Slow magnetization relaxation of a high-spin iron(III) in mayenite Ca₁₂Al₁₄O₃₃.

Timur Z. Sharifullin,^a Alexander V. Vasiliev,^a Vladimir D. Dolzhenko,^a Sebastian Bette,^b Robert E. Dinnebier,^b Reinhard K. Kremer,^b Pavel E. Kazin^{*a}

^aDepartment of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia. E-mail: kazin@inorg.chem.msu.ru; Tel: +7 495 9393440

^bMax Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany

Supporting information

X-ray powder diffraction data

Figure S1. Powder X-ray diffraction pattern of $Ca_{12}Al_{14}O_{33}$ (Sample CAF0). Observed (crosses), calculated (solid line) and difference (solid line below) plots. Positions of Bragg reflections are indicated by vertical bars underneath. (a) the main phase; (b) admixture of $CaAl_2O_4$, 3.9 wt. %.

Temperature (K)	293 K
Wavelength (Å)	1.5406
Space group	<i>I</i> -43 <i>d</i> (no. 220)
<i>a</i> (Å)	11.9902(1)
$V(Å^3)$	1723.75(1)
Ζ	2
2θ range (deg.)	16 - 116
$R_{ m wp}$	0.023
$R_{ m all}$	0.019
$\Delta F_{\text{max}}, \Delta F_{\text{min}} (e \text{ Å}^{-3})$	0.19, -0.23

 Table S1. Crystal structure refinement data for CAF0.

Table S2. Atomic parameters and thermal displacement parameters (Å²) for CAF0.

Atom	Wyck.	Occ.	x	у	Z	Uiso
Cal	24 <i>d</i>	0.89(1)	0.8901(3)	0	3/4	0.0063(7)
Al1	16 <i>c</i>		0.01824(13)	0.01824(13)	0.01824(13)	0.0112(9)
A12	12 <i>b</i>		1.0	-1/4	5/8	0.0058(9)
01	16 <i>c</i>		0.9362(3)	-0.0638(3)	0.9362(3)	0.009(2)
02	48 <i>e</i>		0.9012(3)	-0.1925(2)	0.7133(3)	0.0079(10)
03	48 <i>e</i>	0.020(3)	0.77(3)	0.12(2)	-0.052(14)	0.03
Ca2	24 <i>d</i>	0.11(1)	0.946(3)	0	3/4	0.022(8)

Table S3. Selected interatomic distances (Å) in the crystal structure of CAF0.

Cal-O1	2.424(4)	2x	
Cal-O2	2.354(3)	2x	
Cal-O2	2.524(5)	2x	
Ca2-O1	2.363(4)	2x	
Ca2-O2	2.410(8)	2x	
Ca2-O3	2.2(3)		
Al1-O1	1.703(4)		
A11-O2	1.788(4)	3x	
A12-O2	1.732(3)	4x	
All-O(av.)	1.767		

Figure S2. Powder X-ray diffraction pattern of $Ca_{12}Al_{13.95}Fe_{0.05}O_{33}$ (Sample CAF5). Observed (crosses), calculated (solid line) and difference (solid line below) plots. Positions of Bragg reflections are indicated by vertical bars underneath.

Temperature (K)	293 K
Wavelength (Å)	1.5406
Space group	<i>I</i> -43 <i>d</i> (no. 220)
<i>a</i> (Å)	11.9895(1)
$V(Å^3)$	1723.45(1)
Ζ	2
2θ range (deg.)	16 - 116
$R_{ m wp}$	0.030
$R_{ m all}$	0.018
$\Delta F_{\text{max}}, \Delta F_{\text{min}} (e \text{ Å}^{-3})$	0.17, -0.19

 Table S4. Crystal structure refinement data for CAF5.

Table S5. Atomic parameters and thermal displacement parameters (Å²) for CAF5.

