Supporting Information

Tuning Rare-Earth Hydride Reactivity with a Reductive

Diazabutadienyl Ligand Beyond Insertion

Xiaoqing Lin^[a], Jie Zhang^{*, [a]} and Xigeng Zhou^{*, [a]}

[a] Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.

* E-mail: zhangjie@fudan.edu.cn; xgzhou@fudan.edu.cn

Table of Contents

Experimental Procedures	2
2. Synthesis and characterization of All New Complexes	3
3. X-ray Crystallographic Analysis of All New Complexes	19
4. Molecular Structures of Complex 3 and 6	23
5. The spectra of in situ ¹ H NMR tracking experiments	24
6. Detection of H_2 generated in the reaction by GC	25
7. References	26

Experimental Procedures

All reactions were carried out under a dry and oxygen-free nitrogen atmosphere in a Vigor (SG2400/750TS-F) glovebox. Anhydrous tetrahydrofuran, toluene, and *n*-hexane were purified using an MB SPS-800 solvent purification system and dried over fresh sodium chips in the glovebox. C₆D₆, toluene-d₈ and THF-d₈ were purchased from J&K and transferred under vacuum, dried over fresh sodium chips and stored in a glovebox. Organometallic samples for NMR spectroscopic measurements were prepared in a glovebox using J-Young valve NMR tubes. The ¹H spectra were recorded on a Bruker Avance 400 MHz spectrometer at room temperature. The ¹³C NMR spectra were recorded on a Bruker Avance 100 MHz at room temperature. All chemical shifts were reported in δ units and referenced to residual solvent signals of C₆D₆ and TFA-d₁ solvents for ¹H NMR chemical shifts. IR spectra were recorded on a Bruker ALPHA II spectrometer in a glovebox. EPR spectra of solid samples were measured with a Bruker E500-10/12 spectrometer. Lowtemperature EPR spectra was acquired on Bruker EMX instrument EMXPLUS-10/12. The gas products were detected using a gas chromatography (GC-2010 Plus) by Barrier Discharge Ionization Detector. Elemental analyses for C, H, and N were carried out on an Elementar Vario Micro Cube elemental analyzer. UV-Vis absorption spectra were collected on an Agilent Cary 60 spectrometer. Rare-earth hydride $[(DAD)Y \cdot THF]_2(\mu - H)_2$ was prepared according to a literature procedure.¹ (Ethynyl-d)benzene was synthesized from a reaction of PhC=CLi with $D_2O.^2$ (DAD')Li(THF) was prepared by the reaction of lithium and DAD in THF.³

2. Synthesis and characterization of All New Complexes

2.1 Synthesis and characterization of $(DAD'Y)_2(\mu-H)_2(\mu-\eta^2:\eta^1-Ph_2C(O)C(O)Ph_2)(THF)$ (2).

A solution of benzophenone (Ph₂CO) (0.182 g, 1.0 mmol; in 5 mL of toluene) was added slowly to a stirred toluene solution (5 mL) of **1** (0.567 g, 0.5 mmol). After the mixture was stirred at ambient temperature for 2 h, the dark brown solution was evaporated to dryness under vacuum. The residue was washed (5 mL × 2) with *n*-hexane to give the brown solid powder **2**. Yellow crystals were obtained by a slow solvent evaporation method from a toluene (2 mL) solution of **2**. Yield: 0.656 g (92%). IR (Nujol, cm⁻¹): v = 3055 (w), 2963 (s), 2865 (m), 1575 (w), 1460 (m), 1433 (m), 1378 (s), 1313 (m), 1251 (w), 1196 (m), 1159 (m), 1099 (m), 1055 (s, v(CO)), 1028 (s), 971 (m), 932 (w), 852 (s), 784 (s), 745 (s), 708 (s), 694 (m), 651 (m), 598 (w), 536 (m), 448 (w). EPR (293 K): g = 2.001. Anal. Calcd for C₈₆H₁₁₀N₄O₃Y₂ (1425.59): C, 72.45; H, 7.78; N, 3.93; Found: C, 72.54; H, 7.73; N, 3.99.

Figure S1. a) EPR spectrum of **2** (293 K) in the solid state, the g-factor is 2.001. b) Experimental (black) and simulated (red) EPR spectra of **2** (210 K) in toluene. The asterisks (*) indicate the signals derived from spin–spin splitting. (g_{iso} =2.0018, A_{iso} (¹⁴N, 2N)=5.44×10⁻⁴ cm⁻¹, A_{iso} (⁸⁹Y)= A_{iso} (¹H, 2H)=5.60×10⁻⁴ cm⁻¹)

Figure S2. UV/vis spectrum 2 in toluene.

