
Fig. S1 (a) XRD patterns of FCN-8P/NF, FC/NF, and NF. (b) XRD pattern of FCN/Ti.

Note.1: Fig. S1(b) shows the XRD pattern of FCN on Ti foil, and exhibits apparent peaks at 

11.43°, 22.98°, and 34.44° corresponding to (003), (006), and (012) planes of hydrotalcite 

(PDF# 40-0215). Peaks at 44.27°, 51.55°, and 75.87° belong to (111), (200), and (220) planes 

of FeNi (PDF# 38-0419). Other peaks appearing in 44.88°, 65.31°, and 82.75° can be indexed 

to (110), (200), and (211) planes of FeCo (PDF# 49-1568). The above results mean that the 

phase of FCN is crystalline FeCoNi alloy/FeCoNi-LTHs.   
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ig. S2 (a)-(b) SEM images of FC on NF.



Fig. S3 (a) XPS full spectra of FCN, FCN-2P, FCN-8P and FCN-16P. (b) P 2p of FCN-2p, 

FCN-8P, FCN-16P. (c) High-resolution XPS spectra of P 2p in FCN-2p. (d) High-resolution 

XPS spectra of P 2p in FCN-16p.



Table S1 The HER overpotential value of different electrodeposited samples to attain the 

current densities of 10 mA cm-2 and 100 mA cm-2 respectively.  

Electrocatalysts η@10 mA cm-2 η@100 mA cm-2

FC 179 mV 281 mV

FCN 126 mV 248 mV

FCN-2P 122 mV 221 mV

FCN-4p 103 mV 215 mV

FCN-8P 77 mV 201 mV

FCN-12p 96 mV 212 mV

FCN-16p 102 mV 217 mV

Amorphous phosphate can promote the adsorption and dissociation of water molecules 

and improve the hydrophilicity of materials. However, its adsorption and desorption ability 

for protons is not as good as that of crystalline FeCo alloy. To achieve optimal activity for 

FeCo alloy/FeCoNi-Pi, it's important to adjust the appropriate amorphous phosphate content. 

With the increase of NaH2PO2.H2O dosage, the amorphous phosphate content in the 

crystalline/amorphousFeCoalloy/FeCoNi-Pi also increases during sample preparation. The 

sample can be given an optimal phosphate content with 8P.



Fig. S4 Comparison of HER performance at 10 mA cm-2 with recently reported FeCoNi-

based electrocatalysts. References cited in Fig. S : Co-Fe-P[S1], Fe42.5-xCo25Ni25P7.5Cx
[S2], 

FeCoNi-LTH/NiCo2O4
[S3], CeFeCoP[S4], FeCoNi@FeNC[S5], F-FeCoNi-Ov LDH[S6], Mo-

NiCoP[S7], NiCoP@C[S8], FeCo alloy[S9], NiCoFe phosphate[S10], FeCoNi-alloy&FeCoNi –

LTH[S11], and FeCoP [S12].   

 



Fig. S5 The HER mechanism of FCN-8P.



Fig. S6 Electrochemical active surface area analysis by the CV scans in a non-Faradaic 

potential range of as-prepared electrodes for HER (a) NF, (b) FC, (c) FCN, (d) FCN-8P.



Fig. S7 The ECSA values of FCN-8P, FCN, FC, and NF for HER.
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Table S2 The Rct Value of different electrocatalysts for HER

Electrocatalysts Rct

FC 1.067 Ω

FCN 0.611 Ω

 FCN-8P 0.392 Ω



Table S3 The OER overpotential value of different electrodeposited samples to attain the 

current densities of 10 mA cm-2 and 100 mA cm-2 respectively. 

Electrocatalysts η@10 mA cm-2 η@100 mA cm-2

FC 267 mV 321 mV

FCN 250 mV 302 mV

FCN-2P 248 mV 304 mV

FCN-4p 246mV 297mV

FCN-8P 233 mV 284 mV

FCN-12p 237mV 287mV

FCN-16p 236 mV 289 mV

To achieve optimal activity for FeCo alloy/FeCoNi-Pi, it's important to adjust the 

appropriate amorphous phosphate content. With the increase of NaH2PO2.H2O dosage, the 

amorphous phosphate content in the crystalline/amorphousFeCoalloy/FeCoNi-Pi also 

increases during sample preparation. The sample can be given an optimal phosphate content 

with 8P.



Fig. S8 Comparison of OER performance at 10 mA cm-2 with recently reported FeCoNi-

based electrocatalysts. References cited in Fig. S : NiCoFe phosphate[S10], F-FeCoNi-Ov 

LDH[S6], Cobalt iron phosphate[S13], NiCoP@C[S8], CoNi alloy[S14], FeCoNi-btz[S15], 

Fe1.0Co0.5Ni0.6–NC[S16], S-doped Co–Fe–Pi[S17], CoFePi[S18], FeCoNi-alloy&FeCoNi –

LTH[S11], FeCoNi alloy[S9], and FeCoP[S12].  



Fig. S9 the OER mechanism of FCN-8P.



Fig. S10 Electrochemical active surface area analysis by the CV scans in a non-Faradaic 

potential range of as-prepared electrodes for OER (a) NF, (b) FC, (c) FCN, (d) FCN-8P.
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Fig. S11 The ECSA values of FCN-8P, FCN, FC, and NF for OER.



Table S4 The Rct Value of different electrocatalysts for OER

Electrocatalysts Rct

FC 0.540 Ω

FCN 0.359 Ω

FCN-8P 0.297 Ω



Fig. S12 (a) Optical picture of the water-splitting device. (b) Optical pictures of the 

electrodeposition samples.



Fig. S13 (a) SEM image of FCN-8P electrocatalyst after long-term OER process. (b) SEM 

image of FCN-8P electrocatalyst after long-term HER process.



Fig. S14 High-resolution XPS spectra of (a) Fe 2p, (b) Co 2P, (c) Ni 2p, and (d) P 2p in 

FCN-8P electrode after long-term stability test.
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