N4 61.3(2)
N4-Gd2-N5 62.1(2)	N4-Gd2-N5 62.1(2)
N5-Gd2-N6 59.74(19)	N5-Gd2-N6 59.61(18)
N6-Gd2-N1 60.66(19)	N6-Gd2-N1 61.01(18)
N7-Gd1-N8 62.32(19)	N7-Gd1-N8 62.2(2)
N8-Gd1-N9 60.55(18)	N8-Gd1-N9 60.65(18)
N9-Gd1-N10 60.14(18)	N9-Gd1-N10 60.41(18)
N10-Gd1-N11 61.2(2)	N10-Gd1-N11 60.94(19)
N11-Gd1-N12 60.27(19)	N11-Gd1-N12 60.12(19)
N12-Gd1-N7 60.73(19)	N12-Gd1-N7 60.80(19)

R-	Eu	S-I	Eu
Eu1-Cl3	2.726(2)	Eu1-Cl3	2.725(3)
Eu1-Cl4	2.673(2)	Eu1-Cl4	2.678(3)
Eu1-O2	2.429(6)	Eu1-O2	2.434(6)
Eu2-Cl1	2.684(2)	Eu2-Cl1	2.686(3)
Eu2-Cl2	2.718(2)	Eu2-Cl2	2.716(3)
Eu2-01	2.522(6)	Eu2-01	2.518(7)
Eu1-N7	2.612(7)	Eu1-N7	2.608(8)
Eu1-N8	2.573(7)	Eu1-N8	2.588(8)
Eu1-N9	2.668(7)	Eu1-N9	2.657(8)
Eu1-N10	2.641(6)	Eu1-N10	2.642(7)
Eu1-N11	2.592(7)	Eu1-N11	2.588(8)
Eu1-N12	2.685(7)	Eu1-N12	2.679(8)
Eu2-N1	2.603(6)	Eu2-N1	2.606(7)
Eu2-N2	2.569(8)	Eu2-N2	2.585(9)
Eu2-N3	2.660(7)	Eu2-N3	2.646(8)
Eu2-N4	2.609(7)	Eu2-N4	2.605(8)
Eu2-N5	2.595(7)	Eu2-N5	2.592(8)
Eu2-N6	2.671(7)	Eu2-N6	2.668(7)

Table S7. Selected bond distances (Å) for complexes R-Eu and S-Eu.

Table S8. Selected bond angles (°) for complexes R-Eu and S-Eu.

R-Eu	S-Eu
Cl3-Eu1-Cl4 148.54(7)	Cl3-Eu1-Cl4 148.63(8)
O2-Eu1-Cl3 72.69(16)	O2-Eu1-Cl3 70.45(18)
O2-Eu1-Cl4 139.51(16)	O2-Eu1-Cl4 139.69(18)
CI1-Eu2-CI2 146.07(7)	CI1-Eu2-CI2 146.19(18)
O1-Eu2-Cl1 75.41(15)	O1-Eu2-Cl1 75.44(16)
O1-Eu2-Cl2 138.50(15)	O1-Eu2-Cl2 138.36(18)
N1-Eu2-N2 61.3(2)	N1-Eu2-N2 61.1(2)
N2-Eu2-N3 60.8(2)	N2-Eu2-N3 60.4(3)
N3-Eu2-N4 61.4(2)	N3-Eu2-N4 61.7(3)
N4-Eu2-N5 61.8(2)	N4-Eu2-N5 62.1(3)
N5-Eu2-N6 59.9(2)	N5-Eu2-N6 59.5(2)
N6-Eu2-N1 60.7(2)	N6-Eu2-N1 60.9(2)
N7-Eu1-N8 61.9(2)	N7-Eu1-N8 62.1(2)
N8-Eu1-N9 60.7(2)	N8-Eu1-N9 60.7(2)
N9-Eu1-N10 60.4(2)	N9-Eu1-N10 60.3(2)
N10-Eu1-N11 61.2(2)	N10-Eu1-N11 60.8(2)
N11-Eu1-N12 60.1(2)	N11-Eu1-N12 60.1(2)
N12-Eu1-N7 60.7(2)	N12-Eu1-N7 60.8(2)

