Supporting Information

Design of fluorine substituted high-entropy phosphates as cathode materials towards high-performance Na-ion batteries

Qi Wang^a, Man Zhao^a, Hai-tao Yu^a, Ying Xie^{a,b,*}, Ting-Feng Yi^{b,c,*}

^a *Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, PR China*

^b *Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China*

^c School of Materials Science and Engineering, Northeastern University, Shenyang, *110819, PR China*

*Corresponding author: Ying Xie

E-mail: xieying@hlju.edu.cn (Dr. Ying Xie).

*Corresponding author: Ting-feng Yi

E-mail: tfyihit@163.com

1. Material characterisation

The crystal structures of the samples were analysed by X-ray powder diffractometer (XRD, Bruker D8, Cu-K α , λ = 1.54056Å) in the range of 10-80° (20). Sample morphology and microstructure were observed using a scanning electron microscope (SEM, Hitachi S-800) and a transmission electron microscope (TEM, JEOL-2100). Electron diffraction images were obtained by fast Fourier transform (FTT). Chemical bonds were analysed using a Fourier infrared absorption spectrometer (FT-IR, Thermo Scientific Nicolet iS10). And particle size was determined using a particle size analyser (Nano-ZS90, Malvern). Elemental distribution was determined using an energy spectrometer (EDS, Oxford INCA, British). X-ray photoelectron spectroscopy (XPS) was performed using an ESCA Lab 250 system.

2. Electrochemical characterisation

The electrochemical tests of the prepared samples were all carried out in a half-cell, where the active material, conductive carbon black and polyvinylidene fluoride were mixed in a mass ratio of 8:1:1 and dissolved in N-methyl -2-pyrrolidone (NMP) to form a slurry. This slurry was uniformly coated on aluminum foil and dried in a vacuum oven at 110 °C for 11 h. Circular electrode sheets with a diameter of 14 mm were prepared, and the loading of active material on each electrode was in the range of 1.2-1.4 mg \cdot cm⁻². Sodium metal was chosen as the anode material, and glass fiber filters (Whatman) were used as the septum. The electrolyte consisted of 1 M NaClO4, propylene carbonate (PC) and 5 vol% solution of fluoroethylene carbonate (FEC). The final assembly of the CR2025 button cell was carried out in a glove box filled with argon gas. The tests were carried out at room temperature (\approx 25 °C) and the electrochemical performance of the halfcells was tested at different current densities using a CT-4008 T system in the voltage range of 1.5-4.5 V. The electrochemical performance of the half-cells was measured using a CT-4008 T system. Cyclic voltammetry (CV) tests were performed at different scan rates using a CHI1000C electrochemical workstation. Electrochemical impedance spectroscopy (EIS) tests were performed using a Princeton P4000 electrochemical work in the frequency range of 0.01 Hz-100 kHz with a constant potential signal amplitude of 5 mV.

Fig. S1 Fourier transform infrared (FT-IR) spectrum of the different samples.

Fig. S3 (a) Energy Dispersive Spectroscopy (EDS) pattern and (b) the contrast curves indicate the interplanar space of the HE-NMP $F_{0.02}$.

Fig. S4 (a) N₂ adsorption-desorption isotherms and (b) pore size distributions of different

samples.

Fig. S5 (a) XPS full spectrum of the HE-NMPF_{0.02}, (b) P 2p, (c) Na 1s XPS spectra of

HE-NMP and HE-NMP $F_{0.02}$.

Fig. S6 (a) Cycling performance of different samples; Charge/discharge curves of (b) HE-NMP and (c) NVP at 0.5 C; (d) Rate performance; Charge/discharge curves of (e) HE-NMP and (f) NVP at different current density.

Fig. S7 Corresponded dQ/dV curves of (a) HE-NMP, (b) HE-NMPF_{0.02}, (c) HE-NMPF_{0.04} and (d) $HE-NMPF_{0.06}$.

Fig. S8 Cycling performance at 2 C.

Sample	Lattice	Lattice	Lattice	Cell
	parameter $a[A]$	parameter $b[A]$	parameter $c[A]$	volume $[A^3]$
HE-NMP	8.71868	8.71868	21.81623	1658.37
$HE-NMPF0.02$	8.73557	8.73557	21.79696	1663.33
$HE-NMPF0.04$	8.73545	8.73545	21.80180	1663.65
$HE-NMPF0.06$	8.73528	8.73528	21.79744	1663.26

Table S1 Lattice parameters of all samples.