Atom	Wyck.	Occ.	x	у	Z	Uiso
Cal	24 <i>d</i>	0.87(1)	0.8892(4)	0	3/4	0.0056(8)
Al1	16 <i>c</i>	0.994	0.01809(12)	0.01809(12)	0.01809(12)	0.0093(9)
A12	12 <i>b</i>		1.00000	-1/4	5/8	0.0059(9)
01	16 <i>c</i>		0.9359(3)	-0.0641(3)	0.9359(3)	0.008(2)
02	48 <i>e</i>		0.9006(3)	-0.1929(3)	0.7131(3)	0.0077(10)
03	48 <i>e</i>	0.033(4)	0.771(15)	0.119(13)	-0.062(9)	0.0300
Ca2	24 <i>d</i>	0.13(1)	0.942(3)	0	3/4	0.025(7)
Fe1	16 <i>c</i>	0.006	0.01809(12)	0.01809(12)	0.01809(12)	0.0093(9)

Table S6. Selected interatomic distances (Å) in the crystal structure of CAF5.

Cal-O1	2.423(4)	2x
Cal-O2	2.358(3)	2x
Cal-O2	2.519(5)	2x
Ca2-O1	2.359(4)	2x
Ca2-O2	2.407(8)	2x
Ca2-O3	2.3(2)	
(Al,Fe)1-O1	1.707(4)	
(Al,Fe)1-O2	1.782(4)	3x
A12-O2	1.732(3)	4x
(Al,Fe)1-O(av.)	1.763	

Figure S3. Powder X-ray diffraction pattern of $Ca_{12}Al_{13.75}Fe_{0.25}O_{33}$ (Sample CAF25). Observed (crosses), calculated (solid line) and difference (solid line below) plots. Positions of Bragg reflections are indicated by vertical bars underneath. (a) the main phase; (b) admixture of $Ca_3Al_2O_6$, 1.0 wt. %.

Temperature (K)	293 K
Wavelength (Å)	1.5406
Space group	<i>I</i> -43 <i>d</i> (no. 220)
<i>a</i> (Å)	11.9926(1)
$V(Å^3)$	1724.80(1)
Ζ	2
2θ range (deg.)	16 - 116
$R_{ m wp}$	0.020
$R_{ m all}$	0.020
$\Delta F_{\text{max}}, \Delta F_{\text{min}} (e \text{ Å}^{-3})$	0.22, -0.23

Table S7. Crystal structure refinement data for CAF25.

Table S8. Atomic parameters and thermal displacement parameters (Å²) for CAF25.

Atom	Wyck.	Occ.	x	у	Z	Uiso
Cal	24 <i>d</i>	0.89(1)	0.8899(3)	0	3/4	0.0010(7)
A11	16 <i>c</i>	0.971(9)	0.01821(13)	0.01821(13)	0.01821(13)	0.0074(12)
A12	12 <i>b</i>		1.00000	-1/4	5/8	0.0007(9)
01	16 <i>c</i>		0.9357(3)	-0.0643(3)	0.9357(3)	0.006(2)
02	48 <i>e</i>		0.9015(3)	-0.1921(2)	0.7131(3)	0.001(1)
03	48 <i>e</i>	0.030(4)	0.772(18)	0.114(16)	-0.057(10)	0.0300
Ca2	24 <i>d</i>	0.11(1)	0.946(3)	0	3/4	0.017(8)
Fe1	16 <i>c</i>	0.029(9)	0.01821(13)	0.01821(13)	0.01821(13)	0.0074(12)

Table S9. Selected interatomic distances (Å) in the crystal structure of CAF25.

Cal-O1	2.420(4)	2x
Cal-O2	2.350(3)	2x
Cal-O2	2.525(4)	2x
Ca2-O1	2.360(4)	2x
Ca2-O2	2.406(8)	2x
Ca2-O3	2.1(2)	
(Al,Fe)1-O1	1.714(4)	
(Al,Fe)1-O2	1.794(4)	3x
A12-O2	1.730(3)	4x
(Al,Fe)1-O(av.)	1.774	

Figure S4. Temperature dependence of reciprocal susceptibility per mol of Fe in CAF5. Symbols – experimental data. Line – fit with the Curie-Weiss law.

