Supporting Information

Phase switching and shape-memory effect in a molecular material: revisiting the

Werner complex [Ni(4-MePy)₄(NCS)₂]

Shi-Qiang Wang, *a Shaza Darwish,^b Catiúcia R. M. O. Matos,^b Zicong Marvin Wong,^c Anjaiah Nalaparaju,^c Yifei Luo,^a Jun Zhu,^a Xiaofei Zhang,^a Zhengtao Xu, *a and Michael J. Zaworotko*^b

^aInstitute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way 138634, Singapore.

^bBernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland.

^cInstitute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way 138632, Singapore.

*E-mail: <u>wangsq@imre.a-star.edu.sg; zhengtao@imre.a-star.edu.sg; xtal@ul.ie</u>

Figure S1. SEM images of the as-made powder sample of $[Ni(4-MePy)_4(NCS)_2]$ - α .

Figure S2. TGA curves of the closed α (black line) and PX-loaded β (red line) phases of [Ni(4-MePy)₄(NCS)₂].

Figure S3. Water vapor sorption isotherm (298 K) of the as-made [Ni(4-MePy)₄(NCS)₂]-a.

Figure S4. PX sorption kinetics test (298 K) of the single-crystal form of [Ni(4-MePy)₄(NCS)₂]-a.

Figure S5. The recyclability test of the open-empty β' phase of [Ni(4-MePy)₄(NCS)₂].

Figure S6. Crystal structural information of [Ni(4-MePy)₄(NCS)₂]-α (refcode: ICMPNI03).

 $Figure \ S7. \ Crystal \ structural \ information \ of \ [Ni(4-MePy)_4(NCS)_2]-PX \ (refcode: \ BAPZAT).$

Figure S8. Crystal structural information of $[Ni(4-MePy)_4(NCS)_2]$ - β' (refcode: ICMPNI04).

Figure S9. Structural overlay of the closed (red) and open-empty (green) phases of [Ni(4-MePy)₄(NCS)₂].

Figure S10. Structural overlay of the closed (red) and PX-loaded (purple) phases of [Ni(4-MePy)₄(NCS)₂].

Figure S11. Structural overlay of the open-empty (green) and PX-loaded (purple) phases of $[Ni(4-MePy)_4(NCS)_2]$.

Figure S12. Packing mode of $[Ni(4-MePy)_4(NCS)_2]$ -a along a) a, b) b, and c) c axis (refcode: ICMPNI03).

Figure S13. Packing mode of $[Ni(4-MePy)_4(NCS)_2]$ -PX along a) a, b) b, and c) c axis (refcode: BAPZAT).

Figure S14. Packing mode of $[Ni(4-MePy)_4(NCS)_2]-\beta'$ along a) a, b) b, and c) c axis (refcode: ICMPNI04).

Figure S15. Crystal structural void analysis of a) $[Ni(4-MePy)_4(NCS)_2]$ -PX (PX molecule is excluded) and b) $[Ni(4-MePy)_4(NCS)_2]$ - β' . The probe radius is 1.2 Å.

Figure S16. 273 K C₃H₄ sorption isotherms for [Ni(4-MePy)₄(NCS)₂]-a.

Figure S17. PX vapor sorption isotherms (298 K) of the regenerated [Ni(4-MePy)₄(NCS)₂]-a.

Fig. S18. Enthalpy change between the α and β' phases calculated by the density functional theory.

Figure S19. OX vapor sorption isotherms (298 K) of [Ni(4-MePy)₄(NCS)₂]-a.

Figure S20. Toluene sorption (298 K) on [Ni(4-MePy)₄(NCS)₂]-a: a) first cycle, and b) the subsequent 2-4 cycles.

Figure S21. Comparison of the thermal stability between [Co(4-MePy)₄(NCS)₂] and [Ni(4-MePy)₄(NCS)₂].

