Heliphyrin: An open porphryinoid with helical chirality.

Briana R. Schrage,[†] Sanjay Gaire,[†] Kirsty Mamattah,[†] Dustin E. Nevonen,[§] Victor N. Nemykin,[§] and Christopher J. Ziegler[†]

[†] Department of Chemistry, University of Akron, Akron, Ohio 44312-3601, United States [§] Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States

Supplementary Information

	Page
General Information	S4-5
Full Citation for Gaussian	S6
Syntheses	S7-8
Figure S1: ¹ H NMR (300 MHz) of 1 in d6-DMSO.	S9
Figure S2: ${}^{13}C{}^{1}H$ NMR (125 MHz) of 1 in d6-DMSO.	S10
Figure S2: ¹ H NMR (125 MHz) of Ni(Hlp) in d6-DMSO.	S11
Figure S3: High-resolution ESI mass spectra of 1.	S12
Figure S4: High-resolution ESI mass spectra of Co(Hlp)(DMF).	S13
Figure S5: High-resolution ESI mass spectra of Ni(Hlp).	S14
Figure S6: High-resolution ESI mass spectra of Cu(Hlp).	S15
Figure S7: UV-visible spectrum for 1 in DMF solution.	S16
Figure S8: Cyclic voltammograms for Co(Hlp)(DMF) recorded in the DMF/0.1 TBAPF ₆ system at room temperature.	S17
Figure S9: Cyclic voltammograms for Ni(Hlp) recorded in the DMF/0.1 TBAPF ₆ system at room temperature.	S18
Figure S10: Cyclic voltammograms for Cu(Hlp) recorded in the DMF/0.1 TBAPF ₆ system at room temperature.	S19
Figure S11: DFT-predicted frontier orbitals for 1 and M(Hlp) complexes.	S20
Figure S12: Relative energies of the frontier orbitals for 1 and M(Hlp) complexes (α-spin).	S21
Figure S13: Relative energies of the frontier orbitals for 1 and M(Hlp) complexes (β-spin).	S21
Figure S14: Relative energies of the frontier orbitals for 1 and M(Hlp) with and without tartaric acid.	S22
Figure S15: Experimental and calculated spectra of Co(Hlp) in the presence of one equivalent (right) and three equivalents (left) of D and L tartaric acid.	S23
Table S1: X-ray crystal data and structure parametersfor compounds 1 and M(Hlp) complexes.	S24
Table S2 : B3LYP TDDFT-predicted energies and expansion coefficients for compound 1 (only excited states with $f > 0.05$ and $\lambda > 270$ nm are listed).	S25
Table S3: B3LYP TDDFT-predicted energies and expansion coefficients for compound Co(Hlp)(DMF) (only excited states with $f > 0.05$ and $\lambda > 270$ nm	S26

are listed).

Table S4: B3LYP TDDFT-predicted energies and expansion coefficients for	S30
compound Ni(Hlp) (only excited states with $f > 0.05$ and $\lambda > 270$ nm are liste	ed).

Table S5: B3LYP TDDFT-predicted energies and expansion coefficients for compound Cu(Hlp) (only excited states with $f > 0.05$ and $\lambda > 270$ nm a	S32 are listed).
Table S6: B3LYP DFT optimized geometry of compound 1.	S36
Table S7: B3LYP DFT optimized geometry of compound Co(Hlp)(DMF).	S37
Table S8: B3LYP DFT optimized geometry of compound Ni(Hlp).	S39
Table S9: B3LYP DFT optimized geometry of compound Cu(Hlp).	S41
Table S10: Major TDDFT-predicted excited state contributions for Ni,Cu, Co_3TA, Co_1TA_OptFreqPlus, and Co_1TA_TD70 usingthe B3LYP exchange correlation functional.	S43

General Information

Experimental

All reagents and starting materials were purchased from commercial vendors and used without further purification. 1,3-diiminoisoindoline (DII) was synthesized according to previously published procedures.¹ Deuterated solvents were purchased from Cambridge Isotope Laboratories and used as received.

NMR spectra were recorded on 300 MHz and 500 MHz spectrometers and chemical shifts were given in ppm relative to residual solvent resonances (¹H NMR and ¹³C NMR spectra). High-resolution mass spectrometry experiments were performed on a Bruker MicroTOF-III and MicroTOF-qIII instruments. Infrared spectra were collected on Thermo Scientific Nicolet iS5 that was equipped with an iD5 ATR. UV-visible spectra were recorded on a Shimadzu UV-2600 UV-visible spectrometer.

X-ray intensity data were measured on a Bruker PHOTON II CPAD-based diffractometer with dual Cu/Mo ImuS microfocus optics (Cu K α radiation, $\lambda = 1.54178$ Å, Mo K α radiation, λ =0.71073 Å). Crystals were mounted on a cryoloop using Paratone oil and placed under a steam of nitrogen at 100 K (Oxford Cryosystems). The detector was placed at a distance of 5.00 cm from the crystal. The data were corrected for absorption with the SADABS program. The structures were refined using the Bruker SHELXTL Software Package (Version 6.1),² and were solved using direct methods until the final anisotropic full-matrix, least squares refinement of F² converged.

Electrochemistry measurements were conducted using a CHI 820D potentiostat in a standard three-electrode configuration. Platinum wire was used as the counter electrode. The working electrode used was a 2 mm diameter platinum disk. A nonaqueous Ag/Ag^+ reference electrode was used by immersing silver wire in a degassed DMF solution of 0.01 M AgNO₃ /0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆). All potentials were referenced to the

ferrocene/ferrocenium couple. The concentration of analyte was 1.0 mM, and the supporting electrolyte was 0.1 M TBAPF₆ dissolved in DMF.

Separation of Enantiomers

Enantiomeric separations of the three heliphyrin complexes were carried out by HPLC purification performed on a GE Äkta Purifier equipped with a UV900 detector and a 5 μ m CHIRALPAK IE (Daicel) column. The solvent system used was 80%/20%/0.1% EtOH/hexane/DMF v/v/v. The detector was set to measure absorption at 254 nm.

Computational Details

The starting geometries of compounds **1** and **M(Hlp)s** were optimized using a B3LYP exchange–correlation functional.³ Energy minima in optimized geometry were confirmed by the frequency calculations (absence of the imaginary frequencies). The solvent effect was modeled using the polarized continuum model (PCM).⁴ In all calculations, DMF was used as the solvent. In PCM-TDDFT calculation, the first 100 states were calculated. The Co, Ni, and Cu atoms were modeled using the 6-311+G basis set.⁵ All other atoms were modeled using the 6-311G(d)⁶ basis set. Gaussian 09 software was used in all calculations.⁷ The QMForge program was used for molecular orbital analysis in all cases.⁸

Full citation for Gaussian

Gaussian 09, Revision D.01,. Frisch, M. J; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.;. Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.;. Cioslowski, J.; Stefanov, B. B.; Liu, G.;. Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2009.

Syntheses.

DII (1.00 g, 6.9 mmol) and (2-benzimidazolyl)acetonitrile (1.08 g, 6.9 mmol) were dissolved in EtOH (10 mL) and refluxed for 1 hour. The resulting solution was cooled down to room temperature, filtered, and washed with cold EtOH to give orange powder. Crystals suitable for X-ray diffraction were grown from slow evaporation from DMF.

I: Yield: 1.94 g (98%). IR: 3546, 3378, 3011 cm⁻¹ (v_{NH}), 2210 cm⁻¹ (v_{CN}). ¹H NMR (300 MHz, CDCl₃): $\delta = 12.71$ (s, 1H, N*H*), 9.35 (s, 1H, N*H*), 9.14 (s, 1H, N*H*), 8.37 (d, 1H, J = 7.58 Hz), 8.09 (d, 1H, J = 7.25 Hz), 7.75 (t, 1H, J = 7.58 Hz), 7.70-7.65 (m, 2H), 7.55 (d, 1H, J = 6.92 Hz), 7.22 (m, 2H). ¹³C{¹H} NMR (125 MHz, d₆ - DMSO): $\delta = 168.6$, 161.8, 149.0, 144.8, 143.2, 138.3, 133.9, 133.2, 131.8, 130.5, 123.2, 122.4, 121.9, 118.8, 117.6, 111.3, 84.4. HRMS (ESI-TOF, negative mode) m/z: calcd for C₁₇H₁₀N₅ 284.0942, found 284.0927 [M-H]⁻.

Synthesis of Metal complexes. A solution of $M(OAc)_2$ hydrate (M = Co, Ni, Cu) (0.35 mmol), and two equivalents of 1 (0.20 g, 0.70 mmol) in MeOH (7.00 mL) were refluxed in an oil bath for 1 hour. The resultant precipitate was filtered and washed with hot MeOH. The compounds were isolated as dark blue solids. Crystals suitable for X-ray diffraction were grown by slow evaporation of DMF. The copper complex had one equivalent of disordered DMF in the unit cell that was removed by use of the SQUEEZE program.⁹

Co(Hlp)(DMF): Yield: 0.16 g (67%). IR: 3055, 2916 cm⁻¹ (v_{NH}), 2214 cm⁻¹ (v_{CN}). HRMS (ESI TOF, negative mode) m/z: calcd for C₃₄H₁₆CoN₉ 609.0866, found 609.0831 [M-H]⁻.

Ni(Hlp): Yield: 0.18 g (84%). IR: 3059 cm⁻¹ (v_{NH}), 2219 cm⁻¹ (v_{CN}). ¹H NMR (300 MHz, DMSO): 9.24 (s, 2H), 8.90(s, 1H, N*H*), 8.05 (d, 1H), 7.74 (t, 2H), 7.58 (d, 1H), 6.68 (s, 8H). HRMS (ESI-TOF, negative mode) m/z: calcd for C₃₄H₁₆N₉Ni 608.0888 found 608.0908 [M-H]⁻.

Cu(Hlp): Yield: 0.14 g (65%). IR: 3077, 2919 cm⁻¹ (v_{NH}), 2213 cm⁻¹ (v_{CN}). HRMS (ESI-TOF, negative mode) m/z: calcd for C₃₄H₁₆CuN₉ 613.0825, found 613.0798 [M-H]⁻.

Figure S1: ¹H NMR (300 MHz) of 1 in d6-DMSO.

Figure S2: ${}^{13}C{}^{1}H$ NMR (125 MHz) of 1 in d6-DMSO.

Figure S3: ¹H NMR (125 MHz) of Ni(Hlp) in d6-DMSO.

Figure S4: High-resolution ESI mass spectra of 1. Top: calculated spectrum. Bottom: experimental spectrum.

Figure S5: High-resolution ESI mass spectra of Co(Hlp)(DMF). Top: calculated spectrum. Bottom: experimental spectrum.

Figure S6: High-resolution ESI mass spectra of Ni(Hlp). Top: calculated spectrum. Bottom: experimental spectrum.

Figure S7: High-resolution ESI mass spectra of Cu(Hlp). Top: calculated spectrum. Bottom: experimental spectrum.

Figure S8: UV-visible spectrum for compound 1 in DMF.

Compound	Potentials V
Co(Hlp)(DMF)(red)	-0.17, -0.83, -1.08, -1.42, -1.84
Co(Hlp)(DMF)(ox)	0.75, -0.066, -0.96, -1.74

Figure S9: Cyclic voltammograms for **Co(Hlp)(DMF)** recorded in the DMF/0.1 TBAPF₆ system at room temperature. Redox potentials (V) vs Fc/Fc⁺ are displayed in the table.

Compound	Potentials V
Ni(Hlp)(red)	-1.18, -1.64
Ni(Hlp)(ox)	0.61, -1.00

Figure S10: Cyclic voltammograms for **Ni(Hlp)** recorded in the DMF/0.1 TBAPF₆ system at room temperature. Redox potentials (V) vs Fc/Fc⁺ are displayed in the table.

Compound	i otentiais v
Cu(Hlp)(red)	-0.72, -1.00, -1.18, -1.60, -1.72
Cu(Hlp)(ox)	0.65, -1.10, -1.66

Figure S11: Cyclic voltammograms for **Cu(Hlp)** recorded in the DMF/0.1 TBAPF₆ system at room temperature. Redox potentials (V) vs Fc/Fc⁺ are displayed in the table.

Figure S12: DFT-predicted frontier orbitals for 1 and M(Hlp) complexes.

Figure S13: Relative energies of the frontier orbitals for 1 and M(Hlp) complexes (α -spin).

Figure S14: Relative energies of the frontier orbitals for 1 and M(Hlp) complexes (β -spin).

Figure S15: Relative energies of the frontier orbitals for 1 and M(Hlp) with and without tartaric acid.

Figure S16: Experimental and calculated spectra of Co(Hlp) in the presence of one equivalent (right) and three equivalents (left) of D and L tartaric acid.

Compound	1	Co(Hlp)(DMF)	Ni(Hlp)	Cu(Hlp)
CCDC				
Empirical	C37H29N11O	C37H24CoN10O	C37H24N10NiO	C34H17CuN9
formula				
Formula weight	643.71	683.59	683.37	615.10
Crystal system	Monoclinic	Triclinic	Monoclinic	Monoclinic
Space group	Pn	P-1	$P2_1/n$	C2/c
a/ Å	6.029(4)	9.544(8)	9.2915(12)	10.247(13)
b/ Å	15.799(11)	12.116(10)	32.458(4)	33.06(5)
c/ Å	16.468(11)	14.974(14)	10.0812(12)	9.773(12)
$\alpha(^{\circ})$	90	93.98(6)	90	90
β(°)	91.653(14)	99.20(8)	100.874(5)	104.16(6)
γ(°)	90	104.84(3)	90	90
Volume (Å ³)	1568.0(19)	1641(3)	2985.7(6)	3210(7)
Z	2	2	4	4
$Dc (Mg/m^3)$	1.363	1.383	1.520	1.273
μ (mm ⁻¹)	0.088	0.570	0.702	0.718
F(000)	672	702	1408	1252
reflns collected	35261	55759	65544	26202
indep. reflns	7788	5922	5245	2899
GOF on F ²	1.068	1.073	1.035	1.044
R1 (on F_0^2 , I >	0.0488	0.0696	0.0616	0.0712
2σ(I))				
wR2 (on F_0^2 , I >	0.1421	0.1468	0.1278	0.1717
2σ(I))				
R1 (all data)	0.0630	0.0985	0.1033	0.1034
wR2 (all data)	0.1502	0.1592	0.1447	0.1860

Table S1: X-ray crystal data and structure parameters for compounds 1 and M(Hlp) complexes.

1 able 52. D31	LIF IDDFI-p	redicted energies and expansion coefficients for compound T
excited states	with $f > 0.05$ ar	nd $\lambda > 270$ nm are listed).
Excited State	1: Singlet-A	A 2.6712 eV 464.15 nm f=1.0116 <s**2>=0.000</s**2>
74 -> 75	0.70474	
Excited State	4: Singlet-	A 4.0381 eV 307.04 nm f=0.1384 <s**2>=0.000</s**2>
70 -> 75	-0.25252	
71 -> 75	0.61284	
72 -> 75	-0.18974	
Excited State	6: Singlet-A	A 4.2823 eV 289.53 nm f=0.2697 <s**2>=0.000</s**2>
70 -> 75	0.55479	
71 -> 75	0.23869	
72 -> 75	-0.10676	
74 -> 76	0.30876	

Table S2: B3LYP TDDFT-predicted energies and expansion coefficients for compound 1 (only

Co(Hlp)(DMF) (only excited	states with	f > 0.05 and	$\lambda > 270 r$	nm are listed).
Excited State 8:	2.194-A	1.7000 eV	729.30 nm	f=0.2288	<s**2>=0.953</s**2>
174A ->177A	-0.17222				
175A ->177A	-0.33733				
176A ->177A	0.64404				
172B ->176B	0.13197				
174B ->176B	0.13009				
175B ->176B	0.61504				
Excited State 9:	2.220-A	1.8012 eV	688.33 nm	f=0.0879	<s**2>=0.982</s**2>
175A ->177A	0.80712				
176A ->177A	0.23508				
172B ->176B	-0.12427				
174B ->176B	0.43928				
175B ->176B	0.18336				
Excited State 14:	2.658-A	2.2586 eV	548.95 nm	f=0.1332	<s**2>=1.517</s**2>
171A ->177A	-0.11167				
171A ->179A	-0.10409				
172A ->177A	-0.11469				
174A ->177A	0.39380				
171B ->176B	0.52219				
172B ->176B	-0.19589				
173B ->176B	0.55545				
174B ->177B	0.14854				
175B ->177B	0.10912				
Excited State 16:	2.660-A	2.3173 eV	535.04 nm	f=0.1716	<s**2>=1.519</s**2>
160A ->179A	-0.10573				
163A ->179A	-0.15844				
170A ->177A	0.11886				
171A ->177A	0.10650				
172A ->177A	0.31153				
172A ->179A	0.11886				
174A ->177A	0.46491				
174A ->179A	0.10123				
175A ->179A	0.14481				
176A ->178A	0.27563				
168B ->182B	0.13293				
169B ->182B	-0.12561				
171B ->176B	-0.40394				
173B ->176B	0.27263				
174B ->177B	-0.10500				
174B ->182B	0.18920				
175B ->177B	-0.13315				
Excited State 26:	2.706-A	2.8334 eV	437.59 nm	f=0.4269	<s**2>=1.581</s**2>
167A ->177A	0.12361				
168A ->177A	0.36809				

Table S3: B3LYP TDDFT-p	predicted energies and expansion coefficients for compound
Co(Hlp)(DMF) (only excite	ed states with $f > 0.05$ and $\lambda > 270$ nm are listed).
Excited State 8: 2.194-A	1.7000 eV 729.30 nm f=0.2288 <s**2>=0.953</s**2>
1744 > 1774 = 0.1702	

169A ->177A	0.12688			
176A ->178A	0.42458			
167B ->176B	-0.36401			
173B ->177B	0.13333			
174B ->177B	0.23291			
175B ->177B	0.56768			
Excited State 27:	2.885-A	2.8388 eV	436.75 nm	f=0.3779 <s**2>=1.830</s**2>
168A ->177A	-0.40696			
168A ->178A	0.10612			
169A ->177A	-0.15430			
170A ->177A	-0.17014			
172A ->177A	0.13482			
175A ->178A	-0.13813			
176A ->178A	0.52922			
167B ->176B	0.44310			
168B ->176B	0.10550			
170B ->176B	-0.14133			
173B ->177B	-0.10649			
174B ->177B	0.11738			
175B ->177B	0.29171			
Excited State 37:	2.503-A	3.2642 eV	379.83 nm	f=0.1907 <s**2>=1.317</s**2>
162A ->177A	-0.12341			
163A ->177A	0.24806			
164A ->177A	-0.11639			
166A ->177A	-0.44683			
167A ->177A	0.13326			
168A ->177A	0.43942			
165B ->176B	0.33908			
167B ->176B	0.48874			
168B ->176B	-0.22180			
172B ->177B	-0.11037			
Excited State 38:	2.458-A	3.2833 eV	377.62 nm	f=0.1750 <s**2>=1.261</s**2>
163A ->177A	-0.19060			
165A ->177A	0.14942			
166A ->177A	0.57544			
167A ->177A	0.19208			
168A ->177A	0.34775			
174A ->178A	0.15770			
164B ->176B	-0.21698			
165B ->176B	-0.14622			
166B ->176B	0.23291			
167B ->176B	0.36577			
173B ->177B	0.26231	0.0510	a (a) 	
Excited State 41:	2.227-A	3.3548 eV	369.57 nm	t=0.2903 <s**2>=0.990</s**2>
163A ->177A	0.19736			
167A ->177A	-0.33982			