A solution of cyclohexyl phenyl ketone (PhC(O)Cy) (0.188 g, 1.0 mmol; in 5 mL of toluene) was added slowly to a stirred toluene solution (5 mL) of 1 (0.567 g, 0.5 mmol). After the mixture was stirred at ambient temperature for 12 h, the red solution was evaporated to dryness under vacuum. The residue was washed (5 mL \times 2) with *n*-hexane to give the yellow solid powder 3. Yellow crystals were obtained by a slow solvent evaporation method from a toluene (2 mL) solution of **3**. Yield: 0.533 g (78%). ¹H NMR (400 MHz, C_6D_6 , 25 °C): δ (ppm) = 0.17 (d, J = 6.5 Hz, 6H, CH₃-^{*i*}Pr), 0.22-0.31 (m, 2H, CH₂-Cy), 0.54-0.68 (m, 4H, CH₂-Cy), 0.76 (d, J = 6.3 Hz, 6H, CH₃-^{*i*}Pr), 0.80-0.94 (m, 4H, CH₂-Cy), 1.11-1.17 (m, 2H, CH₂-Cy), 1.21-1.27 (m, 2H, CH₂-Cy), 1.32 (d, J = 6.4 Hz, 6H, CH₃-^{*i*}Pr), 1.37-1.43 (m, 18H, N-CCH₃ and CH₃-^{*i*}Pr), 1.46 (d, J = 5.7 Hz, 12H, CH₃-^{*i*}Pr), 1.51-1.59 (m, 4H, CH₂-Cy), 1.71 (d, J = 6.5 Hz, 6H, CH₃-ⁱPr), 1.75-1.81 (m, 2H, CH₂-Cy), 1.95 (s, 6H, N-CCH₃), 2.04 (d, J = 10.3 Hz, 2H, CH-Cy), 3.40-3.69 (m, 6H, CH-ⁱPr), 4.01-4.09 (m, 2H, CH-ⁱPr), 4.94 (d, J = 4.4 Hz, 2H, OCHPhCy), 6.73-6.80 (m, 4H, H-Ar), 6.92-6.97 (m, 5H, H-Ph), 7.13-7.16 (m, 5H, H-Ph), 7.17-7.19 (m, 3H, H-Ar), 7.26-7.33 (m, 5H, H-Ar). ¹³C NMR (100 MHz, C₆D₆, 25 °C): δ (ppm) = 17.0 (s, N-CCH₃), 20.3 (s, N-CCH₃), 24.2 (s, CH₃-^{*i*}Pr), 24.7 (s, CH₃-^{*i*}Pr), 24.8 (s, CH₃-^{*i*}Pr), 24.9 (s, CH₃-^{*i*}Pr), 25.2 (s, CH₃-ⁱPr), 25.4-25.7 (m, CH₂-Cy), 26.1 (s, CH₂-Cy), 26.6 (s, CH₂-Cy), 27.0 (s, CH-ⁱPr), 27.3 (s, CH-ⁱPr), 27.9 (s, CH₂-Cy), 30.8 (s, CH₂-Cy), 31.1 (s, CH₂-Cy), 45.2 (s, CH-Cy), 82.4 (s, OCHPhCy), 111.0 (s, N-CCH₃), 113.9 (s, N-CCH₃), 122.3 (s, C-Ar), 123.1 (s, C-Ph), 123.4 (s, C-Ph), 123.8 (s, C-Ph), 125.0 (s, C-Ar), 141.3 (s, C-Ph), 144.0 (s, C-Ar), 144.1 (s, C-Ar), 144.5 (s, C-Ph), 145.3 (s, C-Ph), 148.0 (d, J = 3.6 Hz, C-Ph), 149.6 (d, J = 4.2 Hz, C-Ph). Anal. Calcd for C₈₂H₁₁₄N₄O₂Y₂ (1365.65): C, 72.12; H, 8.41; N, 4.10; Found: C, 72.19; H, 8.40; N, 4.15.

Figure S3. ¹H NMR spectrum of complex **3** in C_6D_6 at room temperature.

Figure S4. ¹³C NMR spectrum of complex **3** in C_6D_6 at room temperature.

Figure S5. $^{13}C^{-1}H$ HSQC spectrum of complex **3** in C₆D₆ at room temperature.

Figure S6. UV/vis spectrum of 3 in toluene.

2.3 Synthesis and characterization of (DAD')Y(PhCyC(O)C(O)PhCy)(OC(H)PhCy)Li(THF) (4).

Path A: A solution of excess cyclohexyl phenyl ketone (PhC(O)Cy) (0.282 g, 1.5 mmol; in 10 mL of toluene) was added slowly to a stirred toluene solution (10 mL) of **3** (0.410 g, 0.3 mmol), and then 2 equivalents of Li (0.004 g, 0.6 mmol) was added to the mixture at ambient temperature. Keeping stirring for 12 h, the mixture was filtered and the red filtrate was evaporated to dryness under vacuum. The residue was washed (5 mL × 2) with *n*-hexane to give the yellow solid powder **4**. Yellow crystals were obtained by a slow solvent evaporation method from a toluene (2 mL) solution of **4**. Yield: 0.417 g (61%).