Crystal phase: trigonal, R-3c(S.G.); a=8.7355 Å, c=21.7970 Å, V=1663.33 Å ³						
Atom	$\mathbf X$	y	$\mathbf{Z}% ^{T}=\mathbf{Z}^{T}\times\mathbf{Z}^{T}$	Occ.	Uiso.	Wyckoff.
						Position
O ₁	0.15007	0.48239	0.07526	0.9983	0.03015	36f
O ₂	0.54815	0.83570	-0.02560	0.9983	0.03962	36f
\mathbf{P}	-0.03376	0.33333	0.08333	0.9983	0.02238	18e
Na1	0.33333	0.66667	0.16667	1.2540	0.02862	6b
Na ₂	0.66667	0.98692	0.08333	0.7150	0.02894	18e
Mn	0.33333	0.66667	0.01799	0.1972	0.02062	12c
Fe	0.33333	0.66667	0.01799	0.1975	0.02062	12c
\mathbf{V}	0.33333	0.66667	0.01799	0.2032	0.02062	12c
Ti	0.33333	0.66667	0.01799	0.2034	0.02062	12c
Cr	0.33333	0.66667	0.01799	0.1987	0.02062	12c
F1	0.15007	0.48239	0.07526	0.0017	0.03015	36f
F2	0.54815	0.83570	-0.02560	0.0017	0.03962	36f

Table S2 Refined structure information of the HE-NMPF $_{0.02}$.

Element	EDS (Mass%)	ICP (Mass%)
Fe	5.34	4.14
Mn	5.98	4.17
\mathbf{V}	5.46	3.97
Cr	5.48	4.01
Ti	5.25	3.91
\mathbf{F}	3.04	

Table S3 Energy dispersive spectroscopy (EDS) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) data for HE-NMPF_{0.02}.

Table S4 Specific surface area, total pore volume and average pore size of samples.

	$2p_{1/2}(eV)$			$2p_{3/2}(eV)$		
	$+2$	$+3$	$+4$	$+2$	$+3$	$+4$
HE-NMP-Fe	724.81	727.28		711.68	715.18	
$HE-NMPF0.02-Fe$	724.70	727.01		711.40	715.02	
HE-NMP-Mn	653.28			641.31		
$HE-NMPF0.02-Mn$	652.90	654.45		641.01	642.41	
HE-NMP-V		523.68			517.37	
$HE-NMPF0.02-V$		523.35			517.00	
HE-NMP-Cr		587.16			577.84	
HE-NMPF _{0.02} -Cr		587.41			578.14	
HE-NMP-Ti		464.71	465.88		458.80	459.92
$HE-NMPF0.02-Ti$		464.98			459.04	

Table S5 XPS peak positions of different orbitals for different elements.

Table S6 Data for calculating the voltage platform difference (ΔE).

Sample	charging	discharging	Voltage difference
$HE\text{-}NMPF_{0.02}$	3.52	2.52	1.00
$HE-NMPF0.04$	3.57	2.37	1.20
$HE-NMPF0.06$	3.74	2.31	1.43
HE-NMP	3.76	2.26	1.50

Sample	Current density/ $A \cdot g^{-1}$	Cycle number	Specific capacity/mAh· g^{-1}	Ref.
Na ₃ MnTi(PO ₄) ₃	0.012	100	60	$\mathbf{1}$
$\text{Na}_{\text{A}}\text{MnCr}(\text{PO}_{\text{A}})$	0.56	600	47	$\sqrt{2}$
$\text{Na}_3\text{MnTi}(\text{PO}_4)$	0.12	800	75	\mathfrak{Z}
$Na_3V_2(PO_4)_2F_{2.5}O_{2.5}$	0.24	1000	75	$\overline{4}$
$Na_{x}VMn_{0.75}Al_{0.25}(PO_{4})_{3}$	0.12	347	83	5
$\text{Na}_4\text{MnCr(PO}_4)$	1.0	500	40	$\sqrt{6}$
$Na2VTi(PO4)3(QC)$	1.25	500	73	$\boldsymbol{7}$
$\text{Na}_4\text{MnV(PO}_4)$	2.2	1000	54	8
$\text{Na}_4\text{Fe}_3(\text{PO}_4), (\text{P}_2\text{O}_7) \textcircled{a} \text{C}$	2.4	1000	50	$\boldsymbol{9}$
$Na_{3}Ti_{0.5}V_{0.5}(PO_{3})_{3}N$	1.6	1000	53	$10\,$
$Na_3V_{1.9}(CaMgAlCrMn)_{0.01}(PO_4)_2$ F ₃	2.6	2000	80	$11\,$
Na ₃ V(AlFeInGaCr) _{0.2} (PO ₄) ₃	2.28	5000	71	12
$Na3(TiVMnCrZr)0.4(PO4)3$	0.1	100	33	13
$Na3.4(FeMnVCrTi)0.4(PO4)3$	0.75	1000	77	14
				This
$Na3.4(FeMnVCrTi)0.4(PO4)2.98F0.02$	3.0	1000	62	work

Table S7 Comparison of the electrochemical performance for NASICON-type cathodes as reported in recent literature.

Table S8 Fitted EIS curve data and calculated D_{Na^+} data for the material.