169A ->177A	-0.10545				
174A ->178A	0.49214				
176A ->179A	-0.13906				
162B ->176B	0.13338				
163B ->176B	-0.13933				
166B ->176B	-0.40410				
171B ->177B	0.10841				
172B ->177B	-0.13141				
173B ->177B	0.51985				
Excited State 42:	2.109-A	3.3878 eV	365.97 nm	f=0.0591	<s**2>=0.862</s**2>
163A ->177A	0.12885				
164A ->177A	-0.11106				
166A ->177A	-0.12770				
167A ->177A	0.51117				
168A ->177A	-0.29799				
173A ->178A	0.10002				
174A ->178A	0.29162				
166B ->176B	0.50657				
167B ->176B	-0.27215				
169B ->176B	-0.10016				
172B ->177B	-0.11187				
173B ->177B	0.29848				
Excited State 63:	2.953-A	3.9103 eV	317.07 nm	f=0.0558	<s**2>=1.930</s**2>
159A ->177A	0.16866				
171A ->178A	0.11551				
172A ->178A	-0.12477				
174A ->182A	0.13516				
176A ->183A	0.11840				
158B ->176B	-0.20159				
168B ->177B	-0.29644				
169B ->177B	0.45327				
170B ->177B	0.50137				
171B ->177B	-0.19939				
173B ->181B	-0.13810				
174B ->178B	0.13273				
175B ->179B	-0.13533				
175B ->183B	-0.13436				
Excited State 83:	2.332-A	4.2591 eV	291.11 nm	f=0.0561	<s**2>=1.110</s**2>
159A ->177A	0.10893				
176A ->182A	0.58260				
166B ->177B	0.12760				
167B ->177B	-0.15352				
168B ->177B	0.22248				
172B ->179B	-0.10376				
174B ->181B	-0.18835				
175B ->181B	0.60351				

175B ->182B	-0.12109				
Excited State 87:	2.283-A	4.3341 eV	286.06 nm	f=0.0745	<s**2>=1.053</s**2>
159A ->177A	-0.25182				
166A ->178A	-0.10592				
167A ->178A	-0.11184				
168A ->178A	0.56602				
174A ->180A	-0.16208				
158B ->176B	-0.24606				
166B ->177B	-0.12279				
167B ->177B	0.52553				
168B ->177B	-0.15095				
174B ->181B	-0.11157				
175B ->181B	0.19284				
Excited State 94:	2.608-A	4.4335 eV	279.66 nm	f=0.0575	<s**2>=1.451</s**2>
158A ->177A	-0.17374				
159A ->177A	0.17184				
163A ->178A	-0.24027				
167A ->178A	0.21127				
169A ->178A	0.13100				
170A ->180A	0.10263				
171A ->180A	0.10954				
173A ->180A	0.10780				
174A ->180A	-0.28911				
175A ->182A	-0.15806				
158B ->176B	0.14938				
164B ->177B	0.13831				
165B ->177B	0.10082				
167B ->177B	0.13371				
171B ->178B	-0.14217				
172B ->178B	0.29949				
172B ->179B	-0.27634				
172B ->180B	0.11526				
173B ->178B	-0.13535				
173B ->179B	0.37912				
174B ->181B	-0.11565				

(only excited s	states with $f > 0.05$	and $\lambda > 270$ nm are listed).
Excited State	1: Singlet-A	1.7313 eV 716.13 nm f=0.2744 <s**2>=0.000</s**2>
156 ->157	0.69899	
Excited State	6: Singlet-A	2.3380 eV 530.30 nm f=0.4833 <s**2>=0.000</s**2>
154 ->157	0.69191	
Excited State	10: Singlet-A	2.7492 eV 450.98 nm f=0.1787 <s**2>=0.000</s**2>
140 ->159	-0.17564	
142 ->159	0.10677	
153 ->159	0.10900	
156 ->158	0.47398	
156 ->159	0.39551	
Excited State	12: Singlet-A	2.8937 eV 428.47 nm f=0.5544 <s**2>=0.000</s**2>
151 ->157	-0.14449	
156 ->158	-0.47032	
156 ->159	0.47109	
Excited State	15: Singlet-A	3.2283 eV 384.05 nm f=0.2304 <s**2>=0.000</s**2>
148 ->157	0.23771	
149 ->157	0.46631	
154 ->158	0.28652	
154 ->159	0.25082	
155 ->159	-0.21182	
Excited State	16: Singlet-A	3.2488 eV 381.63 nm f=0.3716 <s**2>=0.000</s**2>
148 ->157	0.27287	
149 ->157	0.34663	
154 ->158	-0.25597	
154 ->159	-0.32149	
155 ->159	0.28752	
Excited State	19: Singlet-A	3.4308 eV 361.38 nm f=0.2873 <s**2>=0.000</s**2>
147 ->157	-0.14458	
150 ->159	0.11390	
151 ->159	-0.11264	
154 ->158	0.54875	
154 ->159	-0.18777	
155 ->159	0.23830	
Excited State	22: Singlet-A	3.5808 eV 346.25 nm f= $0.0682 < S^{**2} > = 0.000$
143 ->157	-0.17739	
145 ->157	0.35465	
146 ->157	-0.35288	
147 ->157	0.41542	
154 ->158	0.13679	
154 ->159	-0.10118	
Excited State	27: Singlet-A	3.8985 eV 318.03 nm f=0.1182 <s**2>=0.000</s**2>
156 ->160	0.68213	
Excited State	36: Singlet-A	4.3465 eV 285.25 nm f=0.0737 <s**2>=0.000</s**2>

Table S4: B3LYP TDDFT-predicted energies and expansion coefficients for compound Ni(Hlp) (only excited states with f > 0.05 and $\lambda > 270$ nm are listed).

141 ->157	-0.19383	
144 ->159	0.12165	
145 ->159	0.11674	
148 ->158	-0.15397	
149 ->158	0.31245	
149 ->159	-0.20725	
150 ->159	-0.10133	
151 ->159	-0.10990	
156 ->162	0.44807	
Excited State	37: Singlet-A	4.3831 eV 282.87 nm f=0.1011 <s**2>=0.000</s**2>
140 ->157	0.18691	
141 ->157	0.32677	
142 ->157	0.14183	
143 ->157	-0.11790	
145 ->159	0.14377	
148 ->158	0.27107	
149 ->158	0.29691	
154 ->160	-0.20511	
156 ->161	-0.10005	
Excited State	43: Singlet-A	4.5534 eV 272.29 nm f=0.0716 <s**2>=0.000</s**2>
140 ->157	0.30282	
141 ->157	-0.12669	
144 ->159	0.15326	
147 ->158	-0.10492	
149 ->159	0.24757	
155 ->162	0.46583	

Cu(HIP) (c	only exc	ented states v	vith $I > 0.05$	and $\lambda > 2/$	0 nm are li	sted).
Excited Sta	ate 2:	2.020-A	1.6990 eV	729.73 nm	f=0.0536	<s**2>=0.770</s**2>
157A ->	158A	0.30404				
121B ->	158B	0.11636				
135B ->	158B	0.18844				
141B ->	158B	-0.13058				
143B ->	158B	0.12191				
145B ->	158B	-0.16166				
150B ->	158B	0.15470				
151B ->	158B	0.11593				
154B ->	158B	-0.22729				
155B ->	158B	-0.45105				
156B ->	157B	0.32920				
156B ->	158B	0.59313				
Excited Sta	ate 3:	2.010-A	1.7153 eV	722.80 nm	f=0.2565	<s**2>=0.760</s**2>
157A ->	158A	0.63263				
155B ->	158B	0.14722				
156B ->	157B	0.61550				
156B ->	158B	-0.36654				
Excited Sta	te 10:	2.007-A	2.3282 eV	532.52 nm	f=0.5117	<s**2>=0.757</s**2>
155A ->	158A	0.66213				
141B ->	158B	0.17280				
142B ->	158B	0.16104				
154B ->	157B	0.66254				
154B ->	158B	0.12312				
Excited Sta	te 11:	2.036-A	2.3619 eV	524.94 nm	f=0.0583	<s**2>=0.786</s**2>
155A ->	158A	-0.20336				
141B ->	158B	0.38260				
142B ->	158B	0.30984				
152B ->	158B	-0.13982				
153B ->	158B	-0.10743				
154B ->	157B	-0.17559				
154B ->	158B	0.65699				
155B ->	158B	-0.36718				
156B ->	158B	0.11721				
Excited Sta	ate 21:	2.006-A	2.8738 eV	431.43 nm	f=0.8339	<s**2>=0.756</s**2>
157A ->	159A	0.68693				
156B ->	159B	0.69214				
Excited Sta	te 26:	2.666-A	3.0807 eV	402.46 nm	f=0.0533	<s**2>=1.527</s**2>
148A ->	158A	0.25847				
149A ->	158A	-0.24058				
150A ->	158A	0.35311				
152A ->	158A	0.23244				
155A ->	159A	-0.26147				
147B ->	157B	0.11609				

Table S5: B3LYP TDDFT-predicted energies and expansion coefficients for compound**Cu(Hlp)** (only excited states with f > 0.05 and $\lambda > 270$ nm are listed).Excited State2: 2.020-A1.6990 eV729.73 nmf=0.0536<S**2>=0.770

148B ->157B	-0.13886		
150B ->157B	0.44397		
151B ->157B	0.34313		
152B ->157B	0.26415		
154B ->157B	0.11044		
154B ->159B	0.32342		
Excited State 30:	2.047-A	3.2068 eV 386.63 nm f=0).5147 <s**2>=0.797</s**2>
149A ->158A	0.36847		
150A ->158A	-0.16312		
151A ->158A	0.46121		
152A ->158A	0.26985		
149B ->157B	-0.36207		
150B ->157B	-0.39482		
151B ->157B	0.39652		
152B ->157B	0.21929		
154B ->159B	0.11912		
Excited State 32:	2.247-A	3.2896 eV 376.89 nm f=0	.0503 <s**2>=1.012</s**2>
147A ->158A	0.21085		
149A ->158A	-0.46076		
150A ->158A	-0.35294		
151A ->158A	0.14999		
152A ->158A	0.21063		
147B ->157B	-0.20885		
148B ->157B	-0.19976		
149B ->157B	0.56387		
150B ->157B	-0.25766		
151B ->157B	0.13511		
152B ->157B	0.16247		
Excited State 35:	2.679-A	3.4403 eV 360.38 nm f=0	.0919 <s**2>=1.544</s**2>
146A ->158A	-0.34066		
148A ->158A	-0.11672		
155A ->159A	0.32008		
143B ->158B	0.14413		
145B ->157B	0.12176		
146B ->157B	0.46245		
147B ->158B	-0.12103		
151B ->158B	-0.39710		
152B ->158B	0.14064		
154B ->159B	0.45561		
Excited State 36:	2.956-A	3.4450 eV 359.90 nm f=0	.0961 <s**2>=1.935</s**2>
146A ->158A	0.53937		
148A ->158A	-0.11340		
155A ->159A	0.43193		
145B ->157B	-0.12346		
146B ->157B	-0.46206		
148B ->157B	-0.11950		

1010 1000	-0.21321				
154B ->159B	0.31462				
Excited State 37:	2.065-A	3.4558 eV	358.77 nm	f=0.1561 <s**2>=</s**2>	0.816
148A ->158A	-0.21066				
155A ->159A	0.34685				
143B ->158B	-0.18218				
145B ->158B	0.15098				
146B ->157B	0.15602				
146B ->158B	-0.11181				
147B ->157B	0.14146				
147B ->158B	0.16456				
148B ->157B	-0.17564				
151B ->158B	0.64412				
152B ->158B	-0.20324				
154B ->159B	0.33435				
Excited State 38:	2.014-A	3.5478 eV	349.47 nm	f=0.1220 <s**2>=</s**2>	0.764
146A ->158A	-0.12457				
148A ->158A	0.60854				
155A ->159A	0.24825				
146B ->157B	-0.12527				
147B ->157B	-0.46596				
148B ->157B	0.41151				
150B ->158B	-0.11939				
151B ->158B	0.12732				
154B ->159B	0.25458				
154B ->159B Excited State 52:	0.25458 2.094-A	3.9233 eV 3	316.02 nm	f=0.1279 <s**2>=0</s**2>	.846
154B ->159B Excited State 52: 157A ->160A	0.25458 2.094-A 0.60793	3.9233 eV 3	316.02 nm	f=0.1279 <s**2>=0</s**2>	.846
154B ->159B Excited State 52: 157A ->160A 157A ->161A	0.25458 2.094-A 0.60793 -0.10977	3.9233 eV 3	316.02 nm	f=0.1279 <s**2>=0</s**2>	0.846
154B ->159B Excited State 52: 157A ->160A 157A ->161A 153B ->159B	0.25458 2.094-A 0.60793 -0.10977 0.11787	3.9233 eV 3	316.02 nm	f=0.1279 <s**2>=0</s**2>	0.846
154B ->159B Excited State 52: 157A ->160A 157A ->161A 153B ->159B 156B ->160B	0.25458 2.094-A 0.60793 -0.10977 0.11787 0.70227	3.9233 eV 3	316.02 nm	f=0.1279 <s**2>=0</s**2>	0.846
154B ->159B Excited State 52: 157A ->160A 157A ->161A 153B ->159B 156B ->160B 156B ->161B	0.25458 2.094-A 0.60793 -0.10977 0.11787 0.70227 -0.12767	3.9233 eV 3	316.02 nm	f=0.1279 <s**2>=0</s**2>	0.846
154B ->159B Excited State 52: 157A ->160A 157A ->161A 153B ->159B 156B ->160B 156B ->161B Excited State 66:	0.25458 2.094-A 0.60793 -0.10977 0.11787 0.70227 -0.12767 2.035-A	3.9233 eV 3 4.2615 eV	316.02 nm	f=0.1279 <s**2>=0</s**2>	0.846
154B ->159B Excited State 52: 157A ->160A 157A ->161A 153B ->159B 156B ->160B 156B ->161B Excited State 66: 144A ->158A	0.25458 2.094-A 0.60793 -0.10977 0.11787 0.70227 -0.12767 2.035-A 0.50810	3.9233 eV 3 4.2615 eV	316.02 nm 290.94 nm	f=0.1279 <s**2>=0</s**2>	0.846 0.785
154B ->159B Excited State 52: 157A ->160A 157A ->161A 153B ->159B 156B ->160B 156B ->161B Excited State 66: 144A ->158A 146A ->158A	0.25458 2.094-A 0.60793 -0.10977 0.11787 0.70227 -0.12767 2.035-A 0.50810 -0.14282	3.9233 eV 3 4.2615 eV	316.02 nm 290.94 nm	f=0.1279 <s**2>=0</s**2>	0.846 0.785
154B ->159B Excited State 52: 157A ->160A 157A ->161A 153B ->159B 156B ->160B 156B ->161B Excited State 66: 144A ->158A 146A ->158A 149A ->159A	0.25458 2.094-A 0.60793 -0.10977 0.11787 0.70227 -0.12767 2.035-A 0.50810 -0.14282 -0.11761	3.9233 eV 3 4.2615 eV	316.02 nm	f=0.1279 <s**2>=0</s**2>	0.846 0.785
154B ->159B Excited State 52: 157A ->160A 157A ->161A 153B ->159B 156B ->160B 156B ->161B Excited State 66: 144A ->158A 146A ->158A 149A ->159A 150A ->159A	0.25458 2.094-A 0.60793 -0.10977 0.11787 0.70227 -0.12767 2.035-A 0.50810 -0.14282 -0.11761 0.11448	3.9233 eV 3 4.2615 eV	316.02 nm	f=0.1279 <s**2>=0</s**2>	0.846 0.785
154B ->159B Excited State 52: 157A ->160A 157A ->161A 153B ->159B 156B ->160B 156B ->161B Excited State 66: 144A ->158A 146A ->158A 149A ->159A 150A ->159A 151A ->159A	0.25458 2.094-A 0.60793 -0.10977 0.11787 0.70227 -0.12767 2.035-A 0.50810 -0.14282 -0.11761 0.11448 0.37529	3.9233 eV 3 4.2615 eV	316.02 nm	f=0.1279 <s**2>=0 f=0.0557 <s**2>=0</s**2></s**2>	0.846 0.785
154B ->159B Excited State 52: 157A ->160A 157A ->161A 153B ->159B 156B ->160B 156B ->161B Excited State 66: 144A ->158A 146A ->158A 149A ->159A 150A ->159A 151A ->159A 144B ->157B	0.25458 2.094-A 0.60793 -0.10977 0.11787 0.70227 -0.12767 2.035-A 0.50810 -0.14282 -0.11761 0.11448 0.37529 0.51935	3.9233 eV 3 4.2615 eV	316.02 nm	f=0.1279 <s**2>=0</s**2>	0.846
154B ->159B Excited State 52: 157A ->160A 157A ->161A 153B ->159B 156B ->160B 156B ->161B Excited State 66: 144A ->158A 146A ->158A 149A ->159A 150A ->159A 151A ->159A 144B ->157B 145B ->158B	0.25458 2.094-A 0.60793 -0.10977 0.11787 0.70227 -0.12767 2.035-A 0.50810 -0.14282 -0.11761 0.11448 0.37529 0.51935 -0.17159	3.9233 eV 3 4.2615 eV	316.02 nm	f=0.1279 <s**2>=0</s**2>	0.785
154B ->159B Excited State 52: 157A ->160A 157A ->161A 153B ->159B 156B ->160B 156B ->161B Excited State 66: 144A ->158A 146A ->158A 149A ->159A 150A ->159A 151A ->159A 144B ->157B 145B ->158B 146B ->157B	0.25458 2.094-A 0.60793 -0.10977 0.11787 0.70227 -0.12767 2.035-A 0.50810 -0.14282 -0.11761 0.11448 0.37529 0.51935 -0.17159 -0.11704	3.9233 eV 3 4.2615 eV	316.02 nm	f=0.1279 <s**2>=0</s**2>	0.846 0.785
154B ->159B Excited State 52: 157A ->160A 157A ->161A 153B ->159B 156B ->160B 156B ->161B Excited State 66: 144A ->158A 146A ->158A 149A ->159A 151A ->159A 151A ->159A 144B ->157B 145B ->158B 146B ->157B 151B ->159B	0.25458 2.094-A 0.60793 -0.10977 0.11787 0.70227 -0.12767 2.035-A 0.50810 -0.14282 -0.11761 0.11448 0.37529 0.51935 -0.17159 -0.11704 0.38763	3.9233 eV 3 4.2615 eV	316.02 nm	f=0.1279 <s**2>=0</s**2>	0.785
154B ->159B Excited State 52: 157A ->160A 157A ->161A 153B ->159B 156B ->160B 156B ->160B 156B ->161B Excited State 66: 144A ->158A 146A ->158A 149A ->159A 150A ->159A 151A ->159A 144B ->157B 145B ->158B 146B ->157B 151B ->159B Excited State 71:	0.25458 2.094-A 0.60793 -0.10977 0.11787 0.70227 -0.12767 2.035-A 0.50810 -0.14282 -0.11761 0.11448 0.37529 0.51935 -0.17159 -0.17159 -0.11704 0.38763 2.180-A	3.9233 eV 3 4.2615 eV 4.3684 eV 2	316.02 nm 290.94 nm 283.82 nm	f=0.1279 <s**2>=0 f=0.0557 <s**2>=0 f=0.0546 <s**2>=0</s**2></s**2></s**2>	0.785
154B ->159B Excited State 52: 157A ->160A 157A ->161A 153B ->159B 156B ->160B 156B ->161B Excited State 66: 144A ->158A 146A ->158A 149A ->159A 150A ->159A 151A ->159A 144B ->157B 145B ->158B 146B ->157B 151B ->159B Excited State 71: 144A ->158A	0.25458 2.094-A 0.60793 -0.10977 0.11787 0.70227 -0.12767 2.035-A 0.50810 -0.14282 -0.11761 0.11448 0.37529 0.51935 -0.17159 -0.11704 0.38763 2.180-A -0.26964	3.9233 eV 3 4.2615 eV 4.3684 eV 2	316.02 nm 290.94 nm 283.82 nm	f=0.1279 <s**2>=0 f=0.0557 <s**2>=0 f=0.0546 <s**2>=0</s**2></s**2></s**2>	0.846
154B ->159B Excited State 52: 157A ->160A 157A ->161A 153B ->159B 156B ->160B 156B ->161B Excited State 66: 144A ->158A 146A ->158A 149A ->159A 151A ->159A 151A ->159A 144B ->157B 145B ->158B 146B ->157B 151B ->159B Excited State 71: 144A ->158A 146A ->158A	0.25458 2.094-A 0.60793 -0.10977 0.11787 0.70227 -0.12767 2.035-A 0.50810 -0.14282 -0.11761 0.11448 0.37529 0.51935 -0.17159 -0.11704 0.38763 2.180-A -0.26964 0.10371	3.9233 eV 3 4.2615 eV 4.3684 eV 2	316.02 nm 290.94 nm 283.82 nm	$f=0.1279 < S^{**2} = 0$ $f=0.0557 < S^{**2} = 0$ $f=0.0546 < S^{**2} = 0$	0.785
154B ->159B Excited State 52: 157A ->160A 157A ->161A 153B ->159B 156B ->160B 156B ->160B 156B ->161B Excited State 66: 144A ->158A 146A ->158A 149A ->159A 151A ->159A 151A ->159A 144B ->157B 145B ->158B 146B ->157B 151B ->159B Excited State 71: 144A ->158A 146A ->158A 146A ->158A 146A ->158A	0.25458 2.094-A 0.60793 -0.10977 0.11787 0.70227 -0.12767 2.035-A 0.50810 -0.14282 -0.11761 0.11448 0.37529 0.51935 -0.17159 -0.17159 -0.11704 0.38763 2.180-A -0.26964 0.10371 -0.18072	3.9233 eV 3 4.2615 eV 4.3684 eV 2	316.02 nm 290.94 nm 283.82 nm	f=0.1279 <s**2>=0 f=0.0557 <s**2>=0 f=0.0546 <s**2>=0</s**2></s**2></s**2>	0.785

