Electronic Supplementary Information

Interplay of a Nitro-group and Metal Ions: from Coordinative Binding to Noncovalent Semicoordination

Vitalii V. Suslonov,^{1,2,3} Natalia S. Soldatova,² Daniil M. Ivanov,^{1,2} Pavel S. Postnikov,² Rosa M. Gomila,⁴ Antonio Frontera,⁴ Vadim Yu. Kukushkin,^{*1,5} Nadezhda A. Bokach^{*1,2}

¹ Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russian Federation

² Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russian Federation

³ S.M. Kirov Academy, Akad. Lebedeva St., 6, Saint Petersburg 194044, Russian Federation

⁴ Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain

⁵ Institute of Chemistry and Pharmaceutical Technologies, Altai State University, 656049 Barnaul, Russian Federation

Emails: v.kukushkin@spbu.ru; n.bokach@spbu.ru

*Corresponding authors

Table of contents

S1. XRD data	2
S2. Consideration of the structures	3
S3. Hirshfeld surface analysis	7
S4. CSD search results	9
S5. Theoretical studies	14
S6. Crystallization and characterization of 1–3	15
S7. Experimental data	17
References	28

S1. XRD data

Identification code	$1 \cdot CH_2Cl_2$	$2 \cdot \text{MeNO}_2$	$3 \cdot \text{MeNO}_2$
Empirical formula	C35H32Cl2I2N6NiO10	$C_{35}H_{33}I_2N_7O_{12}Pd$	$C_{35}H_{33}I_2N_7O_{12}Pt$
Formula weight	1080.07	1103.88	1192.57
Temperature/K	100(2)	100(2)	100(2)
Crystal system	monoclinic	monoclinic	monoclinic
Space group	C2/c	C2/c	C2/c
a/Å	22.4636(5)	22.5407(2)	22.5831(3)
b/Å	12.6983(3)	12.83600(10)	12.8189(2)
c/Å	13.5865(2)	13.66040(10)	13.6642(2)
α/°	90	90	90
β/°	98.051(2)	97.8870(10)	98.0300(10)
$\gamma/^{\circ}$	90	90	90
Volume/Å ³	3837.33(14)	3915.01(6)	3916.87(10)
Z	4	4	4
$\rho_{calc}g/cm^3$	1.870	1.873	2.022
µ/mm ⁻¹	15.207	16.820	5.230
F(000)	2128.0	2160.0	2288.0
Crystal size/mm ³	0.25 imes 0.2 imes 0.2	0.2 imes 0.15 imes 0.1	$0.2\times0.15\times0.12$
Radiation	$CuK\alpha (\lambda = 1.54184)$	CuKa ($\lambda = 1.54184$)	MoKa ($\lambda = 0.71073$)
2⊖ range for data collection/°	7.95 to 139.98	7.92 to 139.978	6.022 to 54.98
	$-27 \leq h \leq 27$	$-27 \leq h \leq 27$	$-28 \le h \le 19$
Index ranges	$-13 \leq k \leq 15$	$-15 \leq k \leq 15$	$-15 \leq k \leq 16$
	$-16 \le l \le 15$	$-15 \le l \le 16$	$-15 \le 1 \le 17$
Reflections collected	16864	49287	8309
Independent reflections	$3639 [R_{int} = 0.0562,$	$3723 [R_{int} = 0.0494,$	$4307 [R_{int} = 0.0179,$
	$R_{\text{sigma}} = 0.0323$	$R_{sigma} = 0.0152$	$R_{sigma} = 0.0257$
Data/restraints/parameters	3639/0/258	3723/0/259	4307/0/286
Goodness-of-fit on F ²	1.040	1.089	1.043
Final R indexes $[1 \ge 2\sigma$ (I)]	$R_1 = 0.0381, wR_2 = 0.1029$	$R_1 = 0.0264, wR_2 = 0.0735$	$R_1 = 0.0184, wR_2 = 0.0415$
Final R indexes [all data]	$R_1 = 0.0401, wR_2 = 0.1056$	$R_1 = 0.0267, wR_2 = 0.0738$	$R_1 = 0.0216, wR_2 = 0.0429$
Largest diff. peak/hole / e Å- 3	2.56/-1.19	0.73/-1.00	0.67/-0.74
CCDC Nos	2304939	2304940	2304938

Table S1. Crystal data and structure refinement for 1·CH₂Cl₂, 2·MeNO₂, and 3·MeNO₂.

S2. Consideration of the structures

Figure S1. A fragment of the HaB-based crystal packing of $1 \cdot CH_2Cl_2$; CH_2Cl_2 was omitted for simplicity.

Figure S2. A fragment of the HaB-based crystal packing of $3 \cdot \text{MeNO}_2$; MeNO₂ was omitted for simplicity.