R-Eu-	Ph₃PO	S-Eu-Ph₃PO
Eu1-O1	2.293(4)	Eu1 -O1 2.292(4)
Eu1-O2	2.325(4)	Eu1-O2 2.325(5)
Eu1-O3	2.467(4)	Eu1-O3 2.468(5)
Eu1-N1	2.629(5)	Eu1 -N1 2.630(6)
Eu1-N2	2.658(5)	Eu1 -N2 2.660(6)
Eu1-N3	2.585(5)	Eu1-N3 2.573(6)
Eu1-N4	2.623(4)	Eu1-N4 2.623(6)
Eu1-N5	2.686(5)	Eu1-N5 2.686(6)
Eu1-N6	2.606(4)	Eu1-N6 2.610(6)

Table S9. Selected bond distances (Å) for complexes R-Eu-Ph₃PO and S-Eu-Ph₃PO.

Table S10. Selected bond angles (°) for complexes R-Eu-Ph₃PO and S-Eu-Ph₃PO.

R-Eu-Ph₃PO		S-Eu-Ph₃PO	
O1-Eu1-O2	145.36(16)	01-Eu1-02	145.24(19)
O1-Eu1-O3	142.89(15)	O1-Eu1-O3	142.77(18)
O1-Eu1-N1	97.11(15)	O1-Eu1-N1	96.96(18)
O1-Eu1-N2	75.35(16)	O1-Eu1-N2	75.40(18)
O1-Eu1-N3	77.84(15)	O1-Eu1-N3	77.98(19)
O1-Eu1-N4	95.93(16)	O1-Eu1-N4	96.0(2)
O1-Eu1-N5	74.19(15)	O1-Eu1-N5	74.07(18)
O1-Eu1-N6	78.23(14)	O1-Eu1-N6	78.19(17)
O2-Eu1-O3	71.68(15)	O2-Eu1-O3	71.90(18)
O2-Eu1-N1	85.25(15)	O2-Eu1-N1	85.30(18)
O2-Eu1-N2	132.73(16)	O2-Eu1-N2	132.70(18)
O2-Eu1-N3	129.68(15)	O2-Eu1-N3	129.77(18)
O2-Eu1-N4	83.44(16)	O2-Eu1-N4	83.5(2)
O2-Eu1-N5	75.72(15)	O2-Eu1-N5	75.81(17)
O2-Eu1-N6	72.51(15)	O2-Eu1-N6	72.43(17)
O3-Eu1-N1	80.24(15)	O3-Eu1-N1	80.24(19)
O3-Eu1-N2	71.25(16)	O3-Eu1-N2	71.06(18)
O3-Eu1-N3	72.75(15)	O3-Eu1-N3	72.53(18)
O3-Eu1-N4	89.95(16)	O3-Eu1-N4	89.91(19)
O3-Eu1-N5	137.77(15)	O3-Eu1-N5	137.98(18)
O3-Eu1-N6	129.13(15)	O3-Eu1-N6	129.10(18)
N1-Eu1-N2	60.42(15)	N1-Eu1-N2	60.33(19)
N1-Eu1-N5	123.14(14)	N1-Eu1-N5	123.24(18)
N2-Eu1-N5	149.53(15)	N2-Eu1-N5	149.46(18)
N3-Eu1-N1	121.94(16)	N3-Eu1-N1	121.74(19)
N3-Eu1-N2	62.46(16)	N3-Eu1-N2	62.3(2)

N3-Eu1-N4	62.13(15)	N3-Eu1-N4	62.14(19)
N3-Eu1-N5	111.03(15)	N3-Eu1-N5	111.07(18)
N3-Eu1-N6	156.06(15)	N3-Eu1-N6	156.17(17)
N4-Eu1-N1	166.92(16)	N4-Eu1-N1	166.98(18)
N4-Eu1-N2	124.51(15)	N4-Eu1-N2	124.41(19)
N4-Eu1-N5	59.98(14)	N4-Eu1-N5	60.06(17)
N6-Eu1-N1	61.87(15)	N6-Eu1-N1	61.74(19)
N6-Eu1-N2	111.42(15)	N6-Eu1-N2	111.30(19)
N6-Eu1-N4	120.26(15)	N6-Eu1-N4	120.54(18)
N6-Eu1-N5	61.34(14)	N6-Eu1-N5	61.56(18)