Path B: A solution of cyclohexyl phenyl ketone (PhC(O)Cy) (0.565 g, 3.0 mmol; in 10 mL of toluene) was added slowly to a stirred toluene solution (10 mL) of **1** (0.567 g, 0.5 mmol), and then 2 equivalents of Li (0.007 g, 1.0 mmol) was added to the mixture at ambient temperature. Keeping stirring for 24 h, the mixture was filtered and the red filtrate was evaporated to dryness under vacuum. The residue was washed (5 mL × 2) with *n*-hexane to give the yellow solid powder **4**. Yellow crystals were obtained by a slow solvent evaporation method from a toluene (2 mL) solution of **4**. Yield: 0.603 g (53%).

IR (Nujol, cm⁻¹): v = 3053 (w), 2960 (s), 2918 (s), 2854 (m), 1575 (w), 1435 (m), 1378 (m), 1315 (w), 1253 (w), 1231 (w), 1198 (w), 1089 (s), 1067 (s, v(CO)), 1038 (m), 1005 (m), 915 (w), 889 (w), 864 (w), 778 (m), 762 (w), 713 (s), 645 (w), 573 (w), 508 (w), 438 (w). EPR (293 K): g = 2.001. Anal. Calcd for $C_{71}H_{97}N_2O_4$ YLi (1138.36): C, 74.91; H, 8.59; N, 2.46; Found: C, 74.83; H, 8.64; N, 2.45.

Figure S7. EPR spectrum of complex 4 (293 K) in the solid state, the g-factor is 2.001.

Figure S8. UV/vis spectrum of 4 in toluene.

2.4 Synthesis and characterization of $(DAD'Y)_2(\mu-N(Ph)NPh)_2(THF)$ (5).

A solution of azobenzene (PhN=NPh) (0.182 g, 1.0 mmol; in 5 mL of toluene) was added slowly to a stirred toluene solution (10 mL) of **1** (0.567 g, 0.5 mmol). After the mixture was stirred at ambient temperature for 30 min, the dark red solution was evaporated to dryness under vacuum. The residue was washed (5 mL × 2) with *n*-hexane to give the brown solid powder **5**. Yellow crystals were obtained by a slow solvent evaporation method from a toluene (2 mL) solution of **5**. Yield: 0.619 g (87%). IR (Nujol, cm⁻¹): v = 3055 (w), 2960 (s), 2868 (m), 1588 (s), 1478 (s), 1431 (m), 1370 (s), 1308 (s), 1255 (m), 1237 (m), 1192 (m), 1170 (m), 1069 (w), 991 (w), 971 (w), 852 (m), 784 (s), 747 (s), 698 (w), 616 (w), 539 (w). EPR (293 K): g = 2.000. Anal. Calcd for C₈₄H₁₀₈N₈OY₂ (1423.60): C, 70.87; H, 7.65; N, 7.87; Found: C, 70.40; H, 7.80; N, 7.76.

Figure S9. EPR spectrum of complex 5 (293 K) in the solid state, the g-factor is 2.000.

Figure S10. UV/vis spectrum of 5 in toluene.

2.5 Synthesis and characterization of (DAD)Y(NC₁₃H₁₀)(THF)₂ (6) and (DAD')Y(NC₁₃H₁₀)₂(THF) (7).

A solution of acridine (0.179 g, 1.0 mmol; in 5 mL of toluene) was added slowly to a stirred toluene solution (5 mL) of **1** (0.567 g, 0.5 mmol). After the mixture was stirred at ambient temperature for 2 h, the dark red solution was evaporated to dryness under vacuum. The residue was washed (5 mL × 2) with *n*-hexane to give the yellow solid powder complexes. The yellow powder complexes were then extracted with toluene to give crude product **6**, accompanied by a slow solvent evaporation method for extracting solution to give pale-yellow single crystals of **6**, while insoluble residue was redissolved in THF, accompanied by a slow solvent evaporation method to give yellow single crystals of **7**, which are all suitable for X-ray diffraction analysis. Then the mother liquor was hydrolyzed with water (2 mL) and extracted with DCM (3 × 10 mL). The organic phases were combined, dried with anhydrous Na₂SO₄, and evaporated under vacuum. A yellow solid was obtained and identified to contain the acridine dimer (**I**), analyzed by ¹H NMR spectroscopy. The spectral data of acridine dimer are matched with the previously reported data.⁴