Figure S3. A fragment of the crystal packing of $1 \cdot CH_2Cl_2$ showing semicoordination (dotted lines); CH_2Cl_2 was omitted for simplicity.

Figure S4. A fragment of the crystal packing of $3 \cdot \text{MeNO}_2$ showing semicoordination (dotted lines); MeNO₂ was omitted for simplicity.

All XRD structures are composed of the anion $[M(CN)_4]^{2-}$ and two $[Ar^1Ar^2I]^+$ cations and display almost the same HaB-based motif, which includes pseudo-layered architecture (**Figures 1**, **S1** and **2S**; **Figure S5**, **a**). This pattern differs from those previously observed for $[Ph_2I]_2[M(CN)_4]$ (M = Ni, Pd)¹ and $[Ar^1Ar^2I]_2[PtCl_4]^{2, 3}$ Thus, the complex $[Ph_2I]_2[M(CN)_4]$, bearing unsubstituted diaryliodonium cation, forms I···N HaB-based infinite chains with shared vertexes occupied by the $[M(CN)_4]^{2-}$ anions (**Figure S5**, **b**). Structures of $[Ar^1Ar^2I]_2[PtCl_4]$ are represented by heterotrimers (**Figure S5**, **c**). The latter difference between supramolecular motifs is probably related to the difference in interatomic distances between the *cis*-(N)₂ and *cis*-(Cl)₂ nucleophilic centers in the anionic metalates. The differences in the anisotropic distribution of the electron density around these two elements in the respective anions also play a significant role. At the same time, common feature for all four ligands of each complex is that they are involved in HaB.

Figure S5. Schematic representation of main HaB-based structural motifs for $[Ar^{1}Ar^{2}I]_{2}[M(CN)_{4}]$ (M = Ni, Pd, Pt) (*a*), $[Ph_{2}I]_{2}[M(CN)_{4}]$ (M = Ni, Pd) (*b*), and $[Ar^{1}Ar^{2}I]_{2}[PtCl_{4}]$ (*c*).

The common contact type for the three structures under study is the I···N HaB occurred between the I atom of the iodonium cation and N atom of a CN⁻ ligand; all observed contacts fulfill the IUPAC criteria⁴ for the identification of HaB, which belong to Type-II⁴ halogen-halogen interactions (**Table S2**). The I···N distances are in the range 2.78–2.94 Å and the shortest separations (2.768(3) Å; 78% of Bondi Σ_{vdW} I + N were observed for **2**. The ∠C–I–N angles (168– 171°) tend to linear. Each iodonium cation form two 2-center HaBs because the iodine atom exhibits two σ -holes on the extension of each C–I covalent bonds.

Nos	Contact	d(I…N), Å	∠C–I…N,°	∠I…N–C,°
1	C3–I1···N2–C2	2.780(3)	168.46(13)	140.1(3)
	C9–I1…N1–C1	2.921(4)	168.88(10)	140.1(3)
$2 \cdot \text{MeNO}_2$	C3–I1···N2–C2	2.768(3)	168.97(9)	138.7(3)
	C12–I1…N1–C1	2.931(3)	171.28(9)	136.6(2)
3·MeNO ₂	C3–I1···N2–C2	2.775(2)	168.75(8)	138.3(2)
	C9–I1…N1–C1	2.936(2)	171.43(8)	135.9(2)

Table S2. I...N HaB in the structures of $[Ar^{1}Ar^{2}I]_{2}[M(CN)_{4}]$.

^a $R_{\text{Bondi}}^{5} = d/\Sigma_{\text{vdW}}$; Bondi Σ_{vdW} I + N = 3.53 Å.

The nitro group forms short contacts with solvent molecules (CH_2Cl_2 or $MeNO_2$). These contacts occurred between the N-atom and Cl/O-atoms from the solvent. These contacts can be recognized as π -hole_{NO2}...lone pair(Cl/O) interactions.

Structure	Contact	Distance, Å (Nc)	Angle C–N–X, °	Angle N–X–Y, °
$1 \cdot CH_2Cl_2$	N3C11S	3.301(3) (1.00)	83.9(2)	98.08(8)
$2 \cdot \text{MeNO}_2$	N3–O2S	2.955(7) (0.96)	90.52(19)	104.1(4)
$3 \cdot \text{MeNO}_2$	N3–O2S	2.948(10) (0.96)	89.3(3)	100.4(9)

Table S3. The π -hole_{NO2}····Cl/O contacts in the studied structures.

Figure S6. π -hole_{NO2}····Cl contact in the structure of $1 \cdot CH_2Cl_2$.

Figure S7. π -hole_{NO2}···O contact in the structure of **2**·MeNO₂.