Table S11. The CShM values calculated by SHAPE 2.1 for R-Gd and S-Gd.The lowest CShM value is highlighted.^{1, 2}

Coordination Coordanty	R-(Gd	S-Gd			
Coordination Geometry	Gd1	Gd2	Gd1	Gd2		
Enneagon (<i>D</i> _{9h})	32.892	32.671	32.916	32.708		
Octagonal pyramid (C_{8v})	22.048	21.799	22.102	21.693		
Heptagonal bipyramid (D _{7h})	13.265	13.922	13.324	13.827		
Johnson triangular cupola J3 (C_{3v})	14.858	15.272	14.889	15.349		
Capped cube J8 (C_{4v})	5.616	6.205	5.633	6.257		
Spherical-relaxed capped cube (C_{4v})	4.326	4.418	4.335	4.459		
Capped square antiprism J10 (C_{4v})	7.693	7.543	7.648	7.470		
Spherical capped square antiprism (C_{4v})	6.320	6.187	6.289	6.125		
Tricapped trigonal prism J51 (D _{3h})	7.668	7.737	7.663	7.678		
Spherical tricapped trigonal prism (D_{3h})	7.464	7.207	7.446	7.159		
Tridiminished icosahedron J63 (C_{3v})	11.949	12.305	11.899	12.298		
Hula-hoop (C_{2v})	2.663	2.743	2.681	2.734		
Muffin (<i>C</i> _s)	4.686	4.627	4.646	4.576		

Coordination Coordent	R-	Eu	S-Eu		
	Eu1	Eu2	S-Et Eu1 32.858 22.249 13.305 14.987 5.532 4.200 7.803 6.412 7.799 7.508 11.798 2.590 4.755	Eu2	
Enneagon (<i>D</i> _{9h})	32.921	32.622	32.858	32.664	
Octagonal pyramid (C_{8v})	22.139	21.734	22.249	21.620	
Heptagonal bipyramid (D _{7h})	13.364	13.839	13.305	13.801	
Johnson triangular cupola J3 (C_{3v})	14.925	15.395	14.987	15.486	
Capped cube J8 (C_{4v})	5.587	6.224	5.532	6.215	
Spherical-relaxed capped cube (C_{4v})	4.295	4.437	4.200	4.423	
Capped square antiprism J10 (C_{4v})	7.766	7.559	7.803	7.549	
Spherical capped square antiprism (C_{4v})	6.384	6.179	6.412	6.199	
Tricapped trigonal prism J51 (D _{3h})	7.757	7.743	7.799	7.718	
Spherical tricapped trigonal prism (D_{3h})	7.535	7.217	7.508	7.257	
Tridiminished icosahedron J63 (C_{3v})	11.835	12.312	11.798	12.300	
Hula-hoop (C_{2v})	2.610	2.724	2.590	2.681	
Muffin (C _s)	4.753	4.622	4.755	4.635	

Table S12. The CShM values calculated by SHAPE 2.1 for R-Eu and S-Eu.The lowest CShM value is highlighted.^{1, 2}

Table S13. The CShM values calculated by SHAPE 2.1 for R-Eu-Ph $_3$ PO and S-Eu-Ph $_3$ PO.

Coordination Geometry	R-Eu-Ph₃PO	S-Eu-Ph₃PO
Enneagon(D _{9h})	31.760	31.803
Octagonal pyramid(C _{8v})	20.951	20.891
Heptagonal bipyramid(D _{7h})	14.305	14.294
Johnson triangular cupola J3(C _{3v})	15.254	15.280
Capped cube J8(C _{4v})	7.414	7.399
Spherical-relaxed capped cube(C _{4v})	6.371	6.373
Capped square antiprism J10(C _{4v})	6.170	6.179
Spherical capped square antiprism(C_{4v})	5.143	5.133
Tricapped trigonal prism J51(D _{3h})	6.273	6.303
Spherical tricapped trigonal prism(D _{3h})	5.972	5.960
Tridiminished icosahedron J63(C _{3v})	12.303	12.308
Hula-hoop(C _{2v})	3.828	3.838
Muffin(C _s)	3.684	3.683