For **6**, Yield: 0.335 g (41%). ¹H NMR (400 MHz, C_6D_6 , 25 °C): δ (ppm) = 0.97 (s, 8H, *THF*), 1.22 (d, *J* = 6.4 Hz, 12H, CH_3 -^{*i*}Pr), 1.30 (d, *J* = 4.5 Hz, 12H, CH_3 -^{*i*}Pr), 1.99 (s, 6H, N-CCH₃), 3.42 (s, 8H, *THF*), 3.62-3.77 (m, 4H, *CH*-^{*i*}Pr), 4.01 (s, 2H, CH_2 -NC₁₃H₁₀), 6.65-6.84 (m, 4H, *H*-Ph), 6.93-7.05 (m, 4H, *H*-Ph), 7.08-7.15 (m, 2H, *H*-Ar), 7.16-7.21 (m, 4H, *H*-Ar). ¹³C NMR (100 MHz, C_6D_6 , 25 °C): δ (ppm) = 19.0 (s, N-CCH₃), 25.0 (d, *J* = 2.5 Hz, CH_3 -^{*i*}Pr), 25.2 (s, *THF*), 28.3 (s, *CH*-^{*i*}Pr), 33.5 (s, *CH*₂-NC₁₃H₁₀), 70.8 (s, *THF*), 113.7 (s, N-CCH₃), 118.5 (s, *C*-Ph), 122.7 (s, *C*-Ar), 123.5 (s, *C*-Ar), 127.6 (s, *C*-Ph), 129.5 (s, *C*-Ph), 144.5 (s, *C*-Ar), 149.5 (d, *J* = 3.7 Hz, *C*-Ph), 149.9 (s, *C*-Ph). Anal. Calcd for C₄₉H₆₆N₃O₂Y (817.95): C, 71.95; H, 8.13; N, 5.14; Found: C, 71.68; H, 8.20; N, 5.21.

For **7**, Yield: 0.139 g (15%). IR (Nujol, cm⁻¹): v = 3055 (w), 2959 (m), 2864 (w), 1589 (m), 1450 (s), 1431 (s), 1375 (s), 1310 (m), 1278 (m), 1255 (s), 1214 (m), 1194 (s), 1150 (m), 1120(m), 1069 (w), 1034 (w), 991 (w), 971 (w), 886 (s), 852 (w), 839 (w), 764 (s), 747 (m), 722(m), 618 (w), 440 (w). EPR (293 K): g = 2.002. Anal. Calcd for $C_{58}H_{68}N_4OY$ (926.07): C, 75.22; H, 7.40; N, 6.05; Found: C, 75.33; H, 7.36; N, 6.01.

Figure S13. EPR spectrum of complex 7 (293 K) in the solid state, the g-factor is 2.002.

Figure S14. a) UV/vis spectrum of 6 in toluene; b) UV/vis spectrum of 7 in toluene.

Figure S15. ¹H NMR spectrum of the crude organic compound I formed by the reaction of **1** with acridine after hydrolysis in TFA-d₁.