Figure S8. π -hole_{NO2}····Cl contact in the structure of **3**·MeNO₂.

S3. Hirshfeld surface analysis

Figure S9. Hirshfeld surface of $[Ni(CN)_4]^{2-}$ (top) and $[\{2,4,6-(MeO)_3C_6H_2\}(4-NO_2-C_6H_4)I]^+$ (bottom) in the structure of $1 \cdot CH_2Cl_2$ mapped with shape index (left panel; the presence of red and blue triangles in the center of the anion, in which the red and blue color represent the bumps and hollow regions on the shape index surfaces, respectively) and d_{norm} (right panel) showing the Ni…O short contact and I…N HaBs.

Figure S10. Hirshfeld surface of $[Pd(CN)_4]^{2-}$ (top) and $[\{2,4,6-(MeO)_3C_6H_2\}(4-NO_2-C_6H_4)I]^+$ (bottom) in the structure of **2**·MeNO₂ mapped with shape index (left panel) and d_{norm} (right panel) showing the Pd···O short contact and I···N HaBs.

Figure S11. Hirshfeld surface of $[Pt(CN)_4]^{2-}$ (top) and $[\{2,4,6-(MeO)_3C_6H_2\}(4-NO_2-C_6H_4)I]^+$ (bottom) in the structure of **3**·MeNO₂ mapped with shape index (left panel) and d_{norm} (right panel) showing the Pt…O short contact and I…N HaBs.

Figure S12. The 2D-fingerprint of the Hirshfeld surface of the cation in the structure of $1 \cdot CH_2Cl_2$ demonstrating I···N (left) and H···N (right) contacts. No reciprocal contacts are provided.

Comments: Narrow wing in the bottom-right corner (3% of the surface area; left panel) corresponds to I…N HaB. Wide cloud (8.4% of the surface area; right figure) is due to different types of H…N contacts including presumably weak attractive C–H…N HBs.

Figure S13. The 2D-fingerprint of the Hirshfeld surface of the anion in the structure of $1 \cdot CH_2Cl_2$ demonstrating N…I (top-left), N…H (top-right), Ni…O (bottom-left), and Ni…all atoms (bottom-right) contacts. No reciprocal contacts are provided.

Comments:

Top-left: Narrow spike in the top-left corner (8.7% of the surface area) corresponds to I \cdots N HaB. Top-right: Wide cloud (right figure; 45.7% of the surface area) is due to different types of H \cdots N contacts, including presumably weak attractive C–H \cdots N HBs (greenish area).

Bottom-left: Narrow spike in the bottom-right corner corresponds to Ni…O contact (4.3% of the surface area).

Bottom-right: In comparison with the previous figure, this figure indicates that Ni…O contact is one of the most significant which involve the Ni atom. Contacts of Ni with all other external atoms

include only 4.7% of the surface area. Apart from Ni…O, other less important interactions include Ni…H contacts.

Figure S14. The 2D-fingerprint of the Hirshfeld surface of the cation in the structure of $2 \cdot \text{MeNO}_2$ demonstrating I…N (left) and H…N (right) contacts. No reciprocal contacts are provided.

Comments: Narrow wing in the bottom-right corner (3% of the surface area; left panel) corresponds to I \cdots N HaB. Wide cloud (8.4% of the surface area; right panel) is due to different types of H \cdots N contacts including presumably weak attractive C–H \cdots N HBs.

Figure S15. The 2D-fingerprint of the Hirshfeld surface of the anion in the structure of $2 \cdot \text{MeNO}_2$ demonstrating N…I (top-left), N…H (top-right), Pd…O (bottom-left), and Pd…all atoms (bottom-right), contacts. No reciprocal contacts are provided.

Comments:

Top-left: Narrow spike in the top-left corner (8.7% of the surface area) corresponds to I…N HaB.

Top-right: Wide cloud (right figure; 44.0% of the surface area) is due to different types of $H \cdots N$ contacts including presumably weak attractive C– $H \cdots N$ HBs (greenish area).

Bottom-left: The spike in the bottom-right corner corresponds to Pd…O contact (4.1% of the surface area).

Bottom-right: In comparison with the previous figure, this figure indicates that $Pd\cdots O$ contact is one of the most significant which include Pd atom. Contacts of Pdi center with all other external atoms involves 5.1% of the surface area. Apart Pd…O, other less important contacts include Pd…H.

Figure S16. The 2D-fingerprint of the Hirshfeld surface of the cation in the structure of $3 \cdot \text{MeNO}_2$ demonstrating I…N (left) and H…N (right) contacts. No reciprocal contacts are provided.

Comments: Narrow wing in the bottom-right corner (3.1% of the surface area; left panel) corresponds to I…N HaB. Wide cloud (8.4% of the surface area; right panel) is due to different types of H…N contacts including presumably weak attractive C–H…N HBs.

