Supporting Information

Mixed lanthanide-organic frameworks with borono groups for colorimetric detection of excess fluoride

levels in rivers

Hui Min,*a Zhuohang Zhu,a Meiyi Huang,a Junbao Zhou,a Nian Zhao,a and Peng Cheng*b

^a Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China.

^b Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, P. R. China.

* Authors to whom correspondence should be addressed: minhui@hbnu.edu.cn and pcheng@nankai.edu.cn.

Table of content

Fig. S1	Simplified topological configuration of 7 .	S3
Fig. S2	PXRD patterns of 1 – 7 .	S4
Fig. S3	IR curves of 1 – 7 .	S5
Fig. S4	PXRD patterns of 7 after immersing in water for 48 h and the simulated one of 7 .	S6
Fig. S5	TGA curves of 1 – 7 .	S7
Fig. S6	Luminescence emission spectra of aqueous suspensions of $1 - 7$.	S8
Fig. S7	Luminescent stability of aqueous suspensions of $1 - 7$.	S9
Fig. S8	Fluorescence spectra of $1 - 4$ and $6 - 7$ aqueous dispersions vary with F ⁻ concentrations.	S10
Fig. S9	Fluorescence response of 5 towards F ⁻ ions.	S11
Fig. S10	S-V plots of $1 - 4$ and $6 - 7$ aqueous dispersions towards F ⁻ ions.	S12
Fig. S11	PXRD of 5 before and after treating with 30 ppm F ⁻ ions.	S13
Fig. S12	XPS of 5 before and after treating with F ⁻ ions.	S14
Fig. S13	IR of 5 before and after treating with F ⁻ ions.	S15
Fig. S14	UV absorption spectrum of H_2BIPA and 77 K phosphorescence spectrum of isomorphic Gd_2 -MOF.	S16
Fig. S15	Ultraviolet-visible spectra of 5 aqueous dispersion vary with F ⁻ ion concentrations	S17
Fig. S16	Lifetime at 544 nm of 5 aqueous dispersions towards F- with different concentrations.	S18
Fig. S17	Lifetime at 616 nm of 5 aqueous dispersions towards F- with different concentrations.	S19
Fig. S18	Lifetimes at 544 nm and 616 nm of 5 aqueous dispersions towards F ⁻ with different concentrations.	S20
Table S1	EA and ICP-AES results for $1 - 8$.	S21
Table S2	Crystal data and structural refinement parameters for 7 and F@ 7 .	S22
Table S3	Coordination configuration of the Eu1 and Eu2 calculated by <i>Shape 2.0</i> .	S23
Table S4	Performance summary of $1 - 7$ toward F ⁻ ions.	S24
Table S5	Spike-and-recovery experiments	S25
Table S6	Lifetime at 544 nm and 616 nm of 5 aqueous dispersions towards F ⁻ ions with different concentrations.	S26

Fig. S1 The connected modes of binuclear $\{Eu_2\}$ units and their simplified topological configuration.

Fig. S2 PXRD patterns of as-synthesized 1 - 8 and the simulated one of 7.

Fig. S3 IR curves of as-synthesized 1 - 7.

Fig. S4 PXRD patterns of 7 after immersing in water for 48 h and the simulated one of 7.

Fig. S5 TGA curves of as-synthesized 1 - 7.

Fig. S6 Luminescence emission spectra (a - g) and luminescence pictures (h) of aqueous suspensions of 1 - 7.

Fig. S7 Luminescent stability of aqueous suspensions of 1 - 7 for 15 min (a - g) and relative standard deviation (RSD) at 544 nm (h) or 616 nm (i).

Fig. S8 Fluorescence spectra of 1 - 4 and 6 - 7 aqueous dispersions vary with F⁻ ion concentrations.