2.6 Synthesis and characterization of $(DAD)Y(\mu-Ph_2C(O)C(O)Ph_2)(\mu-\eta^2:\eta^1-C\equiv CPh)Y(HDAD)$ (8).

A solution of phenylacetylene (PhC=CH) (0.031g, 0.3 mmol; in 5 mL of toluene) was added slowly to a stirred toluene solution (5 mL) of 2 (0.410 g, 0.3 mmol). After the mixture was stirred at ambient temperature for 2 h, the light red solution was evaporated to dryness under vacuum. The residue was washed (5 mL \times 2) with *n*-hexane to give the pale-yellow solid powder 8. Yellow crystals were obtained by a slow solvent evaporation method from a toluene (2 mL) solution of 8. Yield: 0.375 g (86%). ¹H NMR (400 MHz, C₆D₆, 25 °C): δ (ppm) = 0.32 (d, J = 6.5 Hz, 3H, CH₃-ⁱPr), 0.47 $(d, J = 6.8 \text{ Hz}, 3\text{H}, CH_3^{-i}\text{Pr}), 0.91 (s, 3\text{H}, \text{N-CHC}H_3), 0.96 (d, J = 6.7 \text{ Hz}, 3\text{H}, CH_3^{-i}\text{Pr}), 1.01 (t, J = 7.3 \text{ Hz}, 1.01 \text{ Hz})$ 6H, CH₃-^{*i*}Pr), 1.06 (d, J = 6.7 Hz, 3H, CH₃-^{*i*}Pr), 1.11 (d, J = 2.4 Hz, 3H, CH₃-^{*i*}Pr), 1.13 (overlap s, 3H, N=CCH₃), 1.17 (d, J = 6.6 Hz, 3H, CH₃-^{*i*}Pr), 1.21 (d, J = 6.6 Hz, 3H, CH₃-^{*i*}Pr), 1.28 (d, J = 6.5 Hz, 6H, CH₃-ⁱPr), 1.34 (t, J = 7.3 Hz, 6H, CH₃-ⁱPr), 1.41 (s, 3H, N-CCH₃), 1.45 (d, J = 6.5 Hz, 3H, CH₃-ⁱPr), 1.56 (s, 3H, N-CCH₃), 1.84 (d, J = 6.5 Hz, 3H, CH₃-ⁱPr), 2.07 (d, J = 6.7 Hz, 3H, CH₃-ⁱPr), 2.65–2.75 (m, 1H, CH-ⁱPr), 3.02-3.11 (m, 1H, CH-ⁱPr), 3.11-3.21 (m, 1H, CH-ⁱPr), 3.53–3.65 (m, 2H, CH-ⁱPr and N-CHCH₃), 3.71-3.89 (m, 4H, CH-ⁱPr), 6.12-6.33 (m, 3H, H-Ph), 6.48 (br s, 2H, H-Ph), 6.61 (t, J = 7.3 Hz, 2H, H-Ph), 6.70 (t, J = 7.2 Hz, 2H, H-Ph), 6.76 (br s, 2H, H-Ph), 6.85-6.89 (m, 2H, H-Ph), 6.91-6.99 (m, 4H, H-Ph and H-Ar), 7.00-7.05 (m, 2H, H-Ph), 7.08–7.14 (m, 3H, H-Ar), 7.20-7.26 (m, 5H, H-Ar), 7.35 (d, J = 7.6 Hz, 2H, H-Ph), 7.43 (d, J = 7.5 Hz, 4H, H-Ph), 8.04 (d, J = 6.4 Hz, 2H, H-Ph). ¹³C NMR (100 MHz, C₆D₆, 25 °C): δ (ppm) = 16.3 (s, N-CCH₃), 16.9 (s, N-CHCH₃), 22.4 (s, N=CCH₃), 23.3 (s, N-CCH₃), 23.3 (s, CH₃-^{*i*}Pr), 24.7 (s, CH₃-^{*i*}Pr), 24.8 (s, CH₃-^{*i*}Pr), 25.4-25.6 (m, CH₃-^{*i*}Pr), 26.0 (s, CH₃-^{*i*}Pr), 26.2 (s, CH₃-ⁱPr), 26.4 (s, CH₃-ⁱPr), 26.6-27.2 (m, CH₃-ⁱPr), 27.3 (s, CH-ⁱPr), 27.7 (s, CH-ⁱPr), 28.6 (s, CH-ⁱPr), 28.7 (s, CH-ⁱPr), 28.8 (s, CH-ⁱPr), 29.1 (s, CH₃-ⁱPr), 29.2 (s, CH₃-ⁱPr), 29.5 (s, CH-ⁱPr), 71.6 (s, N-CHCH₃), 111.0 (s, N-CCH₃), 113.0 (s, N-CCH₃), 122.2 (s, C-Ph), 122.7 (s, C-Ph), 122.9 (s, YC=C), 123.6 (s, C-Ar), 123.7(s, C-Ar), 124.0 (d, ²J_{YC} = 5.1 Hz, YC=C), 124.3 (s, C-Ph), 125.7 (s, C-Ph), 126.0 (s, C-Ar), 126.6 (s, C-Ar), 127.3 (s, C-Ar), 129.8 (s, C-Ar), 133.5 (s, C-Ph), 140.5 (s, C-Ph), 141.8 (s, C-Ph), 143.0 (s, C-Ph), 143.7 (s, C-Ph), 143.8 (s, C-Ar), 145.3 (s, C-Ph), 145.6 (s, C-Ph), 146.0 (s, C-Ph), 146.5 (s, C-Ph), 146.9 (s, C-Ph), 148.5 (d, ¹*J*_{YC} = 65.6 Hz, YC=C), 149.1 (s, C-Ph), 150.1 (s, C-Ph), 151.8 (s, YC=C), 154.1 (d, C-Ph), 200.2 (s, C-Ph). Calcd for C₉₀H₁₀₆N₄O₂Y₂ (1453.67): C, 74.36; H, 7.35; N, 3.85; Found: C, 74.35; H, 7.53; N, 3.64.

Figure S16. ¹H NMR spectrum of complex 8 in C_6D_6 at room temperature.

Figure S17. ^{13}C NMR spectrum of complex 8 in C_6D_6 at room temperature.

Figure S18. ${}^{13}C{}^{-1}H$ HSQC spectrum of complex 8 in C₆D₆ at room temperature.

Figure S19. UV/vis spectrum of 8 in toluene.