Figure S17. The 2D-fingerprint of the Hirshfeld surface of the anion in the structure of $3 \cdot \text{MeNO}_2$ demonstrating N…I (top-left), N…H (top-right), Pt…O (bottom-left), and Pt…all atoms (right bottom) contacts. No reciprocal contacts are provided.

Comments:

Top-left: Narrow spike in the top-left corner (8.6% of the surface area) corresponds to I…N HaB.

Top-right: Wide cloud (right figure; 44.1% of the surface area) is due to different types of $H \cdots N$ contacts including presumably weak attractive C– $H \cdots N$ HBs (greenish area).

Bottom-left: Wide spike in the bottom-right corner corresponds to Pt...O contact (3.8% of the surface area).

Bottom-right: In comparison with the previous figure, this figure indicates that $Pt\cdots O$ contact is one of the most significant which include the Pt atom. Contacts of Pt center with all other external atoms involves 5.1% of the surface area. Apart from Pd…O, other less important contacts include Pd…H.

S4. CSD search results

CSD refcode	Contact	Distance, Å (Nc)	Comments
FAFWUG	Ni…O	2.930(12) (0.93)	intermolecular
			neutral complex
JAFKEK	Pd···O	3.094(4) (0.98)	intermolecular
			neutral complex
NEGNOE	Pd…O	2.941(5) (0.93)	intermolecular
NONVENU		2.114(7) (0.00)	
NOPYEW	Pd···O	3.114(7) (0.99)	intermolecular
PAHVER	Pd···O	2.944(3)(0.93)	intermolecular
	I'u O	2.7++(3)(0.75)	tetrameric cationic complex
PAHVIF	Pd···O	3.090(6) (0.98)	intermolecular
			tetrameric cationic complex
SEGMEW	Ni····O	3.095(15) (0.98)	intermolecular
			coordination polymer
UDUXUN	Ni····O	2.941(4) (0.93)	intermolecular
			cationic complex
UFAXOP	Pd···O	3.113(17) (0.99)	intermolecular
			cationic complex
WOWQUW	Pd····O	2.896(4) (0.92)	intermolecular
			cationic coordination
	_		polymer
VUPGEV	Ni…O	2.826(13) (0.90)	intramolecular
			coordination polymer
DUZVID	Pt···O	3.061(6) (0.94)	intramolecular
DDUCON			neutral complex
EBUGOY	Pt···O	3.187(4) (0.97)	intramolecular
		2.004(5)(0.04)	anionic complex
EBUGUE	Pt…O	3.084(5) (0.94)	intramolecular
		2.060(2) (0.04)	
EDUNAL	Pl ^m O	3.060(2) (0.94)	nutral complex
EDITIED		2 2101(16) (0.08)	intramologular
LBUILF	Ft ^w O	5.2191(10) (0.98)	neutral complex
FUNI AB	Pd···O	2 888(4) (0 92)	intramolecular
	lu o	2.000(4)(0.92)	neutral complex
KULKIM	Pt···O	3.0457(19) (0.93)	intramolecular
			neutral complex
OENNUT	Pt···O	2.918(2) (0.89)	intramolecular
			neutral complex
QENPIJ	Pt…O	3.055(8) (0.93)	intramolecular
		3.081(8) (0.94)	neutral complex
		3.233(7) (0.99)	
		3.071(7) (0.94)	
QENPOP	Pt···O	3.082(2) (0.94)	intramolecular

Table S4. CSD data for $M^{\dots}O_{NO2}$ short contacts.