Coordination Geometry	Y1	Y2
Enneagon(D _{9h})	32.946	32.829
Octagonal pyramid(C _{8v})	21.942	21.668
Heptagonal bipyramid(D _{7h})	13.308	13.995
Johnson triangular cupola J3(C _{3v})	14.833	15.260
Capped cube J8(C _{4v})	5.676	6.182
Spherical-relaxed capped cube(C_{4v})	4.416	4.428
Capped square antiprism $J10(C_{4v})$	7.477	7.282
Spherical capped square antiprism(C_{4v})	6.145	5.953
Tricapped trigonal prism J51(D _{3h})	7.487	7.474
Spherical tricapped trigonal prism(D _{3h})	7.286	6.966
Tridiminished icosahedron $J63(C_{3v})$	12.064	12.466
Hula-hoop(C _{2v})	2.790	2.845
Muffin(C _s)	4.559	4.432

Table S14. The CShM values calculated by SHAPE 2.1 for R-Y.

Compound	ε/M ⁻¹ cm ⁻¹ (λ _{abs} /nm)	φ	Transitio n	g _{lum} (λ/nm)	β	B _{CPL} /M ⁻¹ cm ⁻¹
			${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{0}$	0.042 (582)	0.007	1.27
D/9 E	46558	0.19	${}^{5}D_{0} \rightarrow {}^{7}F_{1}$	0.098 (597)	0.174	71.45
R/3-Eu	(312)	0.10	${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{2}$	0.024 (616)	0.395	39.72
			${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{3}$	0.055 (651)	0.044	10.14
			${}^{5}\text{D}_{0} {\rightarrow} {}^{7}\text{F}_{0}$	0.032 (582)	0.004	0.24
R/S-Eu-	21864 0.47 ⁵ D ₀ -	${}^{5}D_{0} \rightarrow {}^{7}F_{1}$	0.110 (597)	0.151	30.89	
Ph₃PO	(312)	0.17	${}^{5}\text{D}_{0} {\rightarrow} {}^{7}\text{F}_{2}$	0.029 (616)	0.266	14.35
			${}^{5}\text{D}_{0} {\rightarrow} {}^{7}\text{F}_{3}$	0.060 (651)	0.021	2.34

Fig. S1 The intermolecular H-bonds in S-Gd.

Fig. S2 The variable-temperature magnetic susceptibilities of S-Gd.

Fig. S3 The variable-temperature magnetic susceptibilities of R-Gd.

Fig. S4 CD spectra of R/S-Eu in CH₃OH (c = 1 × 10⁻⁵ mol L⁻¹).

Fig. S5 CD spectra of R/S-Eu-Ph₃PO in CH₃OH (c = 1×10^{-5} mol L⁻¹).

Fig. S6 Thermogravimetric analysis of S-Eu.

Fig. S7 Thermogravimetric analysis of S-Gd.

Fig. S8 (Top) Phosphorescence spectrum of **S-Gd** collected in the solid state under excitation at 306 nm (black line, 77 K) and its Gaussian decomposition (colored traces); (Bottom) Absorption spectra of S-Eu in molar absorptivity in CH₃OH (c = 1×10^{-5} mol L⁻¹).