2.7 Synthesis and characterization of (DAD'Y)₂(µ-Ph₂C(O)C(O)Ph₂)(µ-H)(CCMe₃Si) (9).

A solution of trimethylsilylacetylene (Me₃SiC=CH) (0.029 g, 0.3 mmol; in 5 mL of toluene) was added slowly to a stirred toluene solution (5 mL) of **2** (0.410 g, 0.3 mmol). After the mixture was stirred at ambient temperature for 12 h, the reddish brown solution was evaporated to dryness under vacuum. The residue was washed (5 mL × 2) with *n*-hexane to give the yellow solid powder **9**. Yellow crystals were obtained by a slow solvent evaporation method from a toluene (2 mL) solution of **9**. Yield: 0.370 g (85%). IR (Nujol, cm⁻¹): v = 3055 (w), 2961 (s), 2867 (w), 2276 (m, v(C=C)), 1580 (w), 1460 (m), 1435 (s), 1378 (s), 1315 (m), 1249 (m), 1200 (m), 1057 (w), 975 (w), 854 (m), 786 (s), 764 (w), 700 (w), 671 (w), 653 (w), 596 (w), 498 (m), 448(w). EPR (293 K): g = 2.000. Anal. Calcd for C₈₇H₁₁₀N₄O₂SiY₂ (1449.71): C, 72.08; H, 7.65; N, 3.87; Found: C, 72.14; H, 7.59; N, 3.92.

Figure S20. EPR spectrum of complex 9 (293 K) in the solid state, the g-factor is 2.000.

Figure S21. UV/vis spectra of 9 in toluene.

3. X-ray Crystallographic Analysis of All New Complexes

Suitable crystals were collected and wrapped in dried immersion oil. Data collections were performed on Bruker D8 VENTURE system diffractometers (Ga K α radiation, ω -scan technique, $\lambda = 1.34138$ Å) at a low temperature. The structures were solved by using the SHELXS-97 program⁵ and refined on F^2 by full-matrix least-squares techniques using the SHELXL-2014 program⁶ for all the non-hydrogen atoms. Except for the hydrogen atoms on yttrium atoms, hydrogen atoms were placed at the calculated positions and included in the structure calculation without further refinement of the parameters. The hydrogen atoms attached to yttrium atoms were located by difference Fourier syntheses and their coordinates and isotropic parameters were refined. The residual electron densities were of no chemical significance. Details of SQUEEZE⁷ are given in the cif files. CCDC 2329822 (**2**), 2329827 (**3**), 2329829 (**4**), 2329828 (**5**), 2329826 (**6**), 2329824 (**7**), 2329825 (**8**) and 2329823 (**9**) contain supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/conts/retrieving.html.

	2	3·2C ₇ H ₈	4.C ₆ H ₁₄
Formula	$C_{86}H_{110}N_4O_3Y_2$	$C_{96}H_{130}N_4O_2Y_2$	C ₇₇ H ₁₁₁ LiN ₂ O ₄ Y
Formula weight	1425.59	1549.87	1224.52
Temperature/K	173	173	173
Crystal system	triclinic	triclinic	triclinic
Space group	P-1	P-1	P-1
a/Å	13.2897(6)	13.7315(8)	12.6063(4)
b/Å	14.2776(7)	14.1106(8)	13.0301(5)
c/Å	22.7523(11)	25.3879(14)	23.8401(8)
α/°	97.017(2)	94.876(2)	98.8010(10)
β/°	92.226(2)	101.634(2)	91.8920(10)
γ/°	107.071(2)	112.234(2)	113.6200(10)
Volume/Å ³	4083.3(3)	4388.7(4)	3526.4(2)
Z	2	2	2
pcalcg/cm ³	1.159	1.229	1.153
µ/mm⁻¹	1.503	1.431	1.01
F(000)	1512	1736	1322
Crystal size/mm ³	0.32 × 0.22 × 0.12	$0.21 \times 0.13 \times 0.09$	$0.27 \times 0.18 \times 0.11$
Radiation	GaKα (λ = 1.34139)	GaKα (λ = 1.34139)	GaKα (λ = 1.34139)
2θ range for data collection/°	9.65 to 107.996	6.244 to 105.964	6.55 to 112.068
Index ranges	-16 ≤ h ≤ 16, -17 ≤ k ≤ 17, -27 ≤ l ≤ 27	-16 ≤ h ≤ 16, -16 ≤ k ≤ 16, -30 ≤ l ≤ 30	-14 ≤ h ≤ 15, -16 ≤ k ≤ 16, -29 ≤ l ≤ 29
Reflections collected	28588	124763	57541
Independent reflections	14813 [R _{int} = 0.0271, R _{sigma} = 0.0496]	15019 [R _{int} = 0.0388, R _{si} gma = 0.0206]	13877 [R _{int} = 0.0562, R _{sigma} = 0.0414]
Data/restraints/parameter s	14813/0/884	15019/4/947	13877/186/856
Goodness-of-fit on F ²	1.076	1.17	1.053
Final R indexes [I>=2σ (I)]	$R_1 = 0.0375,$ w $R_2 = 0.0993$	$R_1 = 0.0653,$ w $R_2 = 0.1744$	$R_1 = 0.0560,$ w $R_2 = 0.1524$
Final R indexes [all data]	$R_1 = 0.0440,$ w $R_2 = 0.1034$	$R_1 = 0.0674,$ w $R_2 = 0.1753$	$R_1 = 0.0640,$ $wR_2 = 0.1591$
Largest diff. peak and hole / e Å ⁻³	0.84/-1.04	2.02/-1.92	1.01/-0.95