			neutral complex
QENPUV	Pt…O	3.2429(18) (0.99)	intramolecular
			neutral complex
QENQIK	Pt···O	3.0357(16) (0.93)	intramolecular
			neutral complex
VESXOG	Ni…O	2.892(9) (0.92)	intramolecular
			cationic complex
SANWAJ	Pd···O	2.8462(17) (0.90)	intramolecular
			neutral complex
SANWEN	Pd···O	3,098(4) (0.98)	intramolecular
			neutral complex
AIUXAG	Ni···O	3 071(3) (0 97)	intramolecular
		5.071(5)(0.57)	neutral complex
AIUXEK	Ni···O	2 918(2) (0 93)	intramolecular
1 GOALIC		2.910(2)(0.93)	neutral complex
AKAMOO	Ni···O	2 515(6) (0 80)	intramolecular
		2.515(0) (0.00)	neutral cluster
	Pd···O	2 831(9)-2 907(4) (0 90)	intramolecular
ARONLA	lu o	2.051(7)=2.507(4) (0.50)	neutral complex
CEMKOU		2 9029(19) (0 89)	intramolecular
CENIKOU		3.015(12)(0.92)	neutral complex
		5.015(12)(0.92)	neutral complex
DUPZIY	Ni…O	2.560(4) (0.81)	intramolecular
			neutral complex
EBUHUF	Pt⋯O	3.1368(18) (0.96)	intramolecular
			neutral complex
FIPHAN	Pd···O	2.894(8) (0.92)	intramolecular
			neutral complex
FULTUC	Ni…O	2.833(3) (0.90)	intramolecular
			neutral complex
HAKQIW	Pd···O	2.854(2) (0.91)	intramolecular
			neutral complex
HIPDUF	Pd···O	2.865(4) (0.91)	intramolecular
			cationic complex
KEPNIE	Ni…O	2.870(3) (0.91)	intramolecular
		3.063(3) (0.97)	neutral complex
			-
KESLEC	Pd···O	2.829(2) (0.90)	intramolecular
			neutral complex
KOMKEC	Pt…O	3.12(1) (0.95)	intramolecular
			neutral complex
KULJAD	Pt···O	3.211(4) (0.98)	intramolecular
			neutral complex
KULJIL	Pt…O	3.237(9) (0.99)	intramolecular
		3.181(10) (0.97)	neutral complex
KUZSAZ	Pd···O	2.784(12) (0.88)	intramolecular
	_	2.828(15) (0.90)	cationic complex
			r
LATMUO	Pt···O	3.164(18) (0.97)	intramolecular
			neutral complex
L	1		r

NAYHOK	Pd···O	3.099(7) (0.98)	intramolecular
			neutral complex
NAYHOK01	Pd···O	3.105(5) (0.99)	intramolecular
			neutral complex
QENPAB	Pt···O	3.183(2) (0.99)	intramolecular
			neutral complex
QENQAC	Pt···O	3.1703(16) (0.97)	intramolecular
			neutral complex
QENQOQ	Pt···O	3.0532(17) (0.93)	intramolecular
			neutral complex
SALNEY	Pd···O	2.910(3) (0.92)	intramolecular
		2.911(3) (0.92)	anionic complex
VINBUP	Pd···O	2.85(3) (0.90)	intramolecular
		2.81(2) (0.89)	neutral complex
VOKPOA	Pd···O	2.756(6) (0.87)	intramolecular
			cationic complex
WOSYIM	Pd···O	2.991(9) (0.95)	intramolecular
			neutral complex
YASNUB	Pt···O	3.112(7) (0.95)	intramolecular
		3.090(8) (0.94)	neutral complex
YOBNOT	Pd···O	3.0061(16) (0.95)	intramolecular
			neutral complex
YOBNUZ	Pd···O	3.017(2) (0.96)	intramolecular
			neutral complex
YOBPEL	Pd···O	3.006(4) (0.95)	intramolecular
		2.972(4) (0.94)	neutral complex
		3.033(3) (0.95)	
		3.004(3) (0.95)	
		3.078(4) (0.98)	
		3.103(4) (0.99)	
YOBPIP	Pt…O	2.994(3) (0.92)	intramolecular
		3.146(3) (0.96)	neutral complex
ZAXXII	Ni…O	3.069(3) (0.97)	intramolecular
			neutral complex
ZIVZUB	Pd···O	2.954(3) (0.94)	intramolecular
			neutral complex
AWOMIJ	Pt…O	3.271(8) (1.01)	intermolecular*
			cationic complex
MALHEN	Pt···O	3.401(3) (1.05)	intermolecular*
			cationic complex
TOKHIM	Pt…O	3.351(2) (1.03)	intermolecular*
			cationic complex

Hereinafter Nc is normalized contact distance, Nc = d/\sum_{BvdW} or d/\sum_{AvdW} , where \sum_{BvdW} is Bondi van der Waals radii⁵ sum for interacting atoms: \sum_{BvdW} (Ni,O) = 3.15; \sum_{BvdW} (Pd,O) = 3.15 Å; \sum_{BvdW} (Pt,O) = 3.27 Å.

*Criterium distance (Pt–O) $\leq (\Sigma_{vdW} + 0.21 \text{ Å}) (3.45 \text{ Å})$ was used for selection.