PLQY S	Software - PMA											- 0	a ×
File View	w Module Setup Data	Window Help											
📽 🖬	3 Ba 🖻 🥔 💡 👘												
Measur	rement • Grabber	 Select 											
Mea	asure(<u>A</u>) Setup]											
[PmaPL	.EL]												
PX	@ = wa = 16 m	✓ X ▲ ▼ 4 ▶ 4.	ヘロ										
Da	ta xy Co	rrection Linear	Log10		EA	Auto Cursor							
	u. Intensity (Energy)												
		1											
200	000												
													I
150	000												
													I
100	000												
													I
SC	000	·····											
		IV N											
	0												
	200		400				600				800	Wavelength	ne
N C	Cursor1-2: 295.92 - 317.18(Cursor3-4: 400.48 - 800.60(QuantumYield	Abs	Peak Wavele	Peak Co	Peak FW	Peak Wavele	Peak Co	Peak FW			~
1 4	5380080				306.56	21886.39	6.35	404.25	21.08	186.12			
2 1	2153722	6145998	0.185	0.732	305.80	5754.66	6.47	611.29	434.92	3.44			
3 1	2205071	6111055	0.184	0.731	305.80	5776.17	6.44	611.29	435.69	3.49			
4 1	2155659	6138178	0.185	0.732	305.80	5770.64	6.45	611.29	435.04	3.47			

Fig. S9 Quantum yield of **S-Eu** in CH₃OH (1.0×10^{-5} M) at room temperature.

Fig. S10 Quantum yield of **S-Eu** in H_2O (1.0 × 10⁻⁵ M) at room temperature.

PLQY	Softw	vare - PMA											- 0	×
ile V	iew 1	Module Setup Data	Window Help											
iii 🖬	18	h 6 6 ?												
			Select											
Meas	ureme	nt Grabber	- Select											
M	leasure	e(A) Setup												
[Pma]	PLEIT													
01		Stelling III ml												
0	Data	xy Cor	rection Linear L	.og10			Auto Cursor							
	a. u.	Intensity (Energy)												
	1											1		
2	0000													
1	5000													
				1								1		
			10											
1	0000						••••••							
				1								1		
	5000													
	0													
		00		400				600				800		
	2	00		400				000				000	Wavelength	nm.
NI	0	-1 2 205 02 217 10/	C	O	Aba	De els Manala	Deall Co	Deal DM	Deale Monda	Deel Co	Deal DW			
1	46767	12.273.72 - 317.10(Cursors-4: 550.00 - 800.00(Quantumfield	AUS	206 56	22504 80	6 27	615.02	21 52	7 27			
2	22150	785	4181961	0.170	0.526	305.80	10553.82	6.44	617.25	426.85	4.64			
3	22210	1477	4156137	0.169	0.525	305.80	10620.25	6.40	617.25	418.78	4.74			
4	22181	041	4149440	0.169	0.526	306.56	10570.33	6.43	617.25	420.28	4.70			

Fig. S11 Quantum yield of **S-Eu-Ph₃PO** in CH₃OH (1.0×10^{-5} M) at room temperature.

Fig. S12 Quantum yield of **S-Eu-Ph₃PO** in H_2O (1.0 × 10⁻⁵ M) at room temperature.

Fig. S13 Circularly polarized luminescence (g_{lum}) spectra of **R/S-Eu** collected from 1.2 × 10⁻⁵ M solutions in CH₃OH at room temperature upon excitation at 329 nm.

Fig. S14 Circularly polarized luminescence (g_{lum}) spectra of **R/S-Eu-Ph₃PO** collected from 1.2 × 10⁻⁵ M solutions in CH₃OH at room temperature upon excitation at 329 nm.

Fig. S15 Decay curve of **S-Eu** in D₂O at room temperature, $c = 1.0 \times 10^{-5}$ M, gives the luminescence lifetime of 1.734 ms.

Fig. S16 HR-MALDI-TOF spectrum of S-Gd in CH₃OH at room temperature.

Fig. S17 HR-ESI-MS and simulated spectra of **S-Eu-Ph₃PO** in CH₃OH (top) and ¹H spectrum of isostructural Y(III) compound in CD₃OD (bottom).

Fig. S18 Relaxivity determined from concentration-dependent T_1 -weighted MR measurements at 1.2 T of **R-Gd** at room temperature.

Fig. S19 Cell viabilities of A549 cells after incubated with various concentrations of Gd(III)-based compounds for 24 h.

References

- 1. D. Casanova, J. Cirera, M. Llunell, P. Alemany, D. Avnir and S. Alvarez, *J. Am. Chem. Soc.*, 2004, **126**, 1755-1763.
- 2. M. Pinsky and D. Avnir, Inorg. Chem., 1998, 37, 5575-5582.