Figure S5. Temperature dependence of reciprocal susceptibility per mol of Fe in CAF25. Symbols – experimental data. Line – fit with the Curie-Weiss law.

Figure S6. Frequency dependence of ac susceptibility per mol of $Ca_{12}Al_{14}O_{33}$ in CAF0 at temperatures 2 – 10 K (1 K step), 12 K, 14K (color codes, blue-yellow-red-violet) under a dc magnetic field of 4 kOe. Symbols – experimental points, lines – fitting. (a) – in-phase susceptibility χ' , (b) – out-of-phase susceptibility χ'' .

Figure S7. Frequency dependence of ac susceptibility per mol of Fe in CAF5 at temperatures 2 - 7 K (1 K step), 8.0 - 10.5 K (0.5 K step), 12 K, 14K (color codes, blue-yellow-red-violet) under a dc magnetic field of 4 kOe. Symbols – experimental points, lines – fitting. (a) – in-phase susceptibility χ' , (b) – out-of-phase susceptibility χ'' .

Figure S8. Frequency dependence of ac susceptibility per mol of Fe in CAF25 at temperatures 2 - 9 K (1 K step, color codes, blue-yellow-orange) under a dc magnetic field of 4 kOe. Symbols – experimental points, lines – fitting. (a) – in-phase susceptibility χ' , (b) – out-of-phase susceptibility χ'' .

Table S10. Crystal field parameters in Wybourne notation derived using the program CONCORD for Fe^{3+} using experimental atomic coordinates of the coordination polyhedron (from Table S8) for full tetrahedron O1+3O2 (I), for O1 only (II), for 3O2 only (III) (*z*-axis along trigonal axis).

Parameter	I, value (cm ⁻¹)	II, value (cm ⁻¹)	III, value (cm ⁻¹)
B ₂₀	38578.30	76521.66	-37943.36
B ₂₂	0	0	0
B_{40}	8669.67	17694.85	-9025.18
B ₄₂	0	0	0
B ₄₃	-20068.82	0	-20068.82
B_{44}	0	0	0

Table S11. Modeling of the Fe³⁺ electronic structure with the CONDON program using crystal field parameters listed in Table S10. Energies and magnetic moments of all electronic states (Kramers doublets) derived from the 3d⁵ configuration.

Energy (cm	- ¹)	$-\mu_z \left(\mu_{ m B} ight)$	$-\mu_{x}\left(\mu_{\mathrm{B}} ight)$
0	$(M_s = -5/2)$	-4.995	-0.1431
5.821E-11	$(M_s = 5/2)$	4.995	-0.1428
3.262	$(M_s = -3/2)$	-2.997	-0.3829
3.262	$(M_s = 3/2)$	2.997	-0.2635
4.869	$(M_s = -1/2)$	-0.9988	-2.472
4.869	$(M_s = 1/2)$	0.9988	3.405
6399		-4.428	-0.02746
6399		4.428	0.0234
6523		-2.392	-0.01565
6523		2.392	0.01531
6683		-0.3653	5.318E-4
6683		0.3653	5.956E-4
6857		-1.662	-0.01014
6857		1.662	0.01296
9800		-0.7375	-0.5423
9800		0.7374	0.5394
9833		-1.461	0.00102
9833		1.461	0.00137
10830		-1.094	-1.941
10830		1.093	1.939
11030		-3.185	8.987E-4
11030		3.184	9.001E-4
11870		-0.9604	-1.704
11870		0.9602	1.705