Table S1. Crystal data and structure refinement for complexes 2, 3 and 4

	5	6	7
Formula	$C_{84}H_{108}N_8OY_2$	$C_{49}H_{66}N_{3}O_{2}Y$	C ₅₈ H ₆₈ N ₄ OY
Formula weight	1423.60	817.95	926.07
Temperature/K	173	173	173
Crystal system	monoclinic	monoclinic	monoclinic
Space group	C2/c	P21/c	I2/a
a/Å	49.6846(11)	27.1862(19)	24.1554(9)
b/Å	13.9903(3)	15.7900(11)	14.3209(6)
c/Å	28.2437(6)	23.2063(16)	32.5426(12)
α/°	90	90	90
β/°	123.5810(10)	108.635(2)	96.000(2)
γ/°	90	90	90
Volume/Å ³	16355.7(6)	9439.5(11)	11195.7(8)
Z	8	8	8
pcalcg/cm ³	1.156	1.151	1.296
µ/mm⁻¹	1.498	1.348	1.219
F(000)	6032	3488	4648
Crystal size/mm ³	0.65 × 0.39 × 0.12	$0.28 \times 0.15 \times 0.08$	0.35 × 0.26 × 0.11
Radiation	GaKα (λ = 1.34139)	GaKα (λ = 1.34139)	GaKα (λ = 1.34139)
2θ range for data collection/°	7.83 to 106.118	5.994 to 110.164	5.872 to 111.938
Index ranges	-59 ≤ h ≤ 59, -16 ≤ k ≤ 16, -33 ≤ l ≤ 33	-33 ≤ h ≤ 33, -19 ≤ k ≤ 19, -28 ≤ l ≤ 27	-29 ≤ h ≤ 29, -17 ≤ k ≤ 17, -40 ≤ l ≤ 40
Reflections collected	169384	134160	81260
Independent reflections	14474 [R _{int} = 0.0427, R _{sigma} = 0.0194]	17788 [R _{int} = 0.0412, R _{sigma} = 0.0231]	11044 [$R_{int} = 0.0410$, $R_{sigma} = 0.0230$]
Data/restraints/parameter s	14474/0/876	17788/0/1011	11044/0/587
Goodness-of-fit on F ²	0.996	1.042	1.082
Final R indexes [I>=2o (I)]	$R_1 = 0.0377,$ w $R_2 = 0.1201$	$R_1 = 0.0368,$ w $R_2 = 0.0909$	$R_1 = 0.0325,$ w $R_2 = 0.0966$
Final R indexes [all data]	$R_1 = 0.0447,$ w $R_2 = 0.1265$	$R_1 = 0.0489,$ w $R_2 = 0.1014$	$R_1 = 0.0373,$ $wR_2 = 0.1035$
Largest diff. peak and hole / e Å ⁻³	0.64/-0.67	0.73/-0.81	0.44/-0.67

Table S2. Crystal data and structure refinement for complexes 5, 6 and 7

	8·C ₇ H ₈	9·C ₆ H ₁₄
Formula	$C_{97}H_{114}N_4O_2Y_2$	$C_{93}H_{124}N_4O_2SiY_2$
Formula weight	1545.75	1535.88
Temperature/K	231	170
Crystal system	monoclinic	monoclinic
Space group	P2 ₁ /c	P2 ₁ /n
a/Å	21.750(2)	18.0326(18)
b/Å	16.8112(15)	23.290(2)
c/Å	25.488(2)	21.669(2)
α/°	90	90
β/°	95.778(4)	96.420(4)
γ/°	90	90
Volume/Å ³	9272.1(15)	9043.3(15)
Z	4	4
pcalcg/cm ³	1.226	1.196
µ/mm⁻¹	1.374	1.471
F(000)	3632	3472
Crystal size/mm ³	$0.35 \times 0.21 \times 0.15$	$0.26 \times 0.18 \times 0.07$
Radiation	GaKα (λ = 1.34139)	GaKα (λ = 1.34139)
2θ range for data collection/°	6.37 to 110.17	5.414 to 108.694
Index ranges	-26 ≤ h ≤ 26, -20 ≤ k ≤ 20, -29 ≤ l ≤ 31	-21 ≤ h ≤ 21, -28 ≤ k ≤ 27, -23 ≤ l ≤ 26
Reflections collected	150036	153139
Independent reflections	17498 [R _{int} = 0.0926, R _{sigma} = 0.0450]	16663 [R _{int} = 0.0778, R _{sigma} = 0.0368]
Data/restraints/parameter s	17498/1/955	16663/133/1005
Goodness-of-fit on F ²	1.026	1.041
Final R indexes [I>=2σ (I)]	$R_1 = 0.0556,$ w $R_2 = 0.1348$	$R_1 = 0.0487,$ w $R_2 = 0.1334$
Final R indexes [all data]	$R_1 = 0.0856,$ w $R_2 = 0.1630$	$R_1 = 0.0566,$ w $R_2 = 0.1400$
Largest diff. peak and hole / e Å ⁻³	1.07/-1.37	0.93/-1.09