CSD refcode	Bond	Bond length, Å	Comments
AMOBEM	Ni–O	2.142(6)	NO ₂ in 6-membered chelate ring, Ni ^{II} , O
CEFHAW	Pt–O	2.0604(8)	NO_2 in 5-membered chelate ring, Pt^{II} , SP
DOBZOJ	Ni–O	2.087(5)	NO_2 in 6-membered chelate ring, Ni ^{II} , O
DUZVID	Pt–O	2.138(5)	NO_2 in 5-membered chelate ring, Pt^{II} , SP + short contact $Pt \cdots O$
EBUGOY	Pt–O	2.088(3)	NO ₂ in 5-membered chelate ring, Pt ^{II} , SP + short contact Pt \cdots O
EBUGUE	Pt–O	2.067(4)	NO ₂ in 5-membered chelate ring, Pt^{II} , SP + short contact $Pt \cdots O$
EBUHAL	Pt–O	2.0739(19)	NO ₂ in 5-membered chelate ring, Pt^{II} , SP + short contact Pt…O
EBUHEP	Pt–O	2.0843(16)	NO ₂ in 5-membered chelate ring, Pt ^{II} , SP + short contact Pt \cdots O
EBUHIT	Pt–O	2.254(5) 2.068(3)	NO ₂ in 5-membered chelate ring, Pt ^{II} , O with Pt–Hg bond
EBUHOZ	Pt–O	2.283(3) 2.071(3)	NO ₂ in 5-membered chelate ring, Pt ^{II} , O with Pt–Hg bond
FEVBAJ	Ni–O	2.0509(17)	NO ₂ in 6-membered chelate ring, Ni ^{II} , O
FEVPUR	Pt–O	2.166(4) 2.173(4)	NO_2 in 5-membered chelate ring, Pt^{IV} , O
FUNKUU	Pd–O	2.130(5) 2.158(6)	NO_2 in 5-membered chelate ring, Pd^{II} , SP
FUNLAB	Pd–O	2.137(3)	NO ₂ in 5-membered chelate ring, Pd ^{II} , SP + short contact Pd \cdots O
GUNLAF	Ni–O	2.174(3)	NO ₂ in 6-membered chelate ring, Ni ^{II} , O
HIPDIT	Pd–O	2.014(2)	NO_2 in 5-membered chelate ring, Pd^{II} , SP
KULHEF	Pt–O	1.999(4)	NO ₂ in 5-membered chelate ring, Pt ^{II} , SP
KULHIJ	Pt–O	1.990(5)	NO_2 in 5-membered chelate ring, Pt^{II} , SP
KULKAE	Pt–O	2.035(4) 2.098(4)	NO_2 in 5-membered chelate ring, Pt^{IV} , O
KULKEI	Pt–O	2.021(5)	NO_2 in 5-membered chelate

Table S5. CSD data for complexes bearing metal-bound NO_2 -group.

		2.035(5)	ring, Pt ^{IV} , O
KULKIM	Pt–O	2.0781(15)	NO ₂ in 5-membered chelate
			ring, Pt^{II} , $SP + Pt \cdots O$
			contact
KULKOS	Pt–O	2.080(3)	NO_2 in 5-membered chelate
			ring, Pt ^{II} , SP
MECRAN	Ni–O	2.117(4)	NO_2 in 6-membered chelate
			ring, Ni ^{II} , O
QENNUT	Pt–O	2.0769(17)	NO_2 in 5-membered chelate
			ring, Pt ^{II} , SP
QENPIJ	Pt–O	2.049(6)	NO_2 in 5-membered chelate
		2.045(6)	ring, Pt^{II} , $SP + Pt \cdots O$
		2.055(6)	contact
		2.039(6)	
QENPOP	Pt–O	2.079(2)	NO_2 in 5-membered chelate
			ring, Pt^{II} , $SP + Pt \cdots O$
			contact
QENPUV	Pt–O	2.0747(16)	NO_2 in 5-membered chelate
			ring, Pt^{II} , $SP + Pt \cdots O$
			contact
QENQIK	Pt–O	2.0789(18)	NO_2 in 5-membered chelate
			ring, Pt^{II} , $SP + Pt \cdots O$
			contact
RAQKUR	Ni–O	2.042(3)	monodentate MeNO ₂ , Ni ⁰
		2.067(3)	$(in [Ni(MeNO_2)_2(Et_2O)(lin-$
			NO) (PF ₆)), distorted T
TAQFUO	Ni–O	2.033(6)	monodentate MeNO ₂ , N ¹⁰
		2.050(4)	$(in [Ni(MeNO_2)_3(lin-NO)])$
		2.054(3)	NO) (PF ₆)), distorted T
TETZAW	N1-O	2.136(4)	NO_2 in 6-membered chelate
		2.171(3)	ring, Ni ⁿ , O
TEIZEA	N1-O	2.123(7)	NO_2 in 6-membered chelate
VODDUD	D1 O	2.100(7)	$\frac{\text{ring, N1}^{\text{in}}, \text{O}}{\text{NO}^{1} \cdot 5 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1}$
YOBPUB	Pa-O	2.019(3)	NO_2 in 5-membered chelate
			ring, Pa ⁿ ₂ , TP with Pa-Pa
		2,052(5)	bond NO in Communication 1 shall star
LEIWEE		2.032(3)	NO_2 in o-membered chelate
		2.030(4) 2.022(5)	ring, m , O
		2.033(3)	
		2.037(4) 2.045(2)	
		2.043(3) 2.057(A)	
ZOMVEL			monodonteto DNO DEIL CD
	ru-U	2.2/02(14)	monodentate KNO_2 , Pt^n , SP

Figure S18. View of the structure KUMWIB, demonstration intermolecular contact Ni…S.