Reference

- 1. H. Gao, Y. Li, K. Park and J. B. Goodenough, Sodium Extraction from NASICON-Structured Na₃MnTi(PO₄)₃ through Mn(III)/Mn(II) and Mn(IV)/Mn(III) Redox Couples, *Chemistry of Materials*, 2016, **28**, 6553-6559.
- 2. J. Zhang, Y. Liu, X. Zhao, L. He, H. Liu, Y. Song, S. Sun, Q. Li, X. Xing and J. Chen, A Novel NASICON‐Type Na4MnCr(PO4)³ Demonstrating the Energy Density Record of Phosphate Cathodes for Sodium‐Ion Batteries, *Advanced Materials*, 2020, **32**, 1906348.
- 3. T. Zhu, P. Hu, C. Cai, Z. Liu, G. Hu, Q. Kuang, L. Mai and L. Zhou, Dual carbon decorated $Na₃MnTi(PO₄)₃$: A high-energy-density cathode material for sodium-ion batteries, *Nano Energy*, 2020, **70**, 2211-2855.
- 4. W. Li, Z. Yao, S. Zhang, X. Wang, X. Xia, C. Gu and J. Tu, High-performance $Na₃V₂(PO₄)₂F_{2.5}O_{0.5} cathode: Hybrid reaction mechanism study via ex-situ XRD and$ sodium storage properties in solid-state batteries, *Chemical Engineering Journal*, 2021, **423**, 1385-8947.
- 5. S. Ghosh, N. Barman and P. Senguttuvan, Impact of Mg^{2+} and Al^{3+} Substitutions on the Structural and Electrochemical Properties of NASICON-NaxVMn_{0.75}M_{0.25}(PO₄)₃ (M = Mg and Al) Cathodes for Sodium‐Ion Batteries, *Small*, 2020, **16**, 2003973.
- 6. W. Zhang, H. Li, Z. Zhang, M. Xu, Y. Lai and S. L. Chou, Full Activation of Mn^{4+}/Mn^{3+} Redox in Na₄MnCr(PO₄)₃ as a High-Voltage and High-Rate Cathode Material for Sodium‐Ion Batteries, *Small*, 2020, **16**, 2001524.
- 7. D. Wang, X. Bie, Q. Fu, D. Dixon, N. Bramnik, Y.-S. Hu, F. Fauth, Y. Wei, H. Ehrenberg, G. Chen and F. Du, Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan, *Nature Communications*, 2017, **8**, 15888.
- 8. H. Li, T. Jin, X. Chen, Y. Lai, Z. Zhang, W. Bao and L. Jiao, Rational Architecture Design Enables Superior Na Storage in Greener NASICON‐Na4MnV(PO4)³ Cathode, *Advanced Energy Materials*, 2018, **8**, 1801418.
- 9. M. Chen, W. Hua, J. Xiao, D. Cortie, W. Chen, E. Wang, Z. Hu, Q. Gu, X. Wang, S. Indris, S.-L. Chou and S.-X. Dou, NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density, *Nature Communications*, 2019, **10**, 1480.
- 10. M. Chen, J. Xiao, W. Hua, Z. Hu, W. Wang, Q. Gu, Y. Tang, S. L. Chou, H. K. Liu and S. X. Dou, A Cation and Anion Dual Doping Strategy for the Elevation of Titanium Redox Potential for High‐Power Sodium‐Ion Batteries, *Angewandte Chemie International Edition*, 2020, **59**, 12076-12083.
- 11. Z. Y. Gu, J. Z. Guo, J. M. Cao, X. T. Wang, X. X. Zhao, X. Y. Zheng, W. H. Li, Z. H. Sun, H. J. Liang and X. L. Wu, An Advanced High‐Entropy Fluorophosphate Cathode for Sodium‐Ion Batteries with Increased Working Voltage and Energy Density, *Advanced Materials*, 2022, **34**, 2110108.
- 12. M. Li, C. Sun, Q. Ni, Z. Sun, Y. Liu, Y. Li, L. Li, H. Jin and Y. Zhao, High Entropy Enabling the Reversible Redox Reaction of V^{4+}/V^{5+} Couple in NASICON-Type

Sodium Ion Cathode, *Advanced Energy Materials*, 2023, **13**, 2203971.

- 13. B. Wu, G. Hou, E. Kovalska, V. Mazanek, P. Marvan, L. Liao, L. Dekanovsky, D. Sedmidubsky, I. Marek, C. Hervoches and Z. Sofer, High-Entropy NASICON Phosphates (Na₃M₂(PO₄)₃ and NaMPO₄Ox, M = Ti, V, Mn, Cr, and Zr) for Sodium Electrochemistry, *Inorganic Chemistry*, 2022, **61**, 4092-4101.
- 14. H. Li, M. Xu, H. Long, J. Zheng, L. Zhang, S. Li, C. Guan, Y. Lai and Z. Zhang, Stabilization of Multicationic Redox Chemistry in Polyanionic Cathode by Increasing Entropy, *Advanced Science*, 2022, **9**, 2202082.