Figure S22. OX vapor sorption isotherms (298 K) of [Co(4-MePy)₄(NCS)₂]-a.

formula	a	c	V	refcode	Year	Ref.
[Ni(4-MePy) ₄ (NCS) ₂]·0.53PX	16.79	22.40	6315.4	ZZZUXE		
[Ni(4-MePy) ₄ (NCS) ₂]·0.94C ₆ H ₆	16.67	22.74	6319.2	ZZZUXK	-	
$[Ni(4-MePy)_4(NCS)_2] \cdot 0.67(C_2H_5NO_2)$	16.69	22.67	6314.9	ZZZUXO		
[Ni(4-MePy) ₄ (NCS) ₂]·0.53(CH ₄ O)	16.72	22.73	6354.4	ZZZUXQ	1963	1
[Ni(4-MePy) ₄ (NCS) ₂]·0.69p-DCB	16.74	22.76	6376.3	ZZZUXS		1
[Co(4-MePy) ₄ (NCS) ₂]·0.67NB	16.73	22.97	6429.1	ZZZUXU	-	
$[Co(4-MePy)_4(NCS)_2] \cdot 0.67(C_2H_5NO_2)$	16.53	22.73	6210.8	ZZZUXY	-	
[Co(4-MePy) ₄ (NCS) ₂]·0.57C ₆ H ₆	16.68	23.14	6438.1	ZZZUYI	-	
[Ni(4-MePy) ₄ (NCS) ₂]	16.74	22.66	6349.9	ICMPNI	1972	2
[Ni(4-MePy) ₄ (NCS) ₂]·PX	16.81	22.41	6332.5	QQQGKA	1974	3
[Ni(4-MePy) ₄ (NCS) ₂]·PX	16.98	23.62	6810.1	BAPZAT		
[Ni(4-MePy) ₄ (NCS) ₂]·MX	17.28	23.87	7127.5	BAPZEX	1981	4
[Ni(4-MePy) ₄ (NCS) ₂]·2MeOH	16.99	22.29	6434.2	BAPZIB	-	
[Ni(4-MePy) ₄ (NCS) ₂]·p-cymene	17.11	23.84	6974.3	BUJPEB	1983	5
[Fe(4-MePy) ₄ (NCS) ₂]·C ₆ H ₆	17.08	23.66	6902.3	VEVKEM		
[Fe(4-MePy) ₄ (NCS) ₂]·MX	17.17	24.02	7081.3	VEVKOW	1990	6
[Fe(4-MePy) ₄ (NCS) ₂]·PX	17.12	23.93	7013.8	VEVKUC	-	
[Ni(4-MePy) ₄ (NCS) ₂]·1.5C ₄ H ₄ O	16.85	22.99	6527.4	RUDWAO		
[Ni(4-MePy) ₄ (NCS) ₂]·0.5C ₄ H ₈ O	16.70	22.71	6333.6	RUDWES		
[Ni(4-MePy) ₄ (NCS) ₂]·0.88C ₆ H ₆	16.82	23.12	6540.9	RUDWIW	1006	7
$[Ni(4-MePy)_4(NCS)_2] \cdot 1.2CH_2Cl_2$	17.09	22.46	6559.9	RUDWOC		
$[Ni(4-MePy)_4(NCS)_2] \cdot 0.4CH_2Cl_2$	16.59	22.61	6222.9	RUDWUI	-	
$[Ni(4-MePy)_4(NCS)_2] \cdot 0.5C_3H_8O_2$	16.74	22.46	6293.5	RUDXAP	-	
[Ni(4-MePy) ₄ (NCS) ₂]	16.64	22.67	6274.1	ICMPNI02		
[Fe(4-MePy) ₄ (NCS) ₂]·0.25p-MePy	17.03	23.38	6779.8	XIHHAX	2001	8
[Co(4-MePy) ₄ (NCS) ₂]·0.25p-MePy	16.84	22.82	6470.7	XIHHEB		
[Ni(4-MePy) ₄ (NCS) ₂]	16.66	22.70	6299.4	ICMPNI04		
[Ni(4-MePy) ₄ (NCS) ₂]	16.60	22.61	6228.2	ICMPNI05	2004	9
[Ni(4-MePy) ₄ (NCS) ₂]·0.94C ₆ H ₆	16.86	23.10	6563.8	ZZZUXK01	1	
[Ni(4-MePy) ₄ (NCS) ₂]·xG	16.68	22.63	6297.5	EMEHUA	2010	10

Table S1. Summar	y of different	guest-loaded	[Ni(4-MePy	$(NCS)_2$]- β	phases with s	pace group I4	$4_{1}/a$.
				//4/~ ~ ~ /// 6			