S5. Theoretical studies

Figure S19. QTAIM (bond CPs in red and bond paths as solid lines) and NCIplot (see theoretical methods for settings) of the halogen bonded (a,c) and $Pd\cdots O_{NO2}$ (b,d) bonded trimers of compounds 1 (left) and 3 (right). Only intermolecular contacts are shown. The interaction energies are also indicated.

S6. Crystallization and characterization of 1–3

Crystallization of $[\{2,4,6-(MeO)_3C_6H_2\}(4-NO_2-C_6H_4)I]_2[M(CN)_4]$ (1–3). A solution of any one of $(PPN)_2[M(CN)_4]$ (15.5 µmol) in MeNO₂ (for 2 and 3) or CH_2Cl_2 (for 1) (2 mL) was added to a solution of [{2,4,6-(MeO)₃C₆H₂}(4-NO₂-C₆H₄)I](CF₃CO₂) (31.0 µmol) in MeNO₂ or CH₂Cl₂ (2 mL) and the resulting homogeneous solution was left to stand for several days at room temperature for slow evaporation, whereupon a few crystals suitable for XRD were manually separated. Solid residues were dried in air at RT. The presence of halogens (iodine in our particular case) in any structure spoils the column of an analyzer and, and usually leads to poorly reproducible data. In addition to the XRD, we characterized the obtained compounds using FTIR (in KBr) and ATR-FTIR spectroscopy and HRESI mass-spectrometry. All species exhibit peaks from the iodonium cation $[2,4,6-(MeO)_{3}C_{6}H_{2}/4-NO_{2}-C_{6}H_{4}I]^{+}$ in their positive mode mass-spectra and also peaks of the dianion $[M(CN)_4]^{2-}$ and its fragmentation ion, $[M(CN)_3]^{-}$, in the negative mode mass-spectra. 1. IR (KBr, selected bands, cm⁻¹): 3094, 3011 w v(C_{Ar}-H), 2949, 2851 w v(C_{Me}-H), 2115 and 2105 s v(C≡N), 1586 s v(CC_{Ar}), 1529 s v(NO₂ asym), 1468 m-s v(CC_{Ar}), 1343 s v(NO₂ sym), 1229 s, 1207 m-s and 1124 s v(C–O), 849 m-s v(C–N) and/or δ(C_{Ar}–H), 736 m-s δ(C_{Ar}–H). ATR-FTIR (selected bands, cm⁻¹): 3099, 3011 w v(C_{Ar}-H), 2950, 28521 w v(C_{Me}-H), 2114 and 2105 s v(C≡N), 1582 s v(CC_{Ar}), 1526 s v(NO₂ asym), 1468 m-s v(CC_{Ar}), 1343 s v(NO₂ sym), 1227 s, 1206 m-s and 1123 s v(C–O), 849 m-s v(C–N) and/or δ(C_{Ar}–H), 736 m-s δ(C_{Ar}–H). HRESI⁺-MS: m/z: 415.9983 [{2,4,6-(MeO)_3C_6H_2}(4-NO_2-C_6H_4)I]⁺ (calcd 415.9989). HRESI⁻-MS: m/z: 135.9456 [Ni(CN)₃]⁻ (calcd 135.9451).

2. IR (KBr, selected bands, cm⁻¹): 3092, 3011 w v(C_{Ar}–H), 2949, 2852 w v(C_{Me}–H), 2129 and 2120 s v(C \equiv N), 1586 s v(CC_{Ar}), 1529 m-s v(NO₂ asym), 1469 m-s v(CC_{Ar}), 1343 s v(NO₂ sym), 1229 s, 1207 m-s and 1124 s v(C–O), 850 m-s v(C–N) and/or δ (C_{Ar}–H), 736 m δ (C_{Ar}–H). ATR (selected bands, cm⁻¹): 3094, 3012 w v(C_{Ar}–H), 2949, 2851 w v(C_{Me}–H), 2129 and 2119 s v(C \equiv N), 1584 s v(CC_{Ar}), 1528 m-s v(NO₂ asym), 1470 m-s v(CC_{Ar}), 1344 s v(NO₂ sym), 1229 s, 1207 m-s

and 1123 s v(C–O), 849 m-s v(C–N) and/or $\delta(C_{Ar}$ –H), 737 m $\delta(C_{Ar}$ –H). HRESI⁺-MS: *m/z*: 415.9985 [{2,4,6-(MeO)_3C_6H_2}(4-NO_2-C_6H_4)I]⁺ (calcd 415.9989). HRESI⁻-MS: *m/z*: 104.9579 [Pd(CN)_4]^{2–} (calcd 104.9585), 183.9136 [Pd(CN)_3][–] (calcd 183.9134).