12720	-4.015	-0.00441
12720	4.015	0.00204
12970	-2.05	-3.111E-4
12970	2.05	-2.622E-4
13230	-0.1338	-0.5622
13230	0.1337	0.5633
13500	-1 824	-0 521
13500	1 824	0.5228
13600	-0.8865	-2.062
13600	0.8868	2.002
13610	-2 666	0.02129
13610	2.667	0.0212
10830	0.7639	6.821E /
19830	0.7638	-0.821L-4
19650	1 209	-0.19E-4
19900	-1.596	-0.2203
20800	0.7172	0.2275 1.245
20890	-0.7172	-1.343
20890	0./146	1.338
20930	-1.41/	-0.0011
20930	1.41/	-8.636E-4
21020	-0.94/3	-1.415
21020	0.9497	1.418
21030	-3.39	-0.00392
21030	3.39	0.00826
21650	-1.279	-1.138
21650	1.279	1.138
22210	-1.337	-8.277E-4
22210	1.337	-6.619E-4
22330	-0.5982	-0.2863
22330	0.5982	0.2876
22770	-0.9032	-1.014
22770	0.9033	1.014
23710	-0.917	-1.092
23710	0.9169	1.092
24680	-2.9	-0.00344
24680	2.9	-0.00343
24750	-0.9783	-1.918
24750	0.9783	1.925
25610	-3.408	-0.1034
25610	3.406	-0.1031
25620	-5.446	0.04746
25620	5.417	0.1328
25630	-0.6443	-1.605
25630	0.6659	1.622
25660	-0.8953	-1.676
25660	0.9023	1.684
25760	-2.511	6.213E-4
25760	2.512	6.292E-4
26160	-0.1774	-0.00424
26160	0.1774	0.00451
26670	-1.054	-0.8156

0((70)	1 0 5 2	0.0157
26670	1.053	0.8157
27620	-2.039	-0.3375
27620	2.039	0.3369
27940	-0.3266	-0.0017
27940	0.3266	-0.00163
27990	-1.93	-0.03423
27990	1.93	0.02184
28020	-0.487	-1.562
28020	0.4565	1.494
28030	-0.09221	0.0358
28030	0.09237	0.03724
28060	-2.368	-1.509
28060	24	1 519
28560	-0 7046	-1 134
28560	0.705	1 1 3 6
20300	-3.04	_0.00382
29270	3.04	-0.00382
29270	1.014	-0.0038
29330	-1.014	-1.957
29330	1.014	1.944
29890	-1.125	-1.12/
29890	1.124	1.12/
31400	-2.105	-5.704E-4
31400	2.105	-5.379E-4
31600	-0.05876	-0.1631
31600	0.05869	0.164
32480	-0.9203	-1.812
32480	0.9204	1.809
32620	-2.791	0.00177
32620	2.791	0.00178
33260	-2.68	-0.00895
33260	2.68	-0.00634
33270	-0.3098	0.00733
33270	0.3098	0.00775
34210	-2.47	-0.00258
34210	2.47	0.00226
34760	-0.6183	8.89E-5
34760	0.6182	9.253E-5
35450	-0.4924	-1.183
35450	0.4883	1 183
35620	-1 596	-1 054
35620	16	1.054
37180	-1.09	-0 1/153
27180	1.09	-0.1433
37160	0.5061	0.1427
37240	-0.3061	0.00101
37240	0.5063	0.00122
37730 27720	-U.8483	-1.214
3//30	0.8478	1.214
38360	-1.574	-0.117
38360	1.574	0.1077
38380	-3.683	0.00476
38380	3.683	0.00513