152A ->159A	0.17440				
157A ->162A	0.22393				
143B ->157B	-0.22552				
144B ->157B	-0.31144				
145B ->158B	0.10274				
149B ->159B	0.11828				
150B ->159B	-0.13718				
151B ->159B	0.42662				
152B ->159B	0.17006				
154B ->160B	0.13066				
156B ->162B	0.33541				
Excited State 72:	2.032-A	4.3744 eV	283.43 nm	f=0.2069	<s**2>=0.782</s**2>
Excited State 72: 149A ->159A	2.032-A -0.13332	4.3744 eV	283.43 nm	f=0.2069	<s**2>=0.782</s**2>
Excited State 72: 149A ->159A 150A ->159A	2.032-A -0.13332 0.34236	4.3744 eV	283.43 nm	f=0.2069	<\$**2>=0.782
Excited State 72: 149A ->159A 150A ->159A 151A ->159A	2.032-A -0.13332 0.34236 -0.23636	4.3744 eV	283.43 nm	f=0.2069	<s**2>=0.782</s**2>
Excited State 72: 149A ->159A 150A ->159A 151A ->159A 152A ->159A	2.032-A -0.13332 0.34236 -0.23636 -0.15875	4.3744 eV	283.43 nm	f=0.2069	<s**2>=0.782</s**2>
Excited State 72: 149A ->159A 150A ->159A 151A ->159A 152A ->159A 155A ->160A	2.032-A -0.13332 0.34236 -0.23636 -0.15875 -0.14402	4.3744 eV	283.43 nm	f=0.2069	<s**2>=0.782</s**2>
Excited State 72: 149A ->159A 150A ->159A 151A ->159A 152A ->159A 155A ->160A 157A ->162A	2.032-A -0.13332 0.34236 -0.23636 -0.15875 -0.14402 0.46007	4.3744 eV	283.43 nm	f=0.2069	<s**2>=0.782</s**2>
Excited State 72: 149A ->159A 150A ->159A 151A ->159A 152A ->159A 155A ->160A 157A ->162A 150B ->159B	2.032-A -0.13332 0.34236 -0.23636 -0.15875 -0.14402 0.46007 0.41346	4.3744 eV	283.43 nm	f=0.2069	<s**2>=0.782</s**2>
Excited State 72: 149A ->159A 150A ->159A 151A ->159A 152A ->159A 155A ->160A 157A ->162A 150B ->159B 151B ->159B	2.032-A -0.13332 0.34236 -0.23636 -0.15875 -0.14402 0.46007 0.41346 -0.16510	4.3744 eV	283.43 nm	f=0.2069	<s**2>=0.782</s**2>
Excited State 72: 149A ->159A 150A ->159A 151A ->159A 152A ->159A 155A ->160A 157A ->162A 150B ->159B 151B ->159B 152B ->159B	2.032-A -0.13332 0.34236 -0.23636 -0.15875 -0.14402 0.46007 0.41346 -0.16510 -0.10841	4.3744 eV	283.43 nm	f=0.2069	<s**2>=0.782</s**2>

Center	Aton	nic A	tomic	Coordinate	s (Angstroms)
Number	Nu	mber	Туре	X Y	Z
1	6	0	-2.134773	-1.884679	-0.000365
2	6	0	-3.239739	-0.911269	-0.000186
3	6	0	-4.619811	-1.052907	-0.000079
4	1	0	-5.097350	-2.026905	-0.000113
5	6	0	-5.395041	0.110072	0.000210
6	1	0	-6.476588	0.034774	0.000295
7	6	0	-4.788176	1.367282	0.000354
8	1	0	-5.407225	2.257699	0.000652
9	6	0	-3.395882	1.505624	0.000255
10	1	0	-2.953793	2.492506	0.000466
11	6	0	-2.618472	0.351218	-0.000032
12	6	0	-1.160242	0.073573	0.000017
13	6	0	-0.113130	0.970766	0.000121
14	6	0	-0.359645	2.371745	0.000128
15	6	0	1.294873	0.593058	0.000076
16	6	0	3.101261	-0.685176	0.000377
17	6	0	4.068611	-1.691551	0.000887
18	1	0	3.798865	-2.741968	0.001603
19	6	0	5.398022	-1.284396	0.000477
20	1	0	6.182025	-2.034365	0.000817
21	6	0	5.752337	0.080757	-0.000374
22	1	0	6.802815	0.352324	-0.000657
23	6	0	4.787011	1.078515	-0.000804
24	1	0	5.057920	2.128959	-0.001398
25	6	0	3.438944	0.692955	-0.000429
26	7	0	-2.283609	-3.205585	-0.000567
27	1	0	-1.473721	-3.806445	-0.001346
28	1	0	-3.191233	-3.640373	-0.001242
29	7	0	-0.948331	-1.293185	-0.000294
30	7	0	1.725711	-0.709616	0.001035
31	1	0	1.080753	-1.493031	0.000261
32	7	0	2.294218	1.463436	-0.000690
33	7	0	-0.562184	3.511137	0.000067

 Table S6: B3LYP DFT optimized geometry of compound 1.

 $E_h = -928.243238$ Hartree

Center	Atomic		Atomic	Coordinate	es (Angstroms)
Number	Numb	er	Туре	X Y	Z
	6		2 252025	1 502710	1 7/7720
1	6	0	2.332833	-1.302/19	-1./4//28
2	0	0	3.202374	-0.409143	-2.1/402/
5 1	1	0	2.936203	0.371341	-1.999012
4 5	0	0	4.302207	-0.818079	2 102557
5	1	0	1 602286	-0.030399	-3.193337
07	0	0	4.093280	-2.109507	-3.108004
/ Q	1	0	2 856400	-2.393048	-3.039337
0	0	0	3.630490	-3.196029	-2.712008
9 10	1	0	4.092041	-4.233960	-2.924200
10	0	0	2.0/04/1	-2.803030	-2.032700
11	0	0	0.780713	-2.814408	-1.03/403
12	0	0	-0.329101	-3.238323	-0.029312
13	0	0	-0.0/8413	-4.008/93	-0.483903
14	0	0	-1.010009	-2.431800	-0.4/3913
15	6	0	-3.022098	-2./96202	-0.236065
16	6	0	-3./00816	-3.99/683	-0.021890
l /	l	0	-3.186854	-4.94//53	0.021981
18	6	0	-5.086230	-3.952455	0.144932
19	l	0	-5.626199	-4.8//149	0.317751
20	6	0	-5.792255	-2.744317	0.093537
21	l	0	-6.868809	-2.746715	0.224004
22	6	0	-5.1209/6	-1.542330	-0.123090
23	l	0	-5.651207	-0.598052	-0.167649
24	6	0	-3.740720	-1.589995	-0.2/9816
25	6	0	-2.766671	-0.526669	-0.501110
26	6	0	-2.262770	1.735797	-0.634238
27	6	0	-2.649397	3.111964	-0.951631
28	6	0	-3.884998	3.659724	-1.265447
29	1	0	-4.774783	3.041803	-1.294943
30	6	0	-3.938025	5.026964	-1.541302
31	1	0	-4.885883	5.490256	-1.791761
32	6	0	-2.777962	5.806583	-1.499768
33	1	0	-2.839727	6.866554	-1.719989
34	6	0	-1.536239	5.250232	-1.180184
35	1	0	-0.658337	5.880726	-1.157157
36	6	0	-1.481002	3.884811	-0.903706
37	6	0	-0.402359	2.951660	-0.521597
38	6	0	0.926960	3.254453	-0.296679
39	6	0	1.420327	4.574456	-0.463867
40	6	0	1.874168	2.290097	0.211313
41	6	0	3.673781	1.522824	1.268978

 Table S7: B3LYP DFT optimized geometry of compound Co(Hlp)(DMF).

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	42	6	0	4.875345	1.339901	1.953537
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	43	1	0	5.541758	2.169346	2.160113
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	44	6	0	5.168262	0.046962	2.364437
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	1	0	6.089272	-0.143803	2.904189
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	46	6	0	4.286798	-1.020503	2.102975
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	47	1	0	4.544952	-2.014650	2.451254
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	48	6	0	3.095857	-0.832533	1.415686
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49	1	0	2.419194	-1.653419	1.227367
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	6	0	2.790609	0.462482	0.982695
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51	6	0	-0.473186	0.138391	2.747668
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52	1	0	-0.602445	1.208979	2.543765
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53	6	0	-1.020717	0.805790	5.029406
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54	1	0	-0.263575	0.835532	5.817004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	1	0	-1.986513	0.567484	5.482025
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56	1	0	-1.083574	1.789628	4.566278
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57	6	0	-0.544635	-1.573907	4.483204
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58	1	0	-0.279984	-2.203849	3.638780
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59	1	0	-1.491074	-1.915685	4.909931
	60	1	0	0.231260	-1.647093	5.249402
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61	27	0	0.104409	-0.007964	-0.337586
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62	7	0	1.144700	-1.498549	-1.081578
	63	7	0	-1.529821	-1.041716	-0.607961
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64	7	0	-3.135265	0.753797	-0.607519
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65	7	0	-0.922967	1.680549	-0.377436
67701.666532-3.674368-1.58042768703.0703862.6535140.75805069103.4064523.6009020.8478157070-0.796576-5.811168-0.34727871701.8843445.629034-0.5798357270-0.670185-0.1941544.0285947380-0.173834-0.6515871.842789	66	7	0	1.690491	0.971825	0.289073
68703.0703862.6535140.75805069103.4064523.6009020.8478157070-0.796576-5.811168-0.34727871701.8843445.629034-0.5798357270-0.670185-0.1941544.0285947380-0.173834-0.6515871.842789	67	7	0	1.666532	-3.674368	-1.580427
69103.4064523.6009020.8478157070-0.796576-5.811168-0.34727871701.8843445.629034-0.5798357270-0.670185-0.1941544.0285947380-0.173834-0.6515871.842789	68	7	0	3.070386	2.653514	0.758050
7070-0.796576-5.811168-0.34727871701.8843445.629034-0.5798357270-0.670185-0.1941544.0285947380-0.173834-0.6515871.842789	69	1	0	3.406452	3.600902	0.847815
71701.8843445.629034-0.5798357270-0.670185-0.1941544.0285947380-0.173834-0.6515871.842789	70	7	0	-0.796576	-5.811168	-0.347278
7270-0.670185-0.1941544.0285947380-0.173834-0.6515871.842789	71	7	0	1.884344	5.629034	-0.579835
73 8 0 -0.173834 -0.651587 1.842789	72	7	0	-0.670185	-0.194154	4.028594
	73	8	0	-0.173834	-0.651587	1.842789

 $E_h = -3430.522905$ Hartree

Center	Atom		tomic	Coordinate	 s (Angstroms)
Number	Nur	nber	Type	X Y	Z
			- , p -		
1	6	0	-2.529393	0.756656	1.427556
2	6	0	-2.995174	-0.475977	1.909270
3	1	0	-2.434981	-1.390842	1.761019
4	6	0	-4.195582	-0.485006	2.603080
5	1	0	-4.575749	-1.424406	2.991440
6	6	0	-4.934709	0.700127	2.827150
7	1	0	-5.869248	0.643782	3.375892
8	6	0	-4.477736	1.924214	2.371370
9	1	0	-5.029851	2.840684	2.552887
10	6	0	-3.259492	1.957481	1.669462
11	6	0	-1.474331	2.477284	0.633033
12	6	0	-0.390094	3.284024	0.121279
13	6	0	-0.681588	4.667268	-0.060671
14	6	0	0.881049	2.809226	-0.087689
15	6	0	2.102270	3.553863	-0.423393
16	6	0	2.381855	4.890978	-0.712022
17	1	0	1.607962	5.644980	-0.748779
18	6	0	3.708034	5.246125	-0.963969
19	1	0	3.941112	6.279983	-1.194327
20	6	0	4.741620	4.301757	-0.925699
21	1	0	5.760668	4.614765	-1.123930
22	6	0	4.469117	2.966410	-0.636576
23	1	0	5.256222	2.222313	-0.601651
24	6	0	3.146207	2.614463	-0.394081
25	6	0	2.546693	1.323735	-0.084459
26	6	0	2.714568	-0.970653	0.123587
27	6	0	3.475215	-2.187805	0.405524
28	6	0	4.828473	-2.377862	0.644548
29	1	0	5.517955	-1.541957	0.633374
30	6	0	5.264437	-3.678959	0.900859
31	1	0	6.314287	-3.866584	1.096128
32	6	0	4.359530	-4.744886	0.909899
33	1	0	4.718951	-5.747214	1.114322
34	6	0	2.998250	-4.549072	0.660469
35	1	0	2.324029	-5.394233	0.673777
36	6	0	2.560602	-3.250562	0.406595
37	6	0	1.251506	-2.653267	0.086229
38	6	0	0.052939	-3.304354	-0.120633
39	6	0	-0.066011	-4.710290	0.029868
40	6	0	-1.109898	-2.611940	-0.618579
41	6	0	-3.022947	-2.286832	-1.703732

Table S8: B3LYP DFT optimized geometry of compound Ni(Hlp).

42	6	0	-4.214289	-2.393729	-2.420353
43	1	0	-4.646803	-3.357852	-2.660437
44	6	0	-4.809843	-1.206275	-2.821728
45	1	0	-5.735410	-1.239791	-3.385459
46	6	0	-4.227972	0.040952	-2.523230
47	1	0	-4.714735	0.946570	-2.867732
48	6	0	-3.045228	0.141150	-1.804165
49	1	0	-2.602585	1.103661	-1.588657
50	6	0	-2.440847	-1.045685	-1.377028
51	7	0	-1.394712	1.116908	0.728869
52	7	0	1.215618	1.457663	0.079057
53	7	0	3.276351	0.213180	0.038013
54	7	0	1.397712	-1.284453	-0.048293
55	7	0	-1.262440	-1.287044	-0.665045
56	7	0	-2.577447	3.025427	1.153850
57	7	0	-2.165359	-3.244369	-1.198870
58	1	0	-2.252824	-4.243426	-1.315931
59	7	0	-0.920911	5.786591	-0.223364
60	7	0	-0.223541	-5.852020	0.136586
61	28	0	-0.022832	0.001822	0.034708

 $E_h = -3307.469552$ Hartree

Center	Atomic		Atomic	Coordinates	 s (Angstroms)
Number	Numb	er	Type	X Y	Ζ
1	6	0	-2.544745	-1.155169	1.380400
2	6	0	-3.180262	0.012539	1.814051
3	1	0	-2.741417	0.986080	1.637961
4	6	0	-4.390342	-0.123632	2.479754
5	1	0	-4.905880	0.764183	2.828708
6	6	0	-4.966113	-1.387708	2.716309
7	1	0	-5.913379	-1.449059	3.240291
8	6	0	-4.342972	-2.556477	2.300219
9	1	0	-4.776501	-3.531580	2.488956
10	6	0	-3.125777	-2.413438	1.634818
11	6	0	-1.172943	-2.668568	0.595576
12	6	0	-0.009960	-3.351146	0.063852
13	6	0	-0.143147	-4.755012	-0.101442
14	6	0	1.197759	-2.722675	-0.173393
15	6	0	2.499374	-3.343363	-0.494481
16	6	0	2.916227	-4.645617	-0.762314
17	1	0	2.226233	-5.477341	-0.796610
18	6	0	4.276588	-4.864175	-0.999409
19	1	0	4.618734	-5.870038	-1.215899
20	6	0	5.201683	-3.816777	-0.962167
21	1	0	6.250139	-4.021703	-1.147262
22	6	0	4.787288	-2.511685	-0.689854
23	1	0	5.492800	-1.689893	-0.654880
24	6	0	3.435108	-2.297505	-0.466588
25	6	0	2.694720	-1.066752	-0.173138
26	29	0	-0.068530	0.007087	-0.051070
27	7	0	-1.338274	-1.349287	0.713448
28	7	0	1.369223	-1.361250	-0.046115
29	7	0	3.288265	0.098169	-0.030047
30	7	0	-2.239715	-3.337873	1.117169
31	1	0	-2.329873	-4.342137	1.170919
32	7	0	-0.311858	-5.894013	-0.220775
33	6	0	-2.587191	1.030651	-1.423818
34	6	0	-3.176296	-0.144953	-1.911718
35	1	0	-2.687504	-1.107196	-1.810974
36	6	0	-4.406493	-0.033526	-2.541841
37	1	0	-4.885463	-0.925425	-2.932936
38	6	0	-5.053293	1.215796	-2.694654
39	1	0	-6.014998	1.253498	-3.196043
40	6	0	-4.476705	2.383763	-2.226054
41	1	0	-4.962078	3.346378	-2.350692

Table S9: B3LYP DFT optimized geometry of compound Ni(Hlp).

42	6	0	-3.227826	2.293890	-1.585246
43	6	0	-1.359229	2.621357	-0.611269
44	6	0	-0.220024	3.344721	-0.074816
45	6	0	-0.431705	4.742540	0.118184
46	6	0	1.025596	2.811093	0.164192
47	6	0	2.285652	3.491644	0.505746
48	6	0	2.636725	4.808513	0.807721
49	1	0	1.902939	5.600939	0.856630
50	6	0	3.980826	5.091798	1.057489
51	1	0	4.267928	6.109438	1.298957
52	6	0	4.964170	4.096308	1.002608
53	1	0	5.998958	4.354033	1.198853
54	6	0	4.621519	2.780349	0.699012
55	1	0	5.369344	1.997453	0.649823
56	6	0	3.281198	2.498228	0.461233
57	6	0	2.613209	1.241817	0.138154
58	7	0	-1.392199	1.263438	-0.780950
59	7	0	1.292475	1.451132	0.002953
60	7	0	-2.437130	3.278140	-1.059305
61	7	0	-0.593408	5.873812	0.293985

 $E_h = -3439.636473$ Hartree

Table S10: Major TDDFT-predicted excited state contributions for Ni, Cu, Co_3TA,Co_1TA_OptFreqPlus, and Co_1TA_TD70 using the B3LYP exchange correlation functional.