Fig. S9 Fluorescence response curves (a) and intensity (b) of **5** aqueous dispersions towards F⁻ with different concentrations. (c) Experimental S-V plots and the fitted result. Inset shows the linear fitting results at low concentration of F⁻ ions. (d) Linear fitting results of $\ln(I_0/I)$ and concentration.

Fig. S10 S-V plots of 1 - 4 and 6 - 7 aqueous dispersions towards F⁻ ions with different concentrations, inset show the linear fit results at low concentration.

Fig. S11 Standard curve for F^- ion detection using F^- ion selective electrode.

Fig. S12 PXRD patterns of 5 before and after treating with 30 ppm $F^{\text{-}}$ ions.

Fig. S13 XPS spectra of 5 before and after treating with F⁻ ions.

Fig. S14 IR curves of 5 before and after treating with F⁻ ions.

Fig. S15 (a) UV absorption spectrum of H_2BIPA and (b) 77 K phosphorescence spectrum of **8**.

Fig. S16 Ultraviolet-visible absorption spectra of **5** aqueous dispersion vary with F⁻ ion concentrations, inset shows the absorbance at 278 nm at different concentration.

Fig. S17 Lifetimes at 544 nm of **5** aqueous dispersions towards F⁻ ions with different concentrations.

Fig. S18 Lifetimes at 616 nm of **5** aqueous dispersions towards F⁻ ions with different concentrations.

Fig. S19 Lifetimes at 544 nm and 616 nm of **5** aqueous dispersions towards F^- ions with different concentrations.

	Addition/mL	EA results (%)			ICP-AES results		
Compounds	Tb ³⁺ :Eu ³⁺	Elements	N	С	Н	Tb	Eu
1	1.00:0.00	Calcd Found	3.26 2.93	30.77 30.93	3.89 4.34	1	-
2	0.95:0.05	Calcd Found	3.27 3.09	30.79 30.65	3.89 4.04	0.94	0.06
3	0.90:0.10	Calcd Found	3.27 3.43	30.82 30.40	3.89 4.10	0.86	0.14
4	0.80:0.20	Calcd Found	3.27 2.74	30.82 30.48	3.89 4.35	0.85	0.15
5	0.60:0.40	Calcd Found	3.28 2.99	30.89 30.62	3.90 4.01	0.66	0.34
6	0.40:0.60	Calcd Found	3.28 3.12	30.95 30.97	3.91 4.20	0.48	0.52
7	0.00:1.00	Calcd Found	3.30 3.23	31.11 31.30	3.93 4.04	-	1

Table S1 EA and ICP-AES results for 1 - 7.

ICP-AES results show the normalized atomic ratio.

Compounds	7	F@ 7
Formula	$C_{30}H_{40}B_{3}Eu_{2}N_{2}O_{25.5}$	$C_{30}H_{47}B_3Eu_2N_2O_{29}F_{0.25}$
Formula weight	1172.99	1256.79
Crystal system	triclinic	triclinic
Space group	P-1	P-1
a (Å)	12.771	12.670
b (Å)	14.199	14.235
<i>c</i> (Å)	15.899	16.014
α (°)	98.717	98.801
(°) ک <i>ر</i>	106.354	105.956
γ (°)	114.260	113.980
V (ų)	2401.4	2419.31
Ζ	2	2
<i>D_x</i> , g cm ⁻³	1.622	1.725
<i>Mu,</i> mm ⁻¹	2.670	2.664
F(000)	1158.0	1248.0
GOF on <i>F</i> ²	1.052	1.014
R _{int}	0.0735	0.0473
${}^{a}R_{1}, {}^{b}wR_{2} [l \geq 2 \sigma(l)]$	0.0685 / 0.1746	0.0410 / 0.1121
^a R ₁ , ^b wR ₂ [all data]	0.0981 / 0.1928	0.0549 / 0.1184
CCDC	2326600	2326601

Table S2 Crystal data and structural refinement parameters for 7 and F@7.