38640	-2.12	-0.4227
38640	2.119	0.4182
38760	-0.1313	-0.3657
38760	0.1314	0.3639
38880	-1.813	6.057E-4
38880	1.813	0.00122
39000	-3.783	0.00155
39000	3.783	0.003
40060	-1.172	-1.127
40060	1.172	1.128
41320	-0.9854	-1.87
41320	0.9855	1.813
41330	-2.954	0.02798
41330	2 954	0.02877
42310	-0.8993	-1 084
42310	0.8998	1 084
43800	-1 003	-0 4758
43800	1 003	0.474
44010	-0.9435	1.54F-4
44010	0.9434	$2.347E_{-4}$
44420	-0.4385	-2.547L-4
44420	0.4385	-2.008E-4
44510	0.9826	0.4031
44510	0.9826	-0.4031
44310	2 3 2 5	0.4042
44840	-2.325	-0.03813
44040	0.05/1	0.03870
46180	-0.9341	-0.9200
40180	0.9341	0.9203 7 585E A
46570	-0.04907	-7.363E-4
46370	2.028	-7.08212-4
46700	-2.038	-0.0332
40700	2.038	0.03464 6 675E A
49420	-2.002	-0.073E-4
49420	2.001	-0.29/E-4
49570	-5.050	-0.01309
51500	2.76	0.0109
51500	-2.70	-0.01883
51500	0.807	-0.01691
51520	-0.897	-1.934
51820	2.075	0.2126
51830	-2.075	-0.2150
51850	2.073	0.2101
51860	-0.8378	-0.10/3
51860	0.8579	0.1034
51900	-1.0/6	0.00286
51900	1.0/6	0.00308
52100	-0.1/38	-0.1217
52160	0.1/5/	0.1208
5245U	-1.838	5.182E-4
52450	1.838	5.514E-4
52/50	-3.825	-0.00283

52750	3.825	0.00466
53650	-1.103	-2.016
53650	1.104	2.006
53710	-3.273	0.00516
53710	3.274	0.00518
54160	-1.86	-0.9701
54160	1.859	0.97
54770	-0.1148	-0.07988
54770	0 1155	0.07925
54870	-1 296	-0.01212
54870	1.296	-0.00922
54880	-0 1937	-0.683
54880	0 194	0 7045
55220	-0.6222	-0.1315
55220	0.6228	0.1312
55450	-1 188	4 119F-4
55450	1 188	4.119E 4
56580	_0 923	-0.0446
56580	-0.923	-0.9440
59670	0.3563	0.9449
59670	-0.3563	-0.00440
50600	0.5505	-0.00422
50600	-2.50	-0.02332
59090 61020	2.30	0.051//
61030	-1.201	-0.0012
61030	0.7462	-9.3E-4
61260	-0.7463	-3./8/E-4
61260	0.7403	-3.401E-4
61340	-0.4557	-1.056
61340	0.4543	1.05/
61500	-2.546	-0.10/3
61500	2.546	0.108
61740	-4.663	-0.10/1
61740	4.663	0.1093
62880	-1.326	-1.105
62880	1.327	1.105
64670	-1.884	-5.102E-4
64670	1.884	-3.923E-4
64890	-0.09962	-0.1408
64890	0.09963	0.1416
66480	-1.072	-0.7696
66480	1.072	0.7699
68790	-0.261	-0.02739
68790	0.2611	0.02709
69350	-1.762	1.661E-4
69350	1.762	1.682E-4
71600	-1.267	-0.9671
71600	1.266	0.967
73530	-0.7361	-0.9532
73530	0.7368	0.9532
75330	-1.31	-0.00526
75330	1.309	-0.00478

75350	-0.6448	-0.00139	
75350	0.6447	0.0114	
78170	-0.06805	-0.06224	
78170	0.0675	0.0617	
78430	-1.289	3.402E-4	
78430	1.289	3.997E-4	
79770	-0.3502	-0.04522	
79770	0.3508	0.04488	
80220	-3.045	2.307E-4	
80220	3.045	2.391E-4	
81160	-0.9942	-0.9787	
81160	0.9942	0.9787	
88380	-1.004	-0.9722	
88380	1.004	0.9722	
98320	-0.8963	-2.32E-4	
98320	0.8963	-2.165E-4	
98710	-2.891	-5.991E-4	
98710	2.891	0.00106	
101600	-0.9983	-1.041	
101600	0.9983	1.041	
116100	-1.936	-2.931E-4	
116100	1.936	-1.756E-4	
116400	-0.06707	-0.04757	
116400	0.06707	0.0481	