Table S3. Crystal data and structure refinement for complexes 8 and 9

4. Molecular Structures of Complex 3 and 6

Figure S22. Molecular structure of **3** with 30% thermal ellipsoids. Hydrogen atoms (except for H1 and H14) are omitted for clarity. Selected bond lengths [Å] and angles (°): Y1-O1 2.297(3), Y1-O2 2.225(4), Y2-O1 2.244(3), Y2-O2 2.307(3), C40-C41 1.370(8), C68-C69 1.381(8), C1-O1 1.425(6), C14-O2 1.428(6); Y1-O1-Y2 105.54(14), Y1-O2-Y2 105.84(14), Y2-O2-C14 124.1(3).

Figure S23. Molecular structure of **6** with 30% thermal ellipsoids. Hydrogen atoms (except for H13A and H13B) are omitted for clarity. Selected bond lengths [Å] and angles (°): Y1-N3 2.2855(19), Y1–C6 2.995(2), N3-C6 1.394(3), C6-C5 1.409(4), C5-C13 1.499(4), C13-C12 1.507(4), C12-C7 1.405(4), C7-N3 1.400(3); Y1-N3-C6 106.42(15), Y1-N3-C7 132.90(15), C6-N3-C7 115.7(2), C7-C12-C13 118.2(2), C12-C13-C5 111.2(2), C13-C5-C6 117.4(2).

5. The spectra of in situ ¹H NMR tracking experiments

In a glovebox, **2** (0.028 g, 0.02 mmol) was weighed into an NMR tube equipped with a Teflon valve (J-Young). Then, a mixture of (ethynyl-*d*)benzene (0.0022 g, 0.021 mmol) in C_6D_6 (0.3 mL) was added via syringe. The subsequent reaction was monitored by ¹H NMR spectroscopy. The monitoring reaction was completed after 2 hours at room temperature.

Figure S24. The in situ ¹H NMR spectra of **2** with (ethynyl-*d*)benzene in C_6D_6 at room temperature.

6. Detection of $H_{\rm 2}$ generated in the reaction by GC

Figure S25. GC analysis data of the crude reaction mixture formed by the reaction of **1** with azobenzene. The peak area of hydrogen is 232624 appearing at 1.501 min of the retention time.

7. References

1 (a) F. Zhang, J. Zhang, Z. Chen, L. Weng and X. Zhou, An Yttrium Organic *cyclo*-P₄ Complex and Its Selective Conversions, *Inorg. Chem.*, 2019, **58**, 8451–8459; (b) Q. You, J. Zhang, F. Zhang, J. Cai and X. Zhou, Cooperative Rare-Earth/Lithium-Mediated Conversion of White Phosphorus, *Chem. Eur. J.*, 2023, **29**, e202203679.

P. D. García-Fernández, J. Iglesias-Sigüenza, P. S. Ribero-Jerez, E. Díez, E. Gómez-Bengoa, R. Fernández and J. M. Lassaletta, Au^I-Catalyzed Hydroalkynylation of Haloalkynes, *J. Am. Chem. Soc.*, 2020, 142, 16082–16089.

3 H. H. Haeri, R. Duraisamy, N. Harmgarth, P. Liebing, V. Lorenz, D. Hinderberger and F. T. Edelmann, Electronic and Geometric Structures of Paramagnetic Diazadiene Complexes of Lithium and Sodium, *ChemistryOpen* 2018, **7**, 701–708.

4 (a) H. Göth, P. Cerutti and H. Schmid, Photoreaktionen von Acridin und Acridinabkömmlingen Sowie von Arylketonen mit Methanol, *Helv. Chim. Acta*, 1965, **48**, 1395-1406; (b) S. Kim, J. Kim, H. Zhong, G. B. Panetti and P. J. Chirik, Catalytic N–H Bond Formation Promoted by a Ruthenium Hydride Complex Bearing a Redox-Active Pyrimidine-Imine Ligand, *J. Am. Chem. Soc.*, 2022, **144**, 20661–20671.

5 G. M. Sheldrick, *SHELXS-97*, Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen, Germany, 1997.

6 G. M. Sheldrick, A short history of *SHELX*, *Acta Crystallogr., Sect. A: Found. Crystallogr.*, 2008, **64**, 112–122.

7 A. L. Spek, Structure validation in chemical crystallography, *Acta Crystallogr., Sect. D: Biol. Crystallogr.*, 2009, **65**, 148–155.

26