Table S2. Crystallograp	hic information of the th	hree phases of [Ni(4-M	$[ePy)_4(NCS)_2].$
-------------------------	---------------------------	------------------------	--------------------

	Closed α phase	PX-loaded β phase	empty-open β' phase
refcode	ICMPNI03	BAPZAT	ICMPNI04
Formula	$Ni(C_6H_7N)_4(NCS)_2$	$Ni(C_6H_7N)_4(NCS)_2 \cdot C_8H_{10}$	$Ni(C_6H_7N)_4(NCS)_2$
Formula weight	547.4	653.4	547.4
Crystal system	Monoclinic	Tetragonal	Tetragonal

Space group	$P2_{l}/c$	$I4_{I}/a$	$I4_{I}/a$
a/Å	19.226	16.98	16.657
b/Å	9.749	16.98	16.657
c/Å	16.791	23.62	22.704
$eta/^{\circ}$	113.62	90	90
Volume/Å ³	2883.54	6810.13	6299.35
Z	4	8	8

References

- Belitskus, D.; Jeffrey, G. A.; McMullan, R. K.; Stephenson, N. C., Single Crystal Studies on Some Clathrates of Tetra-(4-methylpyridine)-Nickel(II) and Cobalt Dithiocyanates. *Inorg. Chem.* 1963, 2 (4), 873-875.
- Andreetti, G. D.; Bocelli, G.; Sgarabotto, P., Bis (Isothiocyanato)tetrakis(4-methylpyridine) nickel(II) C₂₆H₂₈N₆NiS₂. Cryst. Struct. Comm 1972, 1, 51-54.
- 3. Solacolu, I.; Sandulescu, D.; Dragulescu, C.; Rev. Roum. Chim. 1974, 19, 415.
- Lipkowski, J.; Suwińska, K.; Andreetti, G. D.; Stadnicka, K., Clathrate inclusiom compounds of bis (isothiocyanato)tetrakis(4-methylpyridine) nickel(II): II. Arrangement of guest molecules in the β-Ni (NCS)₂(4-methylpyrldine)₄ porous crystals. *J. Mol. Struct.* **1981**, *75* (1), 101-112.
- Bond, D. R.; Jackson, G. E.; Nassimbeni, L. R., Studies in Werner clathrates: part 1: structures of bis (isothiocyanato) bis (4-methylpyridine) bis-(4-phenylpyridine) nickel (II). methyl cellosolve and bis (isothiocyanato) tetra (4-methylpyridine)-nickel(II). p-cymene. *South African Journal of Chemistry* 1983, 36 (1), 19-26.
- Lipkowski, J., Crystal structures of the clathrate inclusion compounds formed by the host bis (isothiocyanato) tetrakis (4-methylpyridine) iron (II) with benzene, m-xylene and p-xylene as guests. J. Incl. Phenom. Mol. Recognit. Chem. 1990, 8 (4), 439-448.
- Manakov, A. Y.; Lipkowski, J.; Suwinska, K.; Kitamura, M., New crystal structures of β-[Ni(NCS)₂(4-methylpyridine)₄] clathrates with furan, tetrahydrofuran, methylene chloride, benzene + ethanol and methylcellosolve as guest molecules. *J. Incl. Phenom. Mol. Recognit. Chem.* 1996, 26 (1), 1-20.
- Harris, J. D.; Eckles, W. E.; Hepp, A. F.; Duraj, S. A.; Fanwick, P. E.; Richardson, J.; Gordon, E. M., Room temperature dissolution of metal powders by thiourea: a novel route to transition metal isothiocyanate complexes. *Mater. Design* 2001, 22 (7), 625-634.
- Soldatov, D. V.; Enright, G. D.; Ripmeester, J. A., Polymorphism and Pseudopolymorphism of the [Ni(4-Methylpyridine)4(NCS)2] Werner Complex, the Compound that Led to the Concept of "Organic Zeolites". *Cryst. Growth Des.* 2004, 4 (6), 1185-1194.
- 10. Małecki, J. G.; Świtlicka, A.; Groń, T.; Bałanda, M., Correlation between crystal symmetry and the splitting of d orbital in the thiocyanate nickel(II) complexes. *Polyhedron* **2010**, *29* (17), 3198-3206.