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; {}^{b}wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}.$

lons	Abbreviation	Point group	Configuration	Deviation
	OP-8	D_{8h}	Octagon	30.131
	HPY-8	C _{7v}	Heptagonal pyramid	22.911
	HBPY-8	D_{6h}	Hexagonal bipyramid	15.803
	CU-8	$O_{\rm h}$	Cube	11.456
	SAPR-8	$D_{ m 4d}$	Square antiprism	1.728
	TDD-8	D_{2d}	Triangular dodecahedron	2.628
Eu1	JGBF-8	D_{2d}	Johnson gyrobifastigium J26	13.989
	JETBPY-8	D_{3h}	Johnson elongated triangular bipyramid J14	26.602
	JBTPR-8	C _{2v}	Biaugmented trigonal prism J50	1.882
	BTPR-8	C _{2v}	Biaugmented trigonal prism	0.993
	JSD-8	D_{2d}	Snub diphenoid J84	4.572
	TT-8	T_{d}	Triakis tetrahedron	11.859
	ETBPY-8	D_{3h}	Elongated trigonal bipyramid	22.823
	EP-9	D_{9h}	Enneagon	33.471
	OPY-9	C_{8v}	Octagonal pyramid	22.842
	HBPY-9	$D_{7\mathrm{h}}$	Heptagonal bipyramid	16.220
	JTC-9	C _{3v}	Johnson triangular cupola J3	15.915
	JCCU-9	C_{4v}	JCCU-9	10.048
	CCU-9	C_{4v}	Spherical-relaxed capped cube	8.777
Eu2	JCSAPR-9	C_{4v}	Capped square antiprism J10	2.374
	CSAPR-9	C_{4v}	Spherical capped square antiprism	1.994
	JTCTPR-9	D_{3h}	Tricapped trigonal prism J51	3.286
	TCTPR-9	D_{3h}	Spherical tricapped trigonal prism	2.841
	JTDIC-9	C _{3v}	Tridiminished icosahedron J63	13.649
	HH-9	C_{2v}	Hula-hoop	8.064
	MFF-9	Cs	Muffin	0.981

 Table S3 Coordination configuration of the Eu1 and Eu2 calculated by Shape 2.0.

Comple	Sensitivit	y (ppm ⁻¹)	Limit of dete	ction (ppm)
Sample	I ₅₄₄	<i>I</i> ₆₁₆	I ₅₄₄	<i>I</i> ₆₁₆
1	0.0837	-	1.50	-
2	0.0787	0.0546	1.73	2.28
3	0.0793	0.0423	3.74	7.03
4	0.0856	0.0289	2.31	3.33
5	0.183	0.0619	0.166	0.83
6	0.125	0.0190	0.739	8.54
7	-	0.0776		9.15

 Table S4 Performance summary of 1 – 7 toward F⁻ ions.

Tungizon						
Methods	Samples	Found (ppm) ^[a]	Added (ppm)	Found (ppm) ^[b]	Recovery	RSD
	1	0.52	12.7	12.9	97.4%	
This work	2	0.75	12.7	13.2	98.0%	2.3%
	3	0.28	12.7	12.6	97.0%	
F ion	1	0.79	12.7	11.0	82.2%	
selective electrode	2	0.82	12.7	13.0	96.0%	8.5%
	3	0.72	12.7	12.5	93.1%	

Table S5 Spike-and-recovery experiments of **5** towards F⁻ ions in water samples from the Yangtze River.

[a] direct measurement of F⁻ ion content in samples; [b] F⁻ ion content in samples after adding standard solution.

Concentration (nnm)	Lifetin	ne / ms
Concentration (ppm)	544 nm	616 nm
0	0.408	0.161
1.9	0.364	0.176
3.8	0.317	0.183
9	0.304	0.199
12	0.314	0.219
15	0.356	0.247

Table S6 Lifetime at 544 nm and 616 nm of **5** aqueous dispersions towards F⁻ ions with different concentrations.