3. IR (KBr, selected bands, cm⁻¹): 3092, 3011 w v(C_{Ar}–H), 2949, 2924, 2851 w v(C_{Me}–H), 2116(sh) s v(C=N), 1586 s v(CC_{Ar}), 1530 m-s v(NO₂ asym), 1470 m-s v(CC_{Ar}), 1344 s v(NO₂ sym), 1229 s, 1207 m-s and 1124 s v(C–O), 849 m-s v(C–N) and/or δ (C_{Ar}–H), 736 m δ (C_{Ar}–H). ATR (selected bands, cm⁻¹): 3092, 3012 w v(C_{Ar}–H), 2949, 2924, 2851 w v(C_{Me}–H), 2124 and 2116 s v(C=N), 1585 s v(CC_{Ar}), 1529 m-s v(NO₂ asym), 1469 m-s v(CC_{Ar}), 1343 s v(NO₂ sym), 1229 s, 1207 m-s and 1123 s v(C–O), 849 m-s v(C–N) and/or δ (C_{Ar}–H), 736 m δ (C_{Ar}–H). HRESI⁺-MS: *m/z*: 415.9887 [{2,4,6-(MeO)₃C₆H₂}(4-NO₂-C₆H₄)I]⁺ (calcd 415.9989). HRESI⁻-MS: *m/z*: 149.4895 [Pt(CN)₄]^{2–} (calcd 149.4891), 272.9742 [Pt(CN)₃][–] (calcd 272.9740).

S7. Experimental data

Figure S20. IR spectrum of 1 in KBr.

Figure S21. ATR-FTIR spectrum of 1.

Figure S22. IR spectrum of 2 in KBr.

Figure S23. ATR-FTIR spectrum of 2.

Figure S24. IR spectrum of 3 in KBr.

Figure S25. ATR-FTIR spectrum of 3.

[Ar¹Ar²I](CF₃CO₂), IR in NaCl (*lit.*⁶): 3098 w, 2449 w, 1664 s, 1520 s, 1347 s.

Figure S26. High resolution ESI-MS⁺ spectrum of 1.

Figure S27. High resolution ESI-MS⁻ spectrum of 1.

Figure S28. High resolution ESI-MS⁺ spectrum of 2.

Figure S29. High resolution ESI-MS⁻ spectrum of 2.

Figure S30. High resolution ESI-MS⁺ spectrum of 3.

Display Report

Figure S31. High resolution ESI-MS⁻ spectrum of 3.

References

- 1. V. V. Suslonov, N. S. Soldatova, P. S. Postnikov, G. Resnati, V. Y. Kukushkin, D. M. Ivanov and N. A. Bokach, Diaryliodonium Tetracyanidometallates Self-Assemble into Halogen-Bonded Square-Like Arrays, *Crystal Growth & Design*, 2022, **22**, 2749-2758.
- V. V. Suslonov, A. A. Eliseeva, A. S. Novikov, D. M. Ivanov, A. Y. Dubovtsev, N. A. Bokach and V. Y. Kukushkin, Tetrachloroplatinate(II) anion as a square-planar tecton for crystal engineering involving halogen bonding, *Crystengcomm*, 2020, 22, 4180-4189.
- V. V. Suslonov, N. S. Soldatova, D. M. Ivanov, B. Galmés, A. Frontera, G. Resnati, P. S. Postnikov, V. Y. Kukushkin and N. A. Bokach, Diaryliodonium Tetrachloroplatinates(II): Recognition of a Trifurcated Metal-Involving μ3-I…(Cl,Cl,Pt) Halogen Bond, *Crystal Growth & Design*, 2021, 21, 5360-5372.
- 4. G. R. Desiraju, P. S. Ho, L. Kloo, A. C. Legon, R. Marquardt, P. Metrangolo, P. Politzer, G. Resnati and K. Rissanen, Definition of the halogen bond (IUPAC Recommendations 2013), *Pure Appl. Chem.*, 2013, **85**, 1711.
- 5. A. Bondi, Van der Waals Volumes and Radii, J. Phys. Chem., 1964, 68, 441–451.
- 6. A. H. Sandtorv and D. R. Stuart, Metal-free Synthesis of Aryl Amines: Beyond Nucleophilic Aromatic Substitution, *Angewandte Chemie International Edition*, 2016, **55**, 15812-15815.