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Supporting Information

Fig. S1 KPFM images and the measured contact potential difference of the 
mechanically exfoliated (a,b) pristine SiAs, (c,d) 0.18 at% Sc-SiAs, (e,f) 0.59 at% Sc-

SiAs, and (g,h) 0.97 at% Sc-SiAs few layers.

Fig. S2 Raman spectroscopy of the Sc-doped SiAs synthesized by CVT method.
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Fig. S3 Cyclic voltammetry curves of (a) SiAs, (b) 0.18 at% Sc-SiAs, (c) 0.59 at% 
Sc-SiAs, (d) 0.97 at% Sc-SiAs samples at various scan rates from 20 to 100 mV/s in 

0.5 M H2SO4.

Fig. S4 The overpotential of 0.97 at% Sc-SiAs and other catalysts with current 
density of 10 mA/cm2 is compared.



Fig. S5 Cyclic voltammetry curves of (a) SiAs, (b) 0.18 at% Sc-SiAs, (c) 0.59 at% Sc-
SiAs, (d) 0.97 at% Sc-SiAs samples in 0.5 M H2SO4 with scan rate of 50 mV/s. (e) 
Calculated TOF of SiAs and Sc-doped SiAs in acid solution. (f) Comparison of TOF 
values of SiAs and Sc-doped SiAs at an overpotential of 100 mV.

To calculate turnover frequency (TOF), CV method with the potential range of -0.2 
to 0.6 V (vs. RHE) at a scan rate of 50 mV/s was performed in 0.5 M H2SO4. When the 
number of active sites is determined, the turnover frequency (TOF) is evaluated by the 
following standard equation [Eq. (1)]8,9:

                    (1)n)×F×A)/(2×(J=TOF

Where j (A/cm2) is the current density in LSV curves, A is the surface area of the 
electrode (0.01 cm2), F stands for the Faraday constant, the number of 2 represents 2 
electrons/mol of H2, F is the Faraday constant (96500 C/mol), and n stands for the 
number of moles of C atoms in samples. 

The number of active sites was measured from CV curves within the potential range 
of -0.2 to 0.6 V (vs. RHE) at a scan rate of 50 mV/s in 0.5 M H2SO4, as shown in Fig 
S5(a)-(d). The number of active sites (n) is proportional to the integral area (S) of the 
CV curve, satisfying the formula [Eq. (2)]:

                        (2)F)ν)/(201(Sn 3- 

Therefore, the relationship between TOF and Potential is calculated according to the 
above formula, as shown in Fig S5(e). Fig S5 (f) shows the TOF values of SiAs, 0.18 
at% Sc-SiAs, 0.59 at% Sc-SiAs, and 0.97 at% Sc-SiAs extracted when the overpotential 
is 100 mV. It can be clearly observed that the TOF value of each active site of 0.97 at% 
Sc-SiAs was 7.5 times that of undoped SiAs, indicating that 0.97 at% Sc-SiAs had 
higher catalytic activity for HER.



Fig S6 XRD spectrum of undoped SiAs and Sc-SiAs with different Sc doping 
concentrations after electrocatalytic reaction.

Fig S7 SEM images of four catalysts before and after electrocatalytic reaction, (a, e) 
SiAs, (b, f) 0.18 at% Sc-SiAs, (c, g) 0.59 at% Sc-SiAs, (d, h) 0.97 at% Sc-SiAs.

Fig. S8 （a, c）ematic diagram of SiAs and Sc-SiAs device configuration. (b,d) 
Optical image of a typically fabricated device.



Fig. S9 Optoelectronic performance of photodetectors based on 0.18 at% Sc-SiAs and 
0.59 at% Sc-SiAs few layers. (a,d) I-V curves of the device under 550 nm laser 

illumination with different intensities. (b,e) Time-resolved light response of 
photodetector at λ=550 nm and Vds=10 V. (c,f) Rising and falling time of the 

photodetectors. (g,j) Photocurrent as a function of optical power density. (h,k) The 
relationship between Responsivity and incident optical power. (i,l) The curve of 

detectivity and laser power density.
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