The T	٠
- N	Т
11	

Excited	Wavelength	Energy	Oscillator	% Contributions
State	(nm)	(cm ⁻¹)	Strength, f	
1	716	13964	0.2744	H→L (98%)
4	648	15443	0.0321	H-1→L (70%), H-4→L+2 (10%),
				H-3→L+2 (5%), H-11→L+2 (5%),
				H-1→L+2 (3%)
6	530	18857	0.4833	H-2→L (96%)
8	491	20382	0.0282	H-3→L (63%), H-4→L (27%), H-5→L (3%)
10	451	22174	0.1787	H→L+1 (45%), H→L+2 (31%),
				H-16→L+2 (6%), H-3→L+2 (2%),
				H-14→L+2 (2%)
11	442	22636	0.0267	H-5→L (71%), H-6→L (16%), H-3→L (5%),
				H→L+2 (2%)
12	428	23339	0.5544	H→L+2 (44%), H→L+1 (44%), H-5→L (4%)
13	418	23930	0.0318	H-6→L (62%), H-5→L (12%), H-4→L (6%),
				H-1→L+1 (5%), H-7→L (5%), H→L+2 (2%),
				H→L+1 (2%)
14	409	24462	0.0353	H-1→L+1 (84%), H-6→L (7%),
				H-1→L+2 (5%)
15	384	26038	0.2304	H-7→L (44%), H-2→L+1 (16%),
				H-2→L+2 (13%), H-8→L (11%),
				H-1→L+2 (9%)
16	382	26203	0.3716	H-7→L (24%), H-2→L+2 (21%),
				H-1→L+2 (17%), H-8→L (15%),
				$H-2 \rightarrow L+1 (13\%)$
17	374	26761	0.0381	H-8→L (71%), H-7→L (22%), H-6→L (3%)
19	361	27671	0.2873	$H-2 \rightarrow L+1 \ (60\%), H-1 \rightarrow L+2 \ (11\%),$
				H-2→L+2 (7%), H-9→L (4%),
	• • •			H-6→L+2 (3%), H-5→L+2 (3%)
22	346	28881	0.0682	$H-9 \rightarrow L (35\%), H-11 \rightarrow L (25\%),$
				H-10→L (25%), H-13→L (6%),
	- / -			$H-2 \rightarrow L+1$ (4%), $H-2 \rightarrow L+2$ (2%)
23	342	29223	0.0212	H-3→ L +1 (58%), H -13→ L (12%),
				$H-4 \rightarrow L+1$ (7%), $H-3 \rightarrow L+2$ (6%),
				$H-5 \rightarrow L+1$ (4%), $H-2 \rightarrow L+2$ (3%)
24	338	29550	0.0443	H-12→L (43%), H -13→L (22%),
				$H-4\rightarrow L+1$ (17%), $H-11\rightarrow L$ (9%),
~ ~		••••		$H-15 \rightarrow L (3\%)$
25	335	29830	0.0304	$H-4 \rightarrow L+1$ (31%), $H-13 \rightarrow L$ (29%),
				$H-3 \rightarrow L+1$ (20%), $H-11 \rightarrow L$ (3%),
0.4	222		0.00=0	$H-4 \rightarrow L+2$ (3%), $H-6 \rightarrow L+1$ (3%)
26	332	30129	0.0270	$H-12 \rightarrow L (47\%), H-4 \rightarrow L+1 (23\%),$

				H-13 \rightarrow L (13%), H-4 \rightarrow L+2 (4%),
				H-6 \rightarrow L+1 (4%), H-11 \rightarrow L (2%)
27	318	31444	0.1182	$H \rightarrow L+3 (93\%)$
28	315	31793	0.0483	$H-5 \rightarrow L+1$ (47%), $H-3 \rightarrow L+2$ (17%),
_ •				$H-6 \rightarrow L+2$ (12%), $H-4 \rightarrow L+2$ (4%).
				$H_{-6} \rightarrow I + 1 (4\%) H_{-3} \rightarrow I + 1 (4\%)$
				$H_{-5} \rightarrow I + 2 (3\%)$
20	300	37345	0.0436	H 5 \rightarrow L +1 (35%) H 6 \rightarrow L +1 (22%)
2)	507	52575	0.0430	$H = 5 \rightarrow L + 1 (3576), H = 6 \rightarrow L + 1 (2276), H = 5 \rightarrow L + 2 (100\%) H = 2 \rightarrow L + 2 (120\%)$
22	209	22540	0.0269	$\Pi - 3 \rightarrow L + 2 (1970), \Pi - 3 \rightarrow L + 2 (1570)$
32	298	23249	0.0308	$\Pi - I \rightarrow L + 3 (77%), \Pi \rightarrow L + 4 (10\%)$
34	293	34132	0.0380	$H-/\rightarrow L+1$ (38%), $H-/\rightarrow L+2$ (22%),
				$H-5 \rightarrow L+2 (10\%), H-12 \rightarrow L+2 (6\%),$
				$H-6 \rightarrow L+2 (6\%), H-1 \rightarrow L+3 (3\%),$
				H-15→L (3%), H-11→L+2 (2%),
				H-3→L+2 (2%)
36	285	35057	0.0737	H→L+5 (40%), H-7→L+1 (20%),
				H-7→L+2 (9%), H-15→L (8%),
				H-8→L+1 (5%), H-12→L+2 (3%),
				H-11→L+2 (3%), H-5→L+2 (2%),
				H-6→L+2 (2%)
37	283	35352	0.1011	H-15 \rightarrow L (21%), H-7 \rightarrow L+1 (18%),
				$H-8 \rightarrow L+1$ (15%), $H-2 \rightarrow L+3$ (8%),
				H-16→L (7%), H-11→L+2 (4%),
				H-14→L (4%), H-13→L (3%),
				$H \rightarrow L + 4 (2\%)$
41	275	36308	0 0271	$H^{-2} \rightarrow I + 3 (55\%) H^{-1} (13\%)$
	210	20200	0.02/1	$H-9 \rightarrow I + 1 (10\%) H-8 \rightarrow I + 1 (5\%)$
				$H_{-1} \rightarrow I + 5 (3\%) + 1 \rightarrow I + 4 (3\%)$
				$H_{-7} \rightarrow I + 1 (2\%)$
13	272	36726	0.0716	$H_{-1} \rightarrow L_{+1} (2.0)$ $H_{-1} \rightarrow L_{+5} (43\%) H_{-16} \rightarrow L_{-18} (18\%)$
J	212	50720	0.0710	$H^{-1} \rightarrow L^{+} $ (43%), $H^{-1} $ (16%), H 7 (12%) H 12 (16%),
				$H^{-7} \rightarrow L^{+2} (1270), H^{-12} \rightarrow L^{+2} (570), H^{-$
16	260	27220	0.0710	$H_{1} \rightarrow L (370), H_{2} \rightarrow L + I (270)$
40	209	37228	0.0719	$II - 2 \rightarrow L + I (5370), II - 10 \rightarrow L + I (1870),$ II - 11 - 11 - 2 (80/) II - 11 - 11 - 11 - (60/)
				$\Pi - \Pi \rightarrow L^{+2}$ (670), $\Pi - \Pi \rightarrow L^{+1}$ (070), $\Pi = 2 \rightarrow L^{+2}$ (59()) $\Pi = 16 \rightarrow L^{-4}$ (49())
				$H-2 \rightarrow L+3 (3\%), H-10 \rightarrow L (4\%),$
40	265	27605	0.0210	$H-10 \rightarrow L+2 (3\%)$
48	265	37685	0.0318	$H-11 \rightarrow L+1$ (41%), $H-8 \rightarrow L+2$ (10%),
				$H-10 \rightarrow L+2 (10\%), H-13 \rightarrow L+1 (10\%),$
				$H-9 \rightarrow L+1 (6\%), H-10 \rightarrow L+1 (5\%),$
				H-11→L+2 (4%), H-12→L+2 (2%)
49	262	38111	0.1098	H-9→L+2 (26%), H-3→L+3 (25%),
				H-13→L+1 (22%), H-10→L+2 (10%),
				H-11→L+1 (3%), H-8→L+2 (3%),
				H-11→L+2 (2%)
50	261	38358	0.0589	H-3→L+3 (28%), H-10→L+2 (20%),
				H-9→L+2 (20%), H-13→L+1 (10%),

				$H-11 \rightarrow L+2 (3\%), H-12 \rightarrow L+1 (3\%),$
				H-5→L+3 (2%)
51	260	38459	0.1135	H-3→L+3 (24%), H-13→L+1 (24%),
				H-10→L+2 (13%), H-9→L+2 (10%),
				H→L+6 (8%), H-12→L+1 (5%),
				H-2→L+4 (3%)
52	259	38586	0.0947	H→L+6 (64%), H-2→L+4 (10%),
				H-10→L+2 (7%), H-1→L+14 (3%),
				H-9→L+2 (2%)
53	259	38645	0.0227	H-9→L+2 (20%), H-2→L+4 (18%),
				H-13→L+1 (15%), H-11→L+1 (10%),
				H-11→L+2 (8%), H-10→L+2 (8%),
				H-3→L+3 (5%), H-4→L+3 (3%),
				H-2→L+5 (2%)
55	255	39152	0.0973	H-4→L+3 (76%), H-6→L+3 (7%),
				H-2→L+4 (3%), H-10→L+2 (3%)
56	255	39259	0.1158	H-2→L+5 (80%), H-3→L+7 (2%)
59	248	40314	0.0475	H-1→L+6 (71%), H→L+7 (11%),
				H→L+14 (5%), H-17→L (3%)
60	246	40569	0.2433	H-3→L+4 (60%), H-5→L+3 (10%),
				H-4→L+4 (7%), H-5→L+4 (3%),
				H-1→L+6 (3%), H-18→L (2%)

Cu

Excited	Wavelength	Energy	Oscillator	% Contributions
State	(nm)	(cm^{-1})	Strength, f	
2	730	13703	0.0536	$H(\beta) \rightarrow L+1(\beta) (35\%), H-1(\beta) \rightarrow L+1(\beta) (20\%),$
				$H(\beta) \rightarrow L(\beta) (11\%), H(\alpha) \rightarrow L(\alpha) (9\%),$
				$\text{H-2}(\beta) \rightarrow \text{L+1}(\beta) \text{ (5\%), H-21}(\beta) \rightarrow \text{L+1}(\beta) \text{ (4\%),}$
				$\text{H-11}(\beta) \rightarrow \text{L+1}(\beta) \ (3\%), \text{H-6}(\beta) \rightarrow \text{L+1}(\beta) \ (2\%),$
				$H-15(\beta) \rightarrow L+1(\beta) (2\%)$
3	723	13835	0.2565	$H(\alpha) \rightarrow L(\alpha) (40\%), H(\beta) \rightarrow L(\beta) (38\%),$
				$H(\beta) \rightarrow L+1(\beta) (13\%), H-1(\beta) \rightarrow L+1(\beta) (2\%)$
10	533	18778	0.5117	$\text{H-2}(\beta) \rightarrow \text{L}(\beta) \text{ (44\%), H-2}(\alpha) \rightarrow \text{L}(\alpha) \text{ (44\%),}$
				$H-15(\beta) \rightarrow L+1(\beta) (3\%),$
				$\text{H-14}(\beta) \rightarrow \text{L+1}(\beta) \ (3\%), \text{H-2}(\beta) \rightarrow \text{L+1}(\beta) \ (2\%)$
11	525	19050	0.0583	$H-2(\beta) \rightarrow L+1(\beta) \ (43\%),$
				$H-15(\beta) \rightarrow L+1(\beta) \ (15\%),$
				$H-1(\beta) \rightarrow L+1(\beta) \ (14\%),$
				$\text{H-14}(\beta) \rightarrow \text{L+1}(\beta) \text{ (10\%), H-2(\alpha)} \rightarrow \text{L(\alpha) (4\%),}$
				$H-2(\beta) \rightarrow L(\beta) (3\%), H-4(\beta) \rightarrow L+1(\beta) (2\%)$
19	448	22304	0.0367	$\text{H-3}(\alpha) \rightarrow \text{L}(\alpha) \text{ (49\%), H-3}(\beta) \rightarrow \text{L}(\beta) \text{ (36\%),}$
				$H-4(\alpha) \rightarrow L(\alpha) (8\%)$
21	431	23179	0.8339	$H(\beta) \rightarrow L+2(\beta) (48\%), H(\alpha) \rightarrow L+1(\alpha) (47\%)$
26	402	24848	0.0533	$\text{H-6}(\beta) \rightarrow \text{L}(\beta) \text{ (20\%), H-7}(\alpha) \rightarrow \text{L}(\alpha) \text{ (13\%),}$

				H-5(β)→L(β) (12%), H-2(β)→L+2(β) (11%), H-4(β)→L(β) (7%) H-2(α)→L+1(α) (7%)
				$H-9(\alpha) \rightarrow L(\alpha) (7\%), H-2(\alpha) \rightarrow L(\alpha) (7\%), H-9(\alpha) \rightarrow L(\alpha) (7\%)$
				$H^{-5}(\alpha) \to L(\alpha) (5\%), H^{-8}(\beta) \to L(\beta) (2\%)$
27	401	24934	0.0363	$H^{-2}(\alpha) \to L(\alpha) (30\%), H^{-2}(\alpha) \to L^{+1}(\alpha) (16\%),$
_ /	101	2.50	0.00000	$H^{-2}(\alpha) \rightarrow L^{+2}(\beta) (12\%), H^{-9}(\alpha) \rightarrow L(\alpha) (5\%),$
				$H^{-6}(\alpha) \rightarrow L(\alpha) (4\%), H^{-9}(\beta) \rightarrow L(\beta) (4\%),$
				$H-7(B) \rightarrow L(B) (4\%), H-8(B) \rightarrow L(B) (3\%),$
				$H-4(\beta) \rightarrow L(\beta)$ (3%), $H-5(\alpha) \rightarrow L(\alpha)$ (3%),
				$H-6(\beta) \rightarrow L(\beta)$ (2%), $H-2(\alpha) \rightarrow L(\alpha)$ (2%)
30	387	25865	0.5147	$H-6(\alpha) \rightarrow L(\alpha)$ (21%), $H-5(\beta) \rightarrow L(\beta)$ (16%),
				$H-6(\beta) \rightarrow L(\beta)$ (16%), $H-8(\alpha) \rightarrow L(\alpha)$ (14%),
				$H-7(\beta) \rightarrow L(\beta)$ (13%), $H-5(\alpha) \rightarrow L(\alpha)$ (7%),
				$H-4(\beta) \rightarrow L(\beta) (5\%), H-7(\alpha) \rightarrow L(\alpha) (3\%)$
32	377	26532	0.0503	H-7(β) \rightarrow L(β) (32%), H-8(α) \rightarrow L(α) (21%),
				$H-7(\alpha) \rightarrow L(\alpha) (13\%), H-6(\beta) \rightarrow L(\beta) (7\%),$
				$H-10(\alpha) \rightarrow L(\alpha) (4\%), H-5(\alpha) \rightarrow L(\alpha) (4\%),$
				$\text{H-9}(\beta) \rightarrow L(\beta) \ (4\%), \ \text{H-8}(\beta) \rightarrow L(\beta) \ (4\%),$
				$\text{H-4}(\beta) \rightarrow L(\beta) \text{ (3\%), H-6}(\alpha) \rightarrow L(\alpha) \text{ (2\%),}$
				$H-5(\beta) \rightarrow L(\beta) (2\%)$
33	375	26670	0.0272	$H-4(\beta) \rightarrow L+1(\beta) (56\%),$
				$\text{H-5}(\beta) \rightarrow \text{L+1}(\beta) \text{ (12\%)},$
				$H-15(\beta) \rightarrow L+1(\beta) \ (4\%),$
				$H-14(\beta) \rightarrow L+1(\beta) (4\%), H-3(\beta) \rightarrow L+1(\beta) (4\%),$
				$H-13(\beta) \rightarrow L+1(\beta) (3\%), H-6(\beta) \rightarrow L+1(\beta) (3\%),$
				$H-22(\beta) \rightarrow L+1(\beta) (2\%), H-9(\beta) \rightarrow L+1(\beta) (2\%)$
35	360	27748	0.0919	$H-10(\beta) \rightarrow L(\beta) (21\%), H-2(\beta) \rightarrow L+2(\beta) (21\%),$
				$H-5(\beta) \rightarrow L+1(\beta) (16\%), H-11(\alpha) \rightarrow L(\alpha) (12\%),$
				$H-2(\alpha) \rightarrow L+1(\alpha) (10\%),$ $H-12(\alpha) \rightarrow L+1(\alpha) (20\%) H-4(\alpha) \rightarrow L+1(\alpha) (20\%)$
26	2(0	27796	0.00(1	H-13(β) \rightarrow L+1(β) (2%), H-4(β) \rightarrow L+1(β) (2%)
30	360	27786	0.0961	$H-11(\alpha) \rightarrow L(\alpha) (29\%), H-10(p) \rightarrow L(p) (21\%),$ $H-2(x) \rightarrow L+1(x) (100())$
				$H^{-2}(\alpha) \rightarrow L^{+1}(\alpha) (19\%),$ $H^{-2}(\beta) \rightarrow L^{+2}(\beta) (10\%) H^{-5}(\beta) \rightarrow L^{+1}(\beta) (5\%).$
				$H_{11(R)} \to L(R) (10\%), H_{10(R)} \to L(R) (5\%),$
37	350	27873	0 1561	$H_{-5}(B) \rightarrow L(P) (270)$ $H_{-5}(B) \rightarrow L + 1(B) (42\%)$
57	557	21015	0.1501	$H_{-2}(\alpha) \rightarrow I + 1(\alpha) (12\%)$
				$H_{2}(\alpha) \to I_{1}(\alpha) (12\%),$ $H_{2}(\beta) \to I_{2}(\beta) (11\%) H_{2}(\alpha) \to I_{1}(\alpha) (4\%)$
				$H_{2}(p) \rightarrow L_{2}(p) (H_{1}(p), H_{2}(q) \rightarrow L(q) (4/6), H_{2}(q) \rightarrow L_{1}(p) (4/6), H_{2}(q) \rightarrow L_{2}(p) (4/6), H_{2}(q) \rightarrow L_{2}(p)$
				$H^{-1}(\beta) \to L^{-1}(\beta) (1,0), H^{-1}(\beta) \to L^{-1}(\beta) (2,0), H^{-1}(\beta) \to L^{-1}(\beta) (3,0), H^{-1}(\beta) (3,0), H^$
				$H^{-1}(B) \rightarrow L(B) (2\%), H^{-1}(B) \rightarrow L^{+1}(B) (2\%),$
				$H-9(\beta) \rightarrow L(\beta) (2\%)$
38	349	28615	0.1220	$H-9(\alpha) \rightarrow L(\alpha)$ (37%), $H-9(\beta) \rightarrow L(\beta)$ (22%),
				$H-8(\beta) \rightarrow L(\beta) (17\%), H-2(\beta) \rightarrow L+2(\beta) (6\%),$
				$H-2(\alpha) \rightarrow L+1(\alpha)$ (6%), $H-5(\beta) \rightarrow L+1(\beta)$ (2%),
				$H-10(\beta) \rightarrow L(\beta) (2\%), H-11(\alpha) \rightarrow L(\alpha) (2\%)$
41	345	29005	0.0216	$\text{H-6}(\beta) \rightarrow \text{L+1}(\beta) \text{ (50\%), H-9}(\beta) \rightarrow \text{L+1}(\beta) \text{ (7\%),}$

				H-3(β) \rightarrow L+2(β) (4%), H-3(α) \rightarrow L+1(α) (3%),
				H-15(β) \rightarrow L+1(β) (3%),
				$H-14(\beta) \rightarrow L+1(\beta)$ (2%), $H-5(\beta) \rightarrow L+1(\beta)$ (2%),
				$H(\alpha) \rightarrow L+2(\alpha)$ (2%), $H(\beta) \rightarrow L+3(\beta)$ (2%),
				$H-7(B) \rightarrow L+1(B)$ (2%), $H-8(B) \rightarrow L+1(B)$ (2%),
				$H-3(\alpha) \rightarrow L+4(\alpha) (2\%)$
42	344	29089	0.0254	$H = 11(\alpha) \rightarrow L(\alpha) (44\%)$
.2	511	2,00,	0.020	$H = H(\alpha) \to L(\beta) (1100),$ $H = H = H(\alpha) (1000),$ H = H = H = H = H = H = H = H = H = H =
				$H^{-1}(\beta) \to L(\beta) (3\%) H^{-9}(\alpha) \to L(\alpha) (2\%)$
				$H^{-1}(2,p) \to L(\beta) (2,0), H^{-1}(\alpha) \to L(\alpha) (2,0), H^{-1}(\beta) \to L(\beta) (2,0), H^{-1}(\alpha) \to L(\beta) (2,0), H^{-1}(\beta) (2,0), H^$
52	316	31644	0 1279	$H(\beta) \rightarrow I + 3(\beta) (49\%) H(\alpha) \rightarrow I + 2(\alpha) (37\%)$
52	510	51011	0.1279	$H(\beta) \rightarrow L + 3(\beta) (1990), H(\alpha) \rightarrow L + 2(\alpha) (3990), H(\beta) \rightarrow L + 4(\beta) (2\%)$
58	305	32820	0.0386	$H(p) \to L^{+}(p) (2.5)$ $H^{-}(0) \to L^{+}(0) (81\%).$
•••	000	02020	0.00000	$H = 11(B) \rightarrow L + 1(B) (3\%)$
				$H-21(B) \rightarrow L+1(B)$ (2%), $H-27(B) \rightarrow L+1(B)$ (2%)
66	291	34371	0.0557	$H-12(B) \rightarrow L(B) (27\%), H-13(\alpha) \rightarrow L(\alpha) (26\%).$
				$H-5(B) \rightarrow L+2(B) (15\%).$
				$H-6(\alpha) \rightarrow L+1(\alpha) (14\%).$
				$H-11(\beta) \rightarrow L+1(\beta) (3\%), H-11(\alpha) \rightarrow L(\alpha) (2\%)$
71	284	35234	0.0546	$H-5(B) \rightarrow L+2(B)$ (18%).
				$H-6(\alpha) \rightarrow L+1(\alpha)$ (15%), $H(\beta) \rightarrow L+5(\beta)$ (11%),
				H-12(β) \rightarrow L(β) (10%), H-13(α) \rightarrow L(α) (7%),
				H-13(β) \rightarrow L(β) (5%), H(α) \rightarrow L+4(α) (5%),
				$H-8(\alpha) \rightarrow L+1(\alpha) (3\%), H-5(\alpha) \rightarrow L+1(\alpha) (3\%),$
				$H-4(\beta) \rightarrow L+2(\beta)$ (3%),
				$H-6(\beta) \rightarrow L+2(\beta)$ (2%), $H-2(\beta) \rightarrow L+3(\beta)$ (2%)
72	283	35282	0.2069	$H(\beta) \rightarrow L+5(\beta)$ (28%), $H(\alpha) \rightarrow L+4(\alpha)$ (21%),
				H-6(β)→L+2(β) (17%),
				H-7(α) \rightarrow L+1(α) (12%), H-6(α) \rightarrow L+1(α) (6%),
				$H-5(\beta) \rightarrow L+2(\beta)$ (3%), $H-5(\alpha) \rightarrow L+1(\alpha)$ (3%),
				$H-2(\alpha) \rightarrow L+2(\alpha)$ (2%), $H-8(\alpha) \rightarrow L+1(\alpha)$ (2%)
89	266	37652	0.0382	H-9(α) \rightarrow L+1(α) (30%),
				$H-9(\beta) \rightarrow L+2(\beta) \ (25\%),$
				$\text{H-8}(\beta) \rightarrow \text{L+2}(\beta) \text{ (23\%), H-2}(\beta) \rightarrow \text{L+3}(\beta) \text{ (2\%),}$
				$\text{H-14}(\alpha) \rightarrow \text{L}(\alpha) \ (2\%), \ \text{H-2}(\beta) \rightarrow \text{L+5}(\beta) \ (2\%)$
96	260	38470	0.0350	$H-10(\beta) \rightarrow L+2(\beta) \ (29\%),$
				$\text{H-11}(\alpha) \rightarrow \text{L+1}(\alpha) \text{ (29\%)},$
				$H(\beta) \rightarrow L+6(\beta) \ (9\%), H(\alpha) \rightarrow L+5(\alpha) \ (7\%),$
				$H-2(\alpha) \rightarrow L+3(\alpha) \ (2\%),$
				$\text{H-13}(\alpha) \rightarrow \text{L+1}(\alpha) \ (2\%), \text{H-2}(\beta) \rightarrow \text{L+4}(\beta) \ (2\%),$
				$H-16(\alpha) \rightarrow L(\alpha) (2\%)$
97	259	38644	0.1446	$H(\beta) \rightarrow L+6(\beta) \ (28\%), H(\alpha) \rightarrow L+5(\alpha) \ (25\%),$
				$H-10(\beta) \rightarrow L+2(\beta) (10\%),$
				$H-11(\alpha) \rightarrow L+1(\alpha) (8\%),$
				$H-1(\beta) \rightarrow L+14(\beta) (3\%),$
				$H-13(\beta) \rightarrow L+1(\beta) \ (2\%),$

				$H-13(\alpha) \rightarrow L+1(\alpha) (2\%), H-15(\beta) \rightarrow L(\beta) (2\%),$
98	258	38749	0.0222	$H-2(\alpha) \rightarrow L+3(\alpha) \ (26\%),$
				$H-1(\alpha) \rightarrow L+13(\alpha) (10\%), H-16(\alpha) \rightarrow L(\alpha) (7\%),$
				$H-1(\beta) \rightarrow L+14(\beta) \ (6\%),$
				$H(\alpha) \rightarrow L+5(\alpha) (4\%), H-2(\beta) \rightarrow L+4(\beta) (4\%),$
				$\text{H-16}(\beta) \rightarrow \text{L}(\beta) \text{ (3\%), H-18}(\alpha) \rightarrow \text{L}(\alpha) \text{ (2\%),}$
				$\text{H-19}(\beta) \rightarrow L(\beta) \ (2\%), \text{H-1}(\alpha) \rightarrow L+10(\alpha) \ (2\%)$
99	258	38789	0.0219	$H-2(\beta) \rightarrow L+4(\beta) \ (43\%),$
				$H-2(\alpha) \rightarrow L+3(\alpha) \ (23\%),$
				$H-1(\alpha) \rightarrow L+13(\alpha) \ (4\%),$
				$H(\alpha) \rightarrow L+5(\alpha) (3\%), H-16(\alpha) \rightarrow L(\alpha) (2\%),$
				$\text{H-16}(\beta) \rightarrow \text{L}(\beta) \ (2\%), \text{H-1}(\beta) \rightarrow \text{L+14}(\beta) \ (2\%)$
100	256	38990	0.0394	$\text{H-15}(\alpha) \rightarrow \text{L}(\alpha) \text{ (24\%), H-16}(\alpha) \rightarrow \text{L}(\alpha) \text{ (13\%),}$
				$H-2(\beta) \rightarrow L+4(\beta) \ (11\%),$
				$\text{H-4}(\alpha) \rightarrow \text{L+2}(\alpha) \text{ (9\%), H-2}(\alpha) \rightarrow \text{L+3}(\alpha) \text{ (8\%),}$
				$H-13(\beta) \rightarrow L+1(\beta) (3\%), H-2(\beta) \rightarrow L+5(\beta) (2\%)$

Co_3TA

Excited	Wavelength	Energy	Oscillator	% Contributions
State	(nm)	(cm ⁻¹)	Strength, f	
8	750	13331	0.0591	$H-2(\beta) \rightarrow L(\beta) (36\%), H-1(\beta) \rightarrow L(\beta) (17\%),$
				$H(\alpha) \rightarrow L(\alpha) (16\%), H-1(\alpha) \rightarrow L(\alpha) (5\%),$
				$H(\beta) \rightarrow L(\beta) (5\%), H(\alpha) \rightarrow L+2(\alpha) (4\%),$
				$H-2(\alpha) \rightarrow L+2(\alpha) (4\%), H-5(\alpha) \rightarrow L+2(\alpha) (2\%)$
10	672	14875	0.0688	$H-2(\beta) \rightarrow L(\beta) (34\%), H-1(\beta) \rightarrow L(\beta) (19\%),$
				$H(\alpha) \rightarrow L(\alpha) (15\%), H-2(\alpha) \rightarrow L(\alpha) (13\%),$
				$H-1(\alpha) \rightarrow L(\alpha) (6\%), H-5(\alpha) \rightarrow L(\alpha) (3\%),$
				$H-3(\alpha) \rightarrow L(\alpha) (2\%)$
11	651	15371	0.0825	$H-1(\alpha) \rightarrow L(\alpha) (48\%), H-3(\beta) \rightarrow L(\beta) (13\%),$
				$H-2(\beta) \rightarrow L(\beta) (10\%), H(\beta) \rightarrow L(\beta) (10\%),$
				$H-1(\beta) \rightarrow L(\beta) (2\%), H-3(\alpha) \rightarrow L(\alpha) (2\%)$
12	611	16373	0.0380	$\text{H-3}(\alpha) \rightarrow \text{L}(\alpha) \text{ (40\%), H-2}(\alpha) \rightarrow \text{L}(\alpha) \text{ (19\%),}$
				$H-3(\beta) \rightarrow L(\beta) (14\%), H-4(\alpha) \rightarrow L(\alpha) (6\%),$
				$H-6(\alpha) \rightarrow L(\alpha) (5\%), H-1(\alpha) \rightarrow L(\alpha) (3\%),$
				$H(\alpha) \rightarrow L+1(\alpha) (2\%), H-4(\beta) \rightarrow L(\beta) (2\%)$
13	586	17052	0.0771	$H-2(\alpha) \rightarrow L(\alpha) (44\%), H-3(\beta) \rightarrow L(\beta) (8\%),$
				$H-4(\alpha) \rightarrow L(\alpha) (7\%), H-1(\beta) \rightarrow L(\beta) (6\%),$
				$H-2(\beta) \rightarrow L(\beta) (5\%),$
				$H(\alpha) \rightarrow L(\alpha) \ (2\%), H-1(\alpha) \rightarrow L+2(\alpha) \ (2\%),$
				$H(\beta) \rightarrow L+6(\beta) (2\%), H-3(\alpha) \rightarrow L(\alpha) (2\%)$
14	579	17260	0.0208	$\text{H-3}(\alpha) \rightarrow L(\alpha) \text{ (23\%), H-2}(\alpha) \rightarrow L(\alpha) \text{ (14\%),}$
				$H(\beta) \rightarrow L+6(\beta) (6\%), H-4(\alpha) \rightarrow L(\alpha) (5\%),$
				$\text{H-1}(\alpha) \rightarrow \text{L+2}(\alpha) \text{ (5\%), H-2}(\beta) \rightarrow \text{L}(\beta) \text{ (4\%),}$
				$H-14(\alpha) \rightarrow L+2(\alpha) (3\%),$
				$H-21(\alpha) \rightarrow L+2(\alpha) \ (2\%),$

				$H-3(\beta) \rightarrow L(\beta) (2\%), H-8(\beta) \rightarrow L+4(\beta) (2\%),$
				$H-8(\beta) \rightarrow L+6(\beta)$ (2%), $H-15(\alpha) \rightarrow L+2(\alpha)$ (2%),
				$H-1(\beta) \rightarrow L(\beta) (2\%)$
15	575	17405	0.0868	$H-3(\alpha) \rightarrow L(\alpha) (17\%), H-4(\alpha) \rightarrow L(\alpha) (13\%),$
				$H-3(\beta) \rightarrow L(\beta) (10\%), H-1(\alpha) \rightarrow L(\alpha) (8\%),$
				$H-1(\alpha) \rightarrow L+2(\alpha)$ (3%), $H-7(\alpha) \rightarrow L(\alpha)$ (2%),
				$H-21(\alpha) \rightarrow L+2(\alpha)$ (2%), $H-2(\beta) \rightarrow L(\beta)$ (2%),
				$H = 14(\alpha) \rightarrow L + 2(\alpha) (2\%), H = 2(\beta) (2\%), H = 14(\alpha) \rightarrow L + 2(\alpha) (2\%).$
				$H = 15(\alpha) \rightarrow L + 2(\alpha) (2\%)$
				$H_{-8}(B) \rightarrow I_{-6}(B) (2\%) H_{-8}(B) \rightarrow I_{-4}(B) (2\%)$
				$H(\beta) \rightarrow I(\beta) (2\%) H_{-8}(\beta) \rightarrow I + 5(\beta) (2\%)$
				$H(\beta) \rightarrow L(\beta) (270), H 0(\beta) \rightarrow L(\beta) (270), H(\beta) \rightarrow L + 6(\beta) (2%)$
10	523	10108	0 1686	$H(p) \rightarrow L^{+}(p) (270)$ $H A(a) \rightarrow L(a) (30\%) H 5(B) \rightarrow L(B) (20\%)$
19	525	19108	0.1080	$H = (a) \rightarrow L(a) (30\%), H = 3(b) \rightarrow L(b) (20\%),$ $H = 6(b) \rightarrow L(b) (10\%) + 2(b) \rightarrow L(b) (5\%)$
				$H^{0}(p) \rightarrow L(p) (1070), H^{-}(p) \rightarrow L(p) (370),$
				$\Pi(p) \rightarrow L^+0(p) (5\%), \Pi^-\Pi(a) \rightarrow L(a) (2\%),$ $\Pi(p) \rightarrow L^+0(p) (2\%), \Pi^-\Pi(a) \rightarrow L^+\Pi(a) (2\%),$
				$H-\delta(p) \rightarrow L(p) (2\%), H(\alpha) \rightarrow L+I(\alpha) (2\%),$
				$H \xrightarrow{-0}(p) \xrightarrow{-1} \xrightarrow{+2}(p) (2\%), H \xrightarrow{-2}(\alpha) \xrightarrow{-1} \xrightarrow{+0}(\alpha) (2\%)$
20	514	10472	0 1075	$H-3(p) \rightarrow L+2(p) (2\%)$
20	514	19472	0.18/5	$H-3(p) \rightarrow L(p) (19\%),$
				$H-5(\beta) \rightarrow L(\beta) (1/\%), H-4(\alpha) \rightarrow L(\alpha) (1/\%),$
				$H-6(\beta) \rightarrow L(\beta) (6\%), H-4(\beta) \rightarrow L(\beta) (4\%),$
				$H-6(\alpha) \rightarrow L(\alpha) (4\%), H-8(\beta) \rightarrow L+3(\beta) (4\%),$
				$H-1(\alpha) \rightarrow L(\alpha) (4\%), H-8(\beta) \rightarrow L+4(\beta) (2\%),$
				$H-8(\beta) \rightarrow L+2(\beta) (2\%), H-8(\beta) \rightarrow L(\beta) (2\%),$
				$H-7(\alpha) \rightarrow L(\alpha) (2\%), H-8(\alpha) \rightarrow L(\alpha) (2\%)$
21	504	19834	0.0680	$\text{H-3}(\beta) \rightarrow \text{L}(\beta) \text{ (14\%), H-4}(\alpha) \rightarrow \text{L}(\alpha) \text{ (14\%),}$
				$\text{H-8}(\beta) \rightarrow \text{L+3}(\beta) \ (9\%), \text{H-8}(\beta) \rightarrow \text{L+6}(\beta) \ (4\%),$
				$H-8(\beta) \rightarrow L+4(\beta) (4\%), H-2(\beta) \rightarrow L+6(\beta) (3\%),$
				$\text{H-8}(\beta) \rightarrow \text{L+2}(\beta) \ (3\%), \text{H-5}(\beta) \rightarrow \text{L+3}(\beta) \ (3\%),$
				$\text{H-6}(\beta) \rightarrow \text{L}(\beta) \ (2\%), \text{H-3}(\alpha) \rightarrow \text{L+2}(\alpha) \ (2\%),$
				$\text{H-5}(\beta) \rightarrow \text{L}(\beta) \ (2\%), \ \text{H-1}(\beta) \rightarrow \text{L+6}(\beta) \ (2\%),$
				$H-7(\beta) \rightarrow L(\beta) (2\%), H-5(\beta) \rightarrow L+6(\beta) (2\%)$
30	442	22609	0.0214	$H-8(\beta) \rightarrow L(\beta) (56\%), H-7(\beta) \rightarrow L(\beta) (8\%),$
				$H-11(\beta) \rightarrow L(\beta) (5\%), H-5(\beta) \rightarrow L(\beta) (4\%),$
				$H-12(\beta) \rightarrow L(\beta) (4\%), H-1(\beta) \rightarrow L+1(\beta) (3\%),$
				$H-6(\beta) \rightarrow L(\beta) (2\%), H-2(\beta) \rightarrow L+1(\beta) (2\%),$
				$H-6(\alpha) \rightarrow L(\alpha) (2\%)$
32	429	23317	0.0371	$H-9(\beta) \rightarrow L(\beta)$ (18%), $H-12(\beta) \rightarrow L(\beta)$ (18%),
				$H-2(\beta) \rightarrow L+1(\beta)$ (8%), $H-8(\alpha) \rightarrow L(\alpha)$ (7%),
				$H-8(\beta) \rightarrow L(\beta)$ (6%), $H-10(\beta) \rightarrow L(\beta)$ (5%),
				H-11(α) \rightarrow L(α) (5%), H(α) \rightarrow L+1(α) (5%),
				$H-13(\alpha) \rightarrow L(\alpha) (3\%), H-1(B) \rightarrow L+1(B) (3\%).$
				$H-1(\alpha) \rightarrow L+1(\alpha) (3\%), H-5(\beta) \rightarrow L(\beta) (2\%).$
				$H-11(\beta) \rightarrow L(\beta) (2\%)$
33	419	23878	0.1601	$H-1(\beta) \rightarrow L+1(\beta) (27\%), H(\alpha) \rightarrow L+1(\alpha) (21\%)$
				$H-9(B) \rightarrow L(B) (11\%), H-2(B) \rightarrow L+1(B) (7\%).$
				$\overline{\mathbf{u}}$

				H-2(α)→L+1(α) (4%), H-9(α)→L(α) (4%), H(β)→L+1(β) (3%), H-8(α)→L(α) (3%), H-13(β)→L(β) (3%), H-12(β)→L(β) (2%), H-13(β)→L (β) (2%)
34	413	24193	0.0480	H 13(p) $L(p)(270)$ H-1(α) \rightarrow L+1(α)(22%), H-11(α) \rightarrow L(α)(13%), H 0(β) \downarrow L(β)(12%) H 14(β) \downarrow L(β)(10%)
				$H_{1}(p) \rightarrow L(p) (12\%), H_{1}(p) \rightarrow L(p) (10\%), H_{1}(p) \rightarrow L(p) (10\%$
				$H_{-3}(B) \rightarrow L^{+1}(B) (1/0), H_{-13}(B) \rightarrow L(B) (4/0), H_{-3}(B) \rightarrow L^{+1}(B) (4/0), H_{-12}(B) \rightarrow L(B) (3/0)$
				$H_{-10}(\beta) \rightarrow L(\beta) (3\%) H_{-12}(\alpha) \rightarrow L(\alpha) (3\%)$
				$H(\beta) \rightarrow I + 1(\beta) (2\%), H^{-1}Z(\alpha) \rightarrow L(\alpha) (5\%),$
35	409	24468	0.0442	$H_{2}(\beta) \rightarrow I + 1(\beta) (24\%) H_{13}(\beta) \rightarrow I(\beta) (15\%)$
55	109	21100	0.0112	$H^{-1}(\alpha) \rightarrow L(\alpha) (13\%) H^{-1}(\alpha) \rightarrow L(\alpha) (8\%)$
				$H^{-12}(\alpha) \to L(\alpha) (19,0), H^{-11}(\alpha) \to L(\alpha) (0,0), H^{-12}(\alpha) \to L(\beta) (6\%), H^{-2}(\alpha) \to L^{+1}(\alpha) (5\%).$
				$H(\alpha) \rightarrow L+1(\alpha)$ (5%), $H-14(\beta) \rightarrow L(\beta)$ (2%),
				$H-8(\alpha) \rightarrow L(\alpha) (2\%)$
37	400	24971	0.0321	$H-11(\beta) \rightarrow L(\beta) (24\%), H-14(\beta) \rightarrow L(\beta) (10\%),$
				$H-15(\beta) \rightarrow L(\beta) (9\%), H-1(\alpha) \rightarrow L+1(\alpha) (8\%),$
				$H-12(\alpha) \rightarrow L(\alpha)$ (7%), $H-10(\alpha) \rightarrow L(\alpha)$ (5%),
				$H-9(\beta) \rightarrow L(\beta) (4\%), H-18(\alpha) \rightarrow L(\alpha) (4\%),$
				$H-1(\beta) \rightarrow L+1(\beta) (3\%), H-7(\beta) \rightarrow L(\beta) (3\%),$
				$\text{H-8}(\alpha) \rightarrow \text{L}(\alpha) \text{ (3\%), H-14}(\alpha) \rightarrow \text{L}(\alpha) \text{ (2\%),}$
				$\text{H-2}(\beta) \rightarrow \text{L+1}(\beta) \ (2\%), \text{H-2}(\alpha) \rightarrow \text{L+1}(\alpha) \ (2\%)$
38	399	25065	0.1282	H-2(β)→L+1(β) (29%), $H-13(β)→L(β)$ (19%),
				$H-12(\alpha) \rightarrow L(\alpha) (15\%), H-11(\beta) \rightarrow L(\beta) (6\%),$
				$H-1(\beta) \rightarrow L+1(\beta) (5\%), H-3(\alpha) \rightarrow L+1(\alpha) (3\%),$
• •	• • •			$H-11(\alpha) \rightarrow L(\alpha) (2\%), H(\alpha) \rightarrow L+1(\alpha) (2\%)$
39	392	25486	0.3458	H-10(β)→L(β) (38%), H-9(α)→L(α) (35%),
				$H-9(\beta) \rightarrow L(\beta) (6\%), H-13(\alpha) \rightarrow L(\alpha) (6\%),$
40	201	25596	0 1 (1 0	$H-10(\alpha) \rightarrow L(\alpha) (5\%), H-15(\alpha) \rightarrow L(\alpha) (5\%)$ $H-12(\alpha) \rightarrow L(\alpha) (220/) H-15(\alpha) \rightarrow L(\alpha) (120/)$
40	391	23380	0.1018	$\Pi - 15(\alpha) \rightarrow L(\alpha) (22\%), \Pi - 15(\alpha) \rightarrow L(\alpha) (15\%),$ $\Pi = 0(\alpha) \rightarrow L(\alpha) (0\%) \qquad \Pi = 0(\beta) \rightarrow L(\beta) (0\%)$
				$H_{-12}(\alpha) \rightarrow L(\alpha) (5\%), H_{-12}(\alpha) \rightarrow L(\alpha) (5\%), H_{-12}(\alpha) \rightarrow L(\alpha) (5\%)$
				$H^{-12}(\beta) \rightarrow L(\beta) (5\%), H^{-17}(\alpha) \rightarrow L(\alpha) (5\%), H^{-14}(\beta) \rightarrow L(\beta) (5\%), H^{-10}(\alpha) \rightarrow L(\alpha) (5\%)$
				$H^{-1}(\alpha) \to L(\alpha) (4\%), H^{-1}(\beta) \to L(\beta) (4\%),$ $H^{-1}(\alpha) \to L(\alpha) (4\%), H^{-1}(\beta) \to L(\beta) (4\%).$
				$H^{-1}(\alpha) \to L^{+1}(\alpha) (3\%), H^{-1}(\beta) \to L(\beta) (2\%),$
				$H-11(\alpha) \rightarrow L(\alpha) (2\%), H-16(\alpha) \rightarrow L(\alpha) (2\%)$
42	380	26294	0.1705	H-2(α) \rightarrow L+1(α) (52%),
				$H-3(\alpha) \rightarrow L+1(\alpha)$ (16%), $H-1(\beta) \rightarrow L+1(\beta)$ (7%),
				$H-4(\beta) \rightarrow L+1(\beta)$ (3%), $H-13(\beta) \rightarrow L(\beta)$ (2%),
				$H-11(\alpha) \rightarrow L(\alpha) (2\%)$
43	378	26472	0.0256	$H-12(\beta) \rightarrow L(\beta) (27\%), H-14(\alpha) \rightarrow L(\alpha) (21\%),$
				$\text{H-15}(\alpha) \rightarrow \text{L}(\alpha) \text{ (8\%), H-13}(\alpha) \rightarrow \text{L}(\alpha) \text{ (7\%),}$
				$H-11(\alpha) \rightarrow L(\alpha) \ (7\%), H-12(\alpha) \rightarrow L(\alpha) \ (3\%),$
				$H-17(\alpha) \rightarrow L(\alpha) (3\%), H-2(\alpha) \rightarrow L+1(\alpha) (3\%),$
				$H-18(\alpha) \rightarrow L(\alpha) (2\%), H-14(\beta) \rightarrow L(\beta) (2\%),$
				$H-3(\alpha) \rightarrow L+1(\alpha) (2\%)$

45	374	26730	0.1700	H-3(α)→L+1(α) (41%), H-2(α)→L+1(α) (21%), H-3(β)→L+1(β) (12%), H-2(β)→L+1(β) (6%), H-11(α)→L(α) (4%) H-4(α)→L+1(α) (3%)
46	372	26884	0.0354	$\begin{array}{l} H-1(\alpha) \to L(\alpha) \ (1,0), H-1(\alpha) \to L+1(\alpha) \ (5,0) \\ H-3(\beta) \to L+1(\beta) \ (32\%), \\ H-4(\alpha) \to L+1(\alpha) \ (20\%), \\ H-3(\alpha) \to L+1(\alpha) \ (18\%), H-2(\beta) \to L+1(\beta) \ (5\%), \end{array}$
50	360	27791	0.0726	H-11(β)→L(β) (3%), H-11(α)→L(α) (2%), H-1(α)→L+1(α) (2%), H-10(α)→L(α) (2%) H-14(β)→L(β) (33%), H-4(α)→L+1(α) (15%),
				H-13(α)→L(α) (15%), H-12(α)→L(α) (12%), H-11(α)→L(α) (7%), H-5(α)→L+1(α) (4%), H-3(β)→L+1(β) (2%), H-5(β)→L+1(β) (2%), H 12(β)→L(β) (2%)
51	357	28043	0.0347	H-12(p)→L(p) (270) H-5(α)→L+1(α) (68%), H-14(β)→L(β) (3%), H(α)→L+2(α) (3%), H-5(β)→L+1(β) (2%), H-15(β)→L(β) (2%), H-12(α)→L(α) (2%),
52	354	28220	0.0935	H-4(β)→L+1(β) (2%) H-5(β)→L+1(β) (18%), H-4(α)→L+1(α) (15%),
				$\begin{array}{l} \text{H-3(\beta)} \rightarrow L+1(\beta) \ (10\%), \ \text{H-6(\beta)} \rightarrow L+1(\beta) \ (6\%), \\ \text{H-14(\beta)} \rightarrow L(\beta) \ (6\%), \ \text{H-5(\alpha)} \rightarrow L+1(\alpha) \ (6\%), \\ \text{H-13(\alpha)} \rightarrow L(\alpha) \ (5\%), \ \text{H-6(\alpha)} \rightarrow L(\alpha) \ (4\%), \end{array}$
53	353	28321	0.0650	H-15(β)→L(β) (4%), H-1(α)→L+1(α) (3%) H-18(α)→L(α) (45%), H-15(β)→L(β) (30%), H-10(α)→L(α) (3%), H-5(β)→L+1(β) (2%),
55	350	28610	0.0679	H-/(α)→L+1(α) (2%), H-21(β)→L(β) (2%) H-4(α)→L+1(α) (18%), H-6(α)→L+1(α) (17%), H 5(β)→L+1(β) (16%)
				H-3(β)→L+1(β) (16%), H-3(β)→L+1(β) (14%), H-4(β)→L+1(β) (2%), H-12(α)→L(α) (2%), H-6(α)→L+5(α) (2%), H-14(β)→L (β) (2%)
58	341	29359	0.0277	$\begin{array}{l} H_{-5}(\alpha) \rightarrow L^{+} 3(\alpha) (2\%), H_{-1}(\beta) \rightarrow L(\beta) (2\%) \\ H(\alpha) \rightarrow L^{+} 2(\alpha) (54\%), H_{-2}(\alpha) \rightarrow L^{+} 2(\alpha) (16\%), \\ H_{-5}(\alpha) \rightarrow L^{+} 2(\alpha) (7\%), H_{-5}(\alpha) \rightarrow L^{+} 1(\alpha) (2\%), \\ H_{-3}(\alpha) \rightarrow L^{+} 2(\alpha) (2\%), H_{-1} 8(\alpha) \rightarrow L^{+} 2(\alpha) (2\%) \end{array}$
60	335	29855	0.0283	H-21(α)→L(α) (42%), H-21(β)→L(β) (16%), H-23(β)→L(β) (13%), H-22(α)→L(α) (4%), H-19(β)→L(β) (3%), H(β)→L+2(β) (3%),
70	320	31250	0.0266	H-10(β)→L+1(β) (2%), H-9(β)→L+1(β) (2%) H-7(α)→L+1(α) (43%), H-7(β)→L+1(β) (15%),
72	317	31585	0.0256	H-6(β)→L+1(β) (12%), H-6(α)→L+1(α) (3%), H-4(α)→L+1(α) (2%), H-8(β)→L+1(β) (2%) H-7(β)→L+1(β) (26%), H-8(β)→L+1(β) (9%), H(β)→L+2(β) (8%), H-7(α)→L+1(α) (5%),

$H(\beta) \rightarrow L+3(\beta) (4\%), H-2(\beta) \rightarrow L+2(\beta) (3\%),$
H-8(α) \rightarrow L+1(α) (3%), H-11(β) \rightarrow L+1(β) (3%),
$H-12(\beta) \rightarrow L+1(\beta) (3\%), H-6(\alpha) \rightarrow L+1(\alpha) (2\%)$

Co_1TA_OptFreqPlus

	Excited	Wavelength	Energy	Oscillator	% Contributions
_	State	(nm)	(<i>cm</i> ⁻¹)	Strength, f	
	8	727	13749	0.0486	$H-2(\beta) \rightarrow L(\beta) (28\%), H(\alpha) \rightarrow L(\alpha) (12\%),$
					$H-1(\beta) \rightarrow L(\beta) (12\%), H(\alpha) \rightarrow L+2(\alpha) (10\%),$
					$H-5(\alpha) \rightarrow L+2(\alpha) \ (7\%), H(\beta) \rightarrow L(\beta) \ (6\%),$
					$H-2(\alpha) \rightarrow L+2(\alpha)$ (5%), $H-1(\alpha) \rightarrow L(\alpha)$ (4%),
					$H-20(\alpha) \rightarrow L+2(\alpha) (3\%), H-14(\alpha) \rightarrow L+2(\alpha) (2\%)$
	9	689	14518	0.0349	$H-2(\alpha) \rightarrow L(\alpha) (28\%), H-5(\alpha) \rightarrow L+2(\alpha) (12\%),$
					$H-1(\beta) \rightarrow L(\beta) \ (11\%), \ H(\alpha) \rightarrow L(\alpha) \ (11\%),$
					$\text{H-2}(\alpha) \rightarrow \text{L+2}(\alpha) \ (9\%), \text{H-2}(\beta) \rightarrow \text{L}(\beta) \ (7\%),$
					$H(\beta) \rightarrow L(\beta) (5\%), H-20(\alpha) \rightarrow L+2(\alpha) (4\%),$
					$\text{H-14}(\alpha) \rightarrow \text{L+2}(\alpha) \text{ (3\%), H-3}(\alpha) \rightarrow \text{L}(\alpha) \text{ (2\%),}$
					$\text{H-7}(\alpha) \rightarrow \text{L+2}(\alpha) \ (2\%), \ \text{H-2}(\alpha) \rightarrow \text{L}(\alpha) \ (2\%)$
	10	657	15216	0.0486	$H-2(\beta) \rightarrow L(\beta) (35\%), H-1(\beta) \rightarrow L(\beta) (16\%),$
					$H(\alpha) \rightarrow L(\alpha) (15\%), H-2(\alpha) \rightarrow L(\alpha) (12\%),$
					$H-1(\alpha) \rightarrow L(\alpha) (9\%), H-5(\alpha) \rightarrow L(\alpha) (3\%)$
	11	628	15920	0.0825	$H-1(\alpha) \rightarrow L(\alpha) (40\%), H-4(\beta) \rightarrow L(\beta) (16\%),$
					$H-2(\beta) \rightarrow L(\beta) \ (11\%), H(\beta) \rightarrow L(\beta) \ (9\%),$
					$H-2(\alpha) \rightarrow L(\alpha) (3\%), H-1(\beta) \rightarrow L(\beta) (3\%)$
	12	592	16880	0.0710	$H-3(\alpha) \rightarrow L(\alpha) (32\%), H-2(\alpha) \rightarrow L(\alpha) (28\%),$
					$H-4(\beta) \rightarrow L(\beta) (11\%), H-1(\alpha) \rightarrow L(\alpha) (8\%),$
					$H-1(\alpha) \rightarrow L(\alpha) (4\%), H(\beta) \rightarrow L(\beta) (3\%),$
					$H-4(\alpha) \rightarrow L(\alpha) (2\%), H-1(\beta) \rightarrow L(\beta) (2\%),$
					$H(\alpha) \rightarrow L+1(\alpha) (2\%)$
	14	569	17564	0.0736	$H-2(\alpha) \rightarrow L(\alpha) (44\%), H-3(\alpha) \rightarrow L(\alpha) (14\%),$
					$H-1(\beta) \rightarrow L(\beta) (9\%), H-4(\beta) \rightarrow L(\beta) (7\%),$
					$H-2(\beta) \rightarrow L(\beta) (6\%), H-4(\alpha) \rightarrow L(\alpha) (4\%)$
	15	556	17976	0.0892	$\text{H-3}(\alpha) \rightarrow L(\alpha) \text{ (30\%), H-4}(\alpha) \rightarrow L(\alpha) \text{ (14\%),}$
					$H-4(\beta) \rightarrow L(\beta) (9\%), H-1(\alpha) \rightarrow L(\alpha) (6\%),$
					$\text{H-7}(\alpha) \rightarrow L(\alpha) \text{ (5\%), H-3}(\beta) \rightarrow L(\beta) \text{ (3\%),}$
					$H-2(\beta) \rightarrow L(\beta) (3\%), H-5(\beta) \rightarrow L(\beta) (3\%),$
					$H-5(\alpha) \rightarrow L(\alpha) (3\%), H(\beta) \rightarrow L+6(\beta) (2\%),$
					$H-3(\alpha) \rightarrow L+2(\alpha) (2\%), H-2(\beta) \rightarrow L+6(\beta) (2\%)$
	18	511	19552	0.1012	$\text{H-5}(\alpha) \rightarrow \text{L}(\alpha) \ (23\%), \text{H-7}(\beta) \rightarrow \text{L+3}(\beta) \ (5\%),$
					$H-9(\beta) \rightarrow L+3(\beta) (5\%), H-4(\beta) \rightarrow L(\beta) (5\%),$
					$H-1(\alpha) \rightarrow L(\alpha) (4\%), H-4(\alpha) \rightarrow L(\alpha) (4\%),$
					$H-15(\alpha) \rightarrow L+2(\alpha) (3\%), H-9(\beta) \rightarrow L+6(\beta) (3\%),$
					$H-3(\alpha) \rightarrow L(\alpha) (3\%), H-2(\beta) \rightarrow L+6(\beta) (2\%),$
					H-7(β) → L+6(β) (2%), H-5(β) → L+3(β) (2%),
					$H-18(\alpha) \rightarrow L+2(\alpha) (2\%), H-3(\alpha) \rightarrow L+2(\alpha) (2\%),$

				$H-5(\beta) \rightarrow L(\beta) (2\%), H-7(\beta) \rightarrow L+4(\beta) (2\%),$
10	5 00	10(70	0.0440	$H-7(\beta) \rightarrow L+2(\beta) (2\%), H-5(\beta) \rightarrow L+6(\beta) (2\%)$
19	508	19672	0.0662	$H-5(\alpha) \rightarrow L(\alpha) (52\%), H-4(\alpha) \rightarrow L(\alpha) (14\%),$
				$H-6(\beta) \rightarrow L(\beta) (4\%), H-5(\beta) \rightarrow L(\beta) (3\%),$
				$H-2(\alpha) \rightarrow L(\alpha)$ (2%), $H-2(\beta) \rightarrow L(\beta)$ (2%),
	10.1			$H(\beta) \rightarrow L+1(\beta) (2\%)$
21	491	20378	0.0973	$H-4(\alpha) \rightarrow L(\alpha) (20\%), H-4(\beta) \rightarrow L(\beta) (8\%),$
				$H^{-/}(\beta) \rightarrow L^{+}6(\beta) (5\%), H^{-}18(\alpha) \rightarrow L^{+}2(\alpha) (5\%),$
				$H-15(\alpha) \rightarrow L+2(\alpha) (4\%),$
				$H-16(\alpha) \rightarrow L+2(\alpha) (4\%),$
				$H-9(\beta) \rightarrow L+6(\beta) (3\%), H-7(\alpha) \rightarrow L+2(\alpha) (3\%),$
				$H-5(\beta) \rightarrow L+6(\beta) (3\%), H-6(\beta) \rightarrow L+6(\beta) (2\%),$
				$H-8(\alpha) \rightarrow L+2(\alpha) (2\%), H-4(\alpha) \rightarrow L+2(\alpha) (2\%),$
~~	40.1	20202	0 1 4 1 0	$H-4(\beta) \rightarrow L+6(\beta) (2\%)$
22	491	20383	0.1412	$H-4(\beta) \rightarrow L(\beta) (25\%),$
				$H-7(\alpha) \rightarrow L(\alpha) (14\%), H-6(\alpha) \rightarrow L(\alpha) (10\%),$
				$H-5(\beta) \rightarrow L(\beta) (10\%), H-4(\alpha) \rightarrow L(\alpha) (6\%),$
				H-6(β)→L(β) (6%), H-/(β)→L(β) (4%),
24	471	01040	0.0000	$H-2(\beta) \rightarrow L+I(\beta) (2\%)$
24	4/1	21243	0.0202	$H-6(\alpha) \rightarrow L(\alpha) (26\%), H-6(\beta) \rightarrow L(\beta) (21\%),$
				$H^{-}(\beta) \rightarrow L(\beta) (14\%), H^{-4}(\alpha) \rightarrow L(\alpha) (5\%),$
				$H(\beta) \rightarrow L+1(\beta) (5\%), H-9(\beta) \rightarrow L(\beta) (5\%),$
20	120	22226	0.0244	$H-1(\beta) \rightarrow L+1(\beta) (3\%), H-3(\alpha) \rightarrow L(\alpha) (2\%)$
29	430	23236	0.0244	$H-9(\alpha) \rightarrow L(\alpha) (24\%), H-10(\beta) \rightarrow L(\beta) (16\%),$
				$H(p) \rightarrow L^{+1}(p) (15\%), H^{-8}(p) \rightarrow L(p) (11\%),$
				$H-8(\alpha) \rightarrow L(\alpha) (6\%), H-9(p) \rightarrow L(p) (6\%),$
				$H(\alpha) \rightarrow L+I(\alpha) (2\%), H-IU(\alpha) \rightarrow L(\alpha) (2\%),$ $H(\alpha) \rightarrow L+I(\alpha) (2\%), H(\alpha) \rightarrow L(\alpha) (2\%),$
22	416	24050	0 2210	$\Pi^{-1}(p) \rightarrow L^{+1}(p) (2\%), \Pi^{-7}(p) \rightarrow L(p) (2\%)$ $\Pi^{-1}(p) \rightarrow L^{+1}(p) (2\%), \Pi^{-7}(p) \rightarrow L^{+1}(p) (2\%)$
32	410	24039	0.2310	$\Pi^{-1}(p) \rightarrow L^{+1}(p) (25\%), \Pi(\alpha) \rightarrow L^{+1}(\alpha) (22\%),$ $\Pi^{-1}(p) \rightarrow L(\beta) (14\%) \rightarrow \Pi^{-1}(\beta) \rightarrow L(\beta) (5\%)$
				$H^{-9}(p) \rightarrow L(p) (14\%), H^{-11}(p) \rightarrow L(p) (5\%),$ $H^{-2}(q) \rightarrow L^{+1}(q) (4\%) H^{-2}(R) \rightarrow L^{+1}(R) (4\%)$
				$H^{2}(\alpha) \rightarrow L^{+}I(\alpha) (4\%), H^{2}(\beta) \rightarrow L^{+}I(\beta) (4\%),$ $H^{2}(\alpha) \rightarrow L(\alpha) (2\%) H(\beta) \rightarrow L^{+}I(\beta) (2\%)$
				$H = O(\alpha) \rightarrow L(\alpha) (3\%), H(\beta) \rightarrow L^+ I(\beta) (3\%),$ $H = O(\alpha) \rightarrow L(\alpha) (3\%) + I(\beta) (3\%)$
				$H = G(R) \rightarrow L(R) (2\%), H = IO(P) \rightarrow L(P) (2\%),$ H = G(R) $\rightarrow L(R) (2\%) + S(R) \rightarrow L(R) (2\%)$
3/	405	24670	0.0371	$H_{11(\alpha)} \to L(\alpha) (21\%) H_{2(\beta)} \to L(\beta) (27\%)$
34	403	24070	0.0371	$H = 11(\alpha) \rightarrow L(\alpha) (2170), H = 0(p) \rightarrow L(p) (2070),$ $H = 13(\beta) \rightarrow L(\beta) (14\%) H = 1(\alpha) \rightarrow L + 1(\alpha) (10\%)$
				$H_{-12}(p) \to L(p) (1470), H_{-12}(k) \to L(k) (1070), H_{-8}(q) \to L(q) (6\%) H_{-12}(k) \to L(k) (4\%)$
				$H_{-10}(R) \rightarrow L(R) (3\%) H_{-4}(R) \rightarrow L(P) (4\%),$
				$H_{1}(\beta) \rightarrow I_{1}(\beta) (2\%), H_{1}(\beta) \rightarrow I_{1}(\beta) (3\%), H_{1}(\beta) \rightarrow I_{1}(\beta) (2\%), H_{1}(\beta) \rightarrow I_{1}(\beta) (2\%)$
37	395	25306	0 0964	$H_{2}(B) \rightarrow I + 1(B) (33\%) H_{2}(B) \rightarrow I(B) (18\%)$
57	575	25500	0.0704	$H_{2}(p) \to H_{1}(p) (5570), H_{1}(p) \to L(p) (1070),$ $H_{1}(q) \to L(q) (16\%) H_{1}(q) \to L(q) (5\%)$
				$H^{-1}(\alpha) \to L(\alpha) (10\%), H^{-1}(\alpha) \to L(\alpha) (5\%),$ $H^{-1}(\beta) \to L^{+1}(\beta) (4\%) H^{-2}(\alpha) \to L^{+1}(\alpha) (3\%)$
				$H-3(\alpha) \rightarrow L+1(\alpha) (2\%), H(\alpha) \rightarrow L+1(\alpha) (2\%), H(\alpha) \rightarrow L+1(\alpha) (2\%)$
38	390	25631	0.3809	$H-9(\alpha) \rightarrow L(\alpha)$ (36%), $H-8(\beta) \rightarrow L(\beta)$ (27%)
20	270		0.2007	$H = 10(B) \rightarrow L(B) (16\%), H = 13(B) \rightarrow L(B) (8\%)$
				$H-12(\beta) \rightarrow L(\beta) (2\%), H-10(\alpha) \rightarrow L(\alpha) (2\%)$
				(2,0)

39	388	25744	0.0589	H-10(β)→L(β) (30%), H-13(β)→L(β) (18%), H-8(β)→L(β) (9%), H-13(α)→L(α) (8%), H-14(α)→L(α) (7%), H-1(α)→L+1(α) (4%), H-9(α)→L(α) (4%), H-12(β)→L(β) (3%), H-12(α)→L(α) (3%), H-8(α)→L(α) (2%), H-11(α)→L(α) (2%), H-10(α)→L(α) (2%), H 15(α)→L(α) (2%)
40	383	26077	0.0643	$\begin{array}{l} H-15(\alpha) \rightarrow L(\alpha) (2\%) \\ H-15(\alpha) \rightarrow L(\alpha) (36\%), H-13(\alpha) \rightarrow L(\alpha) (18\%), \\ H-12(\beta) \rightarrow L(\beta) (14\%), H-10(\alpha) \rightarrow L(\alpha) (7\%), \\ H-10(\beta) \rightarrow L(\beta) (4\%), H-9(\beta) \rightarrow L(\beta) (4\%), \\ H-15(\beta) \rightarrow L(\beta) (3\%), H-12(\alpha) \rightarrow L(\alpha) (3\%), \\ H-14(\beta) \rightarrow L(\beta) (2\%) \end{array}$
41	379	26386	0.1384	H 11(β) \rightarrow L(β) (2%) H-2(α) \rightarrow L+1(α) (34%), H-11(β) \rightarrow L(β) (9%), H-9(β) \rightarrow L(β) (7%), H-10(α) \rightarrow L(α) (7%), H-15(β) \rightarrow L(β) (7%), H-3(α) \rightarrow L+1(α) (6%), H-4(β) \rightarrow L+1(β) (3%), H-1(β) \rightarrow L+1(β) (3%), H-16(α) \rightarrow L(α) (2%), H-2(β) \rightarrow L+1(β) (2%), H-7(β) \rightarrow L(β) (2%), H-12(β) \rightarrow L(β) (2%), H-3(β) \rightarrow L+2(β) (2%),
43	377	26542	0.1567	H 12(p) \rightarrow L(p) (2%), H 3(p) \rightarrow L 2(p) (2%) H-2(a) \rightarrow L+1(a) (28%), H-10(a) \rightarrow L(a) (16%), H-11(β) \rightarrow L(β) (16%), H-15(β) \rightarrow L(β) (6%), H-1(β) \rightarrow L+1(β) (6%), H-9(β) \rightarrow L(β) (4%), H-9(a) \rightarrow L(a) (3%), H-16(a) \rightarrow L(a) (2%), H-13(a) \rightarrow L(a) (2%), H-12(β) \rightarrow L(β) (2%)
45	369	27112	0.0635	H 12(β) \rightarrow L(β) (21%) H-11(β) \rightarrow L(β) (21%), H-4(β) \rightarrow L+1(β) (13%), H-3(α) \rightarrow L+1(α) (10%), H-15(β) \rightarrow L(β) (7%), H-13(α) \rightarrow L(α) (6%), H-15(α) \rightarrow L(α) (6%), H-2(α) \rightarrow L+1(α) (5%), H-11(α) \rightarrow L(α) (4%), H-14(α) \rightarrow L(α) (4%), H-12(β) \rightarrow L(β) (4%), H-4(α) \rightarrow L+1(α) (3%)
46	366	27303	0.0674	$\begin{array}{l} H^{-1}(\alpha) \to L^{+1}(\alpha) (5\%) \\ H^{-3}(\alpha) \to L^{+1}(\alpha) (49\%), \\ H^{-2}(\beta) \to L^{+1}(\beta) (10\%), \\ H^{-15}(\beta) \to L(\beta) (10\%), \\ H^{-11}(\beta) \to L(\beta) (4\%), \\ H^{-2}(\alpha) \to L^{+1}(\alpha) (3\%), \\ H^{-15}(\alpha) \to L(\alpha) (2\%) \end{array}$
48	362	27590	0.0286	$H^{-2}(\alpha) \to L^{+1}(\alpha) (2\%), H^{-1}(\alpha) \to L(\alpha) (2\%)$ $H^{-3}(\beta) \to L^{+1}(\beta) (86\%), H^{-4}(\beta) \to L^{+1}(\beta) (5\%),$ $H^{-4}(\alpha) \to L^{+1}(\alpha) (2\%)$
49	359	27828	0.0230	H $(\alpha) \rightarrow L^{+1}(\alpha) (276)$ H $-14(\beta) \rightarrow L(\beta) (26\%), H-11(\alpha) \rightarrow L(\alpha) (18\%),$ H $-13(\alpha) \rightarrow L(\alpha) (15\%), H-13(\beta) \rightarrow L(\beta) (11\%),$ H $-12(\alpha) \rightarrow L(\alpha) (9\%), H-12(\beta) \rightarrow L(\beta) (6\%),$ H $-3(\beta) \rightarrow L+1(\beta) (3\%), H-17(\beta) \rightarrow L(\beta) (2\%),$ H $-4(\alpha) \rightarrow L+1(\alpha) (2\%)$
50	358	27968	0.0530	H-12(α)→L(α) (33%), H-14(β)→L(β) (17%), H-13(β)→L(β) (11%), H-15(β)→L(β) (8%), H-4(α)→L+1(α) (7%), H-11(α)→L(α) (4%),

51	354	28271	0.0739	H-3(α)→L+1(α) (4%), H-13(α)→L(α) (2%), H-15(α)→L(α) (2%) H-14(α)→L(α) (31%), H-13(β)→L(β) (11%), H-13(α)→L(α) (10%), H-17(β)→L(β) (7%), H-15(β)→L(β) (6%), H-15(α)→L(α) (6%), H-16(α)→L(α) (6%), H-11(α)→L(α) (4%),
53	349	28647	0.0680	H-4(α)→L+1(α) (4%), H-14(β)→L(β) (2%), H-18(α)→L(α) (2%) H-5(β)→L+1(β) (24%), H-4(α)→L+1(α) (18%), H-6(α)→L+1(α) (7%), H-4(β)→L+1(β) (7%), H-16(α)→L(α) (5%) H-6(β)→L+1(β) (3%)
56	345	29012	0.0716	$\begin{array}{l} H^{-1}(\alpha) \rightarrow L(\alpha) \ (5\%), \ H^{-0}(\beta) \rightarrow L^{+1}(\beta) \ (5\%), \\ H^{-1}(\alpha) \rightarrow L^{+1}(\alpha) \ (3\%), \ H^{-5}(\beta) \rightarrow L^{+7}(\beta) \ (2\%) \\ H^{-4}(\alpha) \rightarrow L^{+1}(\alpha) \ (20\%), \\ H^{-4}(\beta) \rightarrow L^{+1}(\beta) \ (17\%), \\ H^{-6}(\alpha) \rightarrow L^{+1}(\alpha) \ (14\%), \ H^{-5}(\beta) \rightarrow L^{+1}(\beta) \ (6\%), \\ H^{-6}(\beta) \rightarrow L^{+1}(\beta) \ (5\%), \ H^{-3}(\alpha) \rightarrow L^{+1}(\alpha) \ (2\%), \\ H^{-12}(\beta) \rightarrow L^{+1}(\beta) \ (2\%), \ H^{-12}(\alpha) \rightarrow L^{+1}(\alpha) \ (2\%), \end{array}$
57	341	29304	0.0592	$\begin{array}{l} H-13(p) \rightarrow L(p) (2\%), H-13(a) \rightarrow L(a) (2\%), \\ H-1(a) \rightarrow L+1(a) (2\%) \\ H(a) \rightarrow L+2(a) (36\%), H-5(a) \rightarrow L+1(a) (21\%), \\ H-2(a) \rightarrow L+2(a) (16\%), H-5(a) \rightarrow L+2(a) (6\%), \\ H-14(a) \rightarrow L+2(a) (2\%), H-3(a) \rightarrow L+2(a) (2\%), \end{array}$
67	314	31884	0.0288	H-2(β)→L+1(β) (2%) H-7(α)→L+1(α) (28%), H-6(β)→L+1(β) (26%), H-7(β)→L+1(β) (21%), H-16(β)→L(β) (4%),
68	312	32089	0.0341	H-1(α)→L+2(α) (2%) H(β)→L+2(β) (13%), H(β)→L+3(β) (9%), H-7(α)→L+1(α) (7%), H-2(β)→L+2(β) (6%), H-7(β)→L+1(β) (5%), H-9(β)→L+1(β) (4%), H-11(β)→L+1(β) (3%), H-8(β)→L+1(β) (3%), H-1(β)→L+2(β) (2%), H-12(β)→L+1(β) (2%), H 6(α)→L+1(α) (2%) H 11(α)→L+1(α) (2%)
72	307	32521	0.0384	$\begin{array}{l} H(\beta) \rightarrow L + 1(\alpha) (2\%), H-11(\alpha) \rightarrow L + 1(\alpha) (2\%), \\ H(\beta) \rightarrow L + 5(\beta) (2\%) \\ H-1(\beta) \rightarrow L + 2(\beta) (24\%), H(\alpha) \rightarrow L + 3(\alpha) (19\%), \\ H(\beta) \rightarrow L + 2(\beta) (10\%), H-1(\alpha) \rightarrow L + 2(\alpha) (7\%), \\ H-4(\alpha) \rightarrow L + 2(\alpha) (3\%), H-10(\beta) \rightarrow L + 1(\beta) (3\%), \\ H-2(\beta) \rightarrow L + 3(\beta) (2\%), H-7(\beta) \rightarrow L + 1(\beta) (2\%), \\ H-9(\alpha) \rightarrow L + 1(\alpha) (2\%) \end{array}$

Co_1TA_TD70

Excited	Wavelength	Energy	Oscillator	% Contributions
State	(nm)	(cm^{-1})	Strength, f	
8	722	13847	0.0479	$H-2(\beta) \rightarrow L(\beta) (29\%), H-1(\beta) \rightarrow L(\beta) (14\%),$
				$H(\alpha) \rightarrow L(\alpha) (12\%), H(\alpha) \rightarrow L+2(\alpha) (8\%),$

9	680	14702	0.0252	$\begin{array}{c} H-2(\alpha) \rightarrow L+2(\alpha) \ (7\%), \ H-1(\alpha) \rightarrow L(\alpha) \ (5\%), \\ H(\beta) \rightarrow L(\beta) \ (4\%), \ H-5(\alpha) \rightarrow L+2(\alpha) \ (4\%), \\ H-19(\alpha) \rightarrow L+2(\alpha) \ (3\%), \ H-15(\alpha) \rightarrow L+2(\alpha) \ (2\%) \\ H(\alpha) \rightarrow L+2(\alpha) \ (19\%), \ H-2(\alpha) \rightarrow L+2(\alpha) \ (15\%), \\ H-2(\beta) \rightarrow L(\beta) \ (10\%), \ H-1(\beta) \rightarrow L(\beta) \ (8\%), \\ H-5(\alpha) \rightarrow L+2(\alpha) \ (8\%), \ H(\alpha) \rightarrow L(\alpha) \ (7\%), \\ H-19(\alpha) \rightarrow L+2(\alpha) \ (5\%), \\ H-15(\alpha) \rightarrow L+2(\alpha) \ (4\%), \\ H(\beta) \rightarrow L(\beta) \ (3\%), \ H-3(\alpha) \rightarrow L+2(\alpha) \ (3\%), \\ H 2(\alpha) \rightarrow L(\alpha) \ (2\%) \end{array}$
10	649	15415	0.0831	$\begin{array}{l} H-5(\alpha) \to L(\alpha) (2\%) \\ H-2(\beta) \to L(\beta) (23\%), H-1(\beta) \to L(\beta) (23\%), \\ H(\alpha) \to L(\alpha) (18\%), H-1(\alpha) \to L(\alpha) (14\%), \\ H (2(\pi) \to L(\alpha) (11\%)) H (5(\pi) \to L(\alpha) (2\%)) \end{array}$
11	627	15946	0.0887	H-2(α)→L(α) (11%), H-3(α)→L(α) (2%) H-1(α)→L(α) (38%), H-2(β)→L(β) (18%), H(β)→L(β) (10%), H-3(β)→L(β) (7%), H-4(β)→L(β) (4%), H-2(α)→L(α) (3%), H -(α)→L(α) (2%) H(α)→L(α) (2%)
12	588	17004	0.0299	$\begin{array}{l} H-6(\alpha) \to L(\alpha) \ (3\%), \ H(\alpha) \to L^{+1}(\alpha) \ (2\%) \\ H-3(\alpha) \to L(\alpha) \ (47\%), \ H-2(\alpha) \to L(\alpha) \ (10\%), \\ H-3(\beta) \to L(\beta) \ (9\%), \ H-4(\beta) \to L(\beta) \ (8\%), \\ H-4(\alpha) \to L(\alpha) \ (6\%), \ H-1(\alpha) \to L(\alpha) \ (3\%), \\ H-6(\pi) \to L(\pi) \ (2\%) \ H(\pi) \to L^{+1}(\pi) \ (2\%) \end{array}$
14	561	17822	0.0768	$\begin{array}{l} H-0(\alpha) \to L(\alpha) (5\%), H(\alpha) \to L^{+1}(\alpha) (2\%) \\ H-2(\alpha) \to L(\alpha) (61\%), H-3(\alpha) \to L(\alpha) (11\%), \\ H-2(\beta) \to L(\beta) (9\%), H-1(\beta) \to L(\beta) (6\%), \\ H(\alpha) \to L(\alpha) (2\%) H^{-2}(\beta) \to L(\beta) (2\%) \end{array}$
15	558	17916	0.1041	$\begin{array}{l} H(\alpha) \to L(\alpha) \ (5\%), \ H-3(\beta) \to L(\beta) \ (2\%) \\ H-3(\alpha) \to L(\alpha) \ (26\%), \ H-4(\alpha) \to L(\alpha) \ (16\%), \\ H-3(\beta) \to L(\beta) \ (15\%), \ H-1(\alpha) \to L(\alpha) \ (9\%), \\ H-7(\alpha) \to L(\alpha) \ (5\%), \ H-4(\beta) \to L(\beta) \ (4\%), \\ H-2(\alpha) \to L(\alpha) \ (4\%), \ H-1(\beta) \to L(\beta) \ (2\%), \end{array}$
19	509	19665	0.1215	H-5(β)→L(β) (2%), H-2(β)→L(β) (2%) H-5(α)→L(α) (19%), H-4(α)→L(α) (11%), H-4(β)→L(β) (6%), H-5(β)→L(β) (5%), H-8(β)→L+3(β) (5%), H-8(β)→L+6(β) (4%), H-3(α)→L+2(α) (3%), H-17(α)→L+2(α) (3%), H 14(α)→L+2(α) (2%) H(β)→L+1(β) (2%)
21	489	20460	0.0210	$\begin{array}{l} H-14(\alpha) \rightarrow L+2(\alpha) \ (5\%), \ H(\beta) \rightarrow L+1(\beta) \ (5\%), \\ H-2(\beta) \rightarrow L+6(\beta) \ (3\%), \ H-1(\alpha) \rightarrow L(\alpha) \ (2\%), \\ H-5(\beta) \rightarrow L+6(\beta) \ (2\%), \ H-5(\beta) \rightarrow L+3(\beta) \ (2\%), \\ H(\beta) \rightarrow L+6(\beta) \ (2\%), \ H-6(\alpha) \rightarrow L+2(\alpha) \ (2\%), \\ H(\beta) \rightarrow L(\beta) \ (2\%), \ H-2(\alpha) \rightarrow L(\alpha) \ (2\%) \\ H-4(\alpha) \rightarrow L(\alpha) \ (12\%), \ H-8(\beta) \rightarrow L+6(\beta) \ (6\%), \\ H-7(\alpha) \rightarrow L(\alpha) \ (5\%), \ H-6(\beta) \rightarrow L(\beta) \ (5\%), \\ H-5(\beta) \rightarrow L(\beta) \ (4\%), \ H-16(\alpha) \rightarrow L+2(\alpha) \ (4\%), \\ H-14(\alpha) \rightarrow L+2(\alpha) \ (3\%), \ H-7(\alpha) \rightarrow L+2(\alpha) \ (3\%), \\ H-5(\beta) \rightarrow L+6(\beta) \ (3\%), \ H-7(\beta) \rightarrow L(\beta) \ (3\%), \\ H-17(\alpha) \rightarrow L+2(\alpha) \ (3\%), \ H-1(\beta) \rightarrow L+6(\beta) \ (2\%), \end{array}$
22	487	20544	0.2231	H-6(α)→L(α) (2%), H-4(α)→L+2(α) (2%) H-3(β)→L(β) (17%), H-4(β)→L(β) (15%),

				$H-4(\alpha) \rightarrow L(\alpha) (14\%), H-7(\alpha) \rightarrow L(\alpha) (11\%),$
				$H-5(\beta) \rightarrow L(\beta) (8\%), H-6(\alpha) \rightarrow L(\alpha) (6\%),$
				$\text{H-6}(\beta) \rightarrow \text{L}(\beta) \text{ (5\%), H-7}(\beta) \rightarrow \text{L}(\beta) \text{ (4\%),}$
				$H-8(\alpha) \rightarrow L(\alpha) (3\%), H-1(\alpha) \rightarrow L(\alpha) (2\%)$
23	476	21010	0.0300	$H-5(\beta) \rightarrow L(\beta) (23\%), H-6(\beta) \rightarrow L(\beta) (13\%),$
				H-7(β)→L(β) (9%), H-7(α)→L(α) (7%),
				$H-4(\alpha) \rightarrow L(\alpha)$ (7%), $H-6(\alpha) \rightarrow L(\alpha)$ (5%),
				$H(\beta) \rightarrow L+1(\beta)$ (4%), $H-8(\alpha) \rightarrow L(\alpha)$ (3%),
				$H(\alpha) \rightarrow L+1(\alpha)$ (2%), $H-8(\beta) \rightarrow L(\beta)$ (2%),
				$H-5(\alpha) \rightarrow L(\alpha) (2\%)$
24	469	21342	0.0225	$H(\beta) \rightarrow L+1(\beta)$ (28%), $H-6(\alpha) \rightarrow L(\alpha)$ (14%),
				$H-6(\beta) \rightarrow L(\beta) (11\%), H-7(\beta) \rightarrow L(\beta) (7\%),$
				$H-8(\beta) \rightarrow L(\beta)$ (4%), $H(\alpha) \rightarrow L+1(\alpha)$ (4%),
				$H-5(\beta) \rightarrow L(\beta) (4\%), H-4(\alpha) \rightarrow L(\alpha) (2\%),$
				H-10(B) \rightarrow L(B) (2%), H-1(α) \rightarrow L+1(α) (2%),
				$H-3(\beta) \rightarrow L(\beta) (2\%), H-4(\beta) \rightarrow L(\beta) (2\%),$
				$H-8(\alpha) \rightarrow L(\alpha)$ (2%), $H-9(\beta) \rightarrow L(\beta)$ (2%)
30	430	23255	0.0265	$H-8(B) \rightarrow L(B) (24\%), H-9(\alpha) \rightarrow L(\alpha) (11\%).$
				$H-10(B) \rightarrow L(B) (10\%), H-7(B) \rightarrow L(B) (8\%),$
				$H(B) \rightarrow L+1(B)$ (8%), $H-8(\alpha) \rightarrow L(\alpha)$ (5%),
				$H-10(\alpha) \rightarrow L(\alpha)$ (5%), $H-6(\beta) \rightarrow L(\beta)$ (3%).
				$H^{-7}(\alpha) \rightarrow L(\alpha) (3\%), H^{-1}(\beta) \rightarrow L(\beta) (2\%),$
				$H^{-1}(\alpha) \xrightarrow{L}(\beta) (2\%), H^{-1}(\beta) \xrightarrow{L}(\beta) (2\%),$ $H^{-1}(\alpha) \xrightarrow{L}(\alpha) (2\%)$
32	422	23701	0 0419	$H^{-1}(\alpha) = L(\alpha) + L($
52		25701	0.0117	$H^{2}(\beta) \rightarrow L^{2}(\beta) (1770), H^{2}(\alpha) \rightarrow L^{2}(\beta) (1770),$ $H^{2}(\beta) \rightarrow L^{2}(\beta) (1770), H^{2}(\beta) \rightarrow L^{2}(\beta) (1770),$
				$H_{2}(p) \rightarrow L^{+}(p) (7\%), H^{-}(2(p) \rightarrow L(p) (7\%), H^{-}(1(p) \rightarrow L^{+}(p) (7\%))$
				$H(\alpha) \rightarrow I + I(\alpha) (6\%) + R(\beta) \rightarrow I(\beta) (6\%)$
				$H_{14}(\beta) \rightarrow I(\beta)(3\%) H_{11}(\alpha) \rightarrow I(\alpha)(3\%)$
				$H_{10}(\beta) \rightarrow I(\beta) (3\%) H_{11}(\alpha) \rightarrow I(\alpha) (3\%),$
33	412	24276	0 2020	$H_{-1}(\beta) \rightarrow I_{+1}(\beta) (30\%) H(\alpha) \rightarrow I_{+1}(\alpha) (22\%)$
55	712	27270	0.2020	$H_{-9}(\beta) \rightarrow I(\beta)(10\%) H_{-2}(\beta) \rightarrow I + I(\beta)(2270),$
				$H_{2}(\alpha) \rightarrow I(\alpha) (3\%) H_{2}(\beta) \rightarrow I(\beta) (3\%)$
				$H_{-1}(\alpha) \rightarrow I + 1(\alpha) (2\%), H_{-2}(\alpha) \rightarrow I + 1(\alpha) (2\%)$
				$H_{-11}(\alpha) \rightarrow L^{+1}(\alpha) (2^{-0}), H_{-2}(\alpha) \rightarrow L^{+1}(\alpha) (2^{-0}), H_{-11}(\alpha) (2^{-0}), H_{-1$
				$H_{14}(B) \rightarrow L(B) (2\%)$
35	405	24680	0.0524	$H^{-14}(p) \rightarrow L(p) (270)$ H $1(a) \rightarrow I + 1(a) (210a)$ H $Q(B) \rightarrow I(B) (210a)$
55	H 0 <i>J</i>	27000	0.0324	$H_{11(\alpha)} \rightarrow L(\alpha) (8\%) + 14(\beta) \rightarrow L(\beta) (4\%)$
				$H_{12}(R) \to L(R) (4\%) H_{12}(R) \to L(R) (4\%)$
				$H^{-12}(p) \rightarrow L(p) (470), H^{-12}(u) \rightarrow L(u) (470),$ $H^{-12}(p) \rightarrow L(p) (294) H(p) \rightarrow L(u) (470),$
				$H_{11(R)} \to L^{+}(R) (2\%) H_{2(R)} \to L^{+}(R) (2\%),$
				$H^{-1}(\mu) \rightarrow L(\mu) (270), H^{-0}(\mu) \rightarrow L(\mu) (270), H^{-1}(\mu) (204)$
26	402	24005	0.0405	$ \begin{array}{c} \Pi^{-} \mathcal{J}(p) \xrightarrow{\sim} \mathcal{L}^{+} \Pi(p) (270) \\ \Pi^{-} \mathcal{J}(p) \xrightarrow{\sim} \mathcal{L}^{+} \Pi(p) (210) \\ \Pi^{-} \mathcal{J}(p) \xrightarrow{\sim} \mathcal{L}^{+} \Pi(p) (270) \\ \Pi^{-} \mathcal{J}(p) \xrightarrow{\sim} \mathcal{J}(p) (270) \\ \Pi^{-} \mathcal{J}(p) \xrightarrow{\sim} \mathcal{J}(p) (270) \\ \Pi^{-} \mathcal{J}(p) \xrightarrow{\sim} \mathcal{J}(p) (270) \\ \Pi^{-} \mathcal{J}(p$
30	402	24903	0.0403	$ \begin{array}{c} \Pi^{-2}(p) \rightarrow L^{+}(p) (2170), \Pi^{-1}(p) \rightarrow L(p) (1970), \\ \Pi^{-1}(p) \rightarrow L(p) (1806) \Pi^{-1}(p) \rightarrow L(p) (507) \\ \end{array} $
				$ \begin{array}{c} \Pi^{-1}\Pi(u) L(u) (10/0), \Pi^{-1}\Im(p) L(p) (5/0), \\ \Pi(a) I 1(a) (50/1) \Pi^{-1}\Im(a) (50/1) \\ \end{array} $
				$\Pi(u) \rightarrow L^{+}\Pi(u) (370), \Pi^{-}2(u) \rightarrow L^{+}\Pi(u) (370),$ $\Pi(12(u) \rightarrow \Pi(u) (40/) \Pi^{-}1(u) \rightarrow \Pi^{+}\Pi(u) (40/)$
				$\Pi - 12(\alpha) \rightarrow L(\alpha) (4\%), \Pi - 1(\alpha) \rightarrow L + 1(\alpha) (4\%),$
				$H-/(\alpha) \rightarrow L(\alpha) (2\%)$

37	394	25381	0.0815	H-12(α)→L(α) (23%), H-2(β)→L+1(β) (19%), H-13(β)→L(β) (18%), H-1(β)→L+1(β) (5%), H-11(β)→L(β) (4%), H-2(α)→L+1(α) (2%), H-11(α)→L(α) (2%), H-15(β)→L(β) (2%), H-14(α)→L(α) (2%), H-12(α)→L(α) (2%), H-7(β)→L(β) (2%)
38	390	25654	0.0859	H-11(β) \rightarrow L(β) (24%), H-14(β) \rightarrow L(β) (11%), H-15(β) \rightarrow L(β) (8%), H-9(α) \rightarrow L(α) (8%), H-2(β) \rightarrow L(β) (8%), H-7(β) \rightarrow L(β) (4%), H-8(β) \rightarrow L(β) (4%), H-3(α) \rightarrow L(β) (4%), H-16(α) \rightarrow L(α) (3%), H-13(β) \rightarrow L(β) (2%), H-11(α) \rightarrow L(α) (2%), H-13(α) \rightarrow L(α) (2%), H-8(α) \rightarrow L(α) (2%), H-10(α) \rightarrow L(α) (2%)
39	386	25891	0.3548	$\begin{array}{l} H = 0(\alpha) & D(\alpha) & (2/3), H = 10(\alpha) & D(\alpha) & (2/3) \\ H = 10(\beta) \rightarrow L(\beta) & (43\%), H = 9(\alpha) \rightarrow L(\alpha) & (26\%), \\ H = 10(\alpha) \rightarrow L(\alpha) & (14\%), H = 13(\alpha) \rightarrow L(\alpha) & (3\%), \\ H = 9(\beta) \rightarrow L(\beta) & (3\%), H = 14(\alpha) \rightarrow L(\alpha) & (2\%) \end{array}$
40	383	26094	0.0574	H-13(α)→L(α) (23%), H-9(β)→L(β) (13%), H-14(α)→L(α) (13%), H-15(α)→L(α) (11%), H-9(α)→L(α) (8%), H-14(β)→L(β) (4%), H-10(α)→L(α) (3%), H-12(β)→L(β) (3%), H-13(β)→L(β) (3%), H-15(β)→L(β) (2%), H-16(β)→L(β) (2%), H-11(β)→L(β) (2%)
42	374	26714	0.1343	$\begin{array}{l}H-2(\alpha) \to L+1(\alpha) \ (40\%),\\H-3(\alpha) \to L+1(\alpha) \ (32\%), H-1(\beta) \to L+1(\beta) \ (6\%),\\H-4(\beta) \to L+1(\beta) \ (5\%), H-11(\beta) \to L(\beta) \ (3\%)\end{array}$
44	369	27091	0.1903	H-3(α)→L+1(α) (42%), H-2(α)→L+1(α) (28%), H-2(β)→L+1(β) (11%), H-12(β)→L(β) (2%), H-13(α)→L(α) (2%), H-11(α)→L(α) (2%)
45	368	27138	0.0242	H-11(α) \rightarrow L(α) (2%) H-12(β) \rightarrow L(β) (23%), H-14(β) \rightarrow L(β) (10%), H-11(β) \rightarrow L(β) (10%), H-11(α) \rightarrow L(α) (9%), H-13(α) \rightarrow L(α) (7%), H-14(α) \rightarrow L(α) (7%), H-10(α) \rightarrow L(α) (5%), H-16(α) \rightarrow L(α) (5%), H-3(α) \rightarrow L+1(α) (4%), H-9(β) \rightarrow L(β) (4%), H-15(α) \rightarrow L(α) (3%), H-13(β) \rightarrow L(β) (2%), H-2(α) \rightarrow L+1(α) (2%)
46	365	27361	0.0256	$\begin{array}{l} H_{-3}(\alpha) \to L^{+1}(\alpha) \ (276) \\ H_{-3}(\beta) \to L^{+1}(\beta) \ (37\%), \\ H_{-4}(\alpha) \to L^{+1}(\alpha) \ (14\%), \\ H_{-11}(\alpha) \to L(\alpha) \ (6\%), \ H_{-4}(\beta) \to L^{+1}(\beta) \ (6\%), \\ H_{-11}(\beta) \to L(\beta) \ (4\%), \ H_{-10}(\alpha) \to L(\alpha) \ (4\%), \\ H_{-14}(\alpha) \to L(\alpha) \ (3\%), \ H_{-2}(\alpha) \to L^{+1}(\alpha) \ (3\%), \\ H_{-1}(\alpha) \to L^{+1}(\alpha) \ (2\%) \end{array}$
47	360	27753	0.0311	H-4(β)→L+1(β) (52%), H-3(β)→L+1(β) (27%), H-11(α)→L(α) (3%), H-5(α)→L+1(α) (2%),

				$H-14(\beta) \rightarrow L(\beta) (2\%), H-3(\alpha) \rightarrow L+1(\alpha) (2\%)$
49	358	27961	0.0284	H-13(β) \rightarrow L(β) (21%), H-12(α) \rightarrow L(α) (19%),
				$H-11(\alpha) \rightarrow L(\alpha) (18\%), H-12(\beta) \rightarrow L(\beta) (14\%),$
				$H-14(\beta) \rightarrow L(\beta) (7\%), H-13(\alpha) \rightarrow L(\alpha) (5\%),$
				H-4(β)→L+1(β) (4%), H-15(α)→L(α) (2%)
50	354	28256	0.1016	$\text{H-13}(\beta) \rightarrow \text{L}(\beta) \text{ (22\%), H-12}(\alpha) \rightarrow \text{L}(\alpha) \text{ (19\%),}$
				$\text{H-14}(\beta) \rightarrow \text{L}(\beta) \text{ (12\%), H-4}(\alpha) \rightarrow \text{L+1}(\alpha) \text{ (9\%),}$
				$\text{H-13}(\alpha) \rightarrow \text{L}(\alpha) \ (8\%), \text{H-5}(\alpha) \rightarrow \text{L+1}(\alpha) \ (7\%),$
				$H-16(\alpha) \rightarrow L(\alpha) (4\%), H-12(\beta) \rightarrow L(\beta) (4\%),$
				$H-12(\alpha) \rightarrow L(\alpha) (3\%), H-15(\alpha) \rightarrow L(\alpha) (2\%)$
51	351	28488	0.0526	$\text{H-5}(\alpha) \rightarrow \text{L+1}(\alpha) \text{ (42\%), H-17}(\beta) \rightarrow \text{L}(\beta) \text{ (12\%),}$
				$H(\alpha) \rightarrow L+2(\alpha) (5\%), H-16(\alpha) \rightarrow L(\alpha) (4\%),$
				$H-16(\beta) \rightarrow L(\beta) (2\%), H-17(\alpha) \rightarrow L(\alpha) (2\%),$
				$\text{H-14}(\alpha) \rightarrow L(\alpha) \ (2\%), \text{H-5}(\beta) \rightarrow L+1(\beta) \ (2\%),$
				$H-14(\beta) \rightarrow L(\beta) (2\%)$
53	349	28645	0.0337	$\text{H-17}(\beta) \rightarrow \text{L}(\beta) \ (23\%), \text{H-5}(\beta) \rightarrow \text{L+1}(\beta) \ (12\%),$
				$H-17(\alpha) \rightarrow L(\alpha) (6\%), H-13(\alpha) \rightarrow L(\alpha) (6\%),$
				$H-15(\beta) \rightarrow L(\beta) (6\%), H-4(\alpha) \rightarrow L+1(\alpha) (5\%),$
				$H-16(\beta) \rightarrow L(\beta) (4\%), H-6(\alpha) \rightarrow L+1(\alpha) (4\%),$
				$H-12(\alpha) \rightarrow L(\alpha) (3\%), H-16(\alpha) \rightarrow L(\alpha) (3\%),$
				$H-5(\alpha) \rightarrow L+1(\alpha) (3\%), H-13(\beta) \rightarrow L(\beta) (3\%),$
~ ~	244	2000	0.0020	$H-2(\alpha) \rightarrow L+1(\alpha) (2\%)$
22	344	29086	0.0936	$H-4(\alpha) \rightarrow L+1(\alpha) (26\%),$
				$H-6(\alpha) \rightarrow L+1(\alpha) (13\%),$ $H-6(\alpha) \rightarrow L+1(\alpha) (10\%), H-2(\alpha) \rightarrow L+1(\alpha) (8\%),$
				$H-4(p) \rightarrow L+1(p) (10\%), H-3(p) \rightarrow L+1(p) (8\%),$ $H-6(p) \rightarrow L+1(p) (6\%) H-12(p) \rightarrow L(p) (2\%),$
				$H = 0(p) \rightarrow L + 1(p) (0\%), H = 12(\alpha) \rightarrow L(\alpha) (2\%),$ $H = 14(p) \rightarrow L(p) (2\%), H = 5(p) \rightarrow L + 1(p) (2\%),$
				$\Pi - 14(p) \rightarrow L(p) (2\%), \Pi - 3(p) \rightarrow L^{+}1(p) (2\%),$ $\Pi - 1(q) \rightarrow L^{+}1(q) (2\%)$
56	3/1	20342	0.0435	$H(\alpha) \rightarrow L + I(\alpha) (270)$ $H(\alpha) \rightarrow L + 2(\alpha) (48\%) + 2(\alpha) \rightarrow L + 2(\alpha) (16\%)$
50	541	29342	0.0433	$H_{-5}(\alpha) \rightarrow L^{+}2(\alpha) (40,0), H_{-5}(\alpha) \rightarrow L^{+}2(\alpha) (10,0), H_{-5}(\alpha) \rightarrow L^{+}2(\alpha) (60,0)$
				$H_{-15}(\alpha) \rightarrow L^{+1}(\alpha) (7,0), H_{-5}(\alpha) \rightarrow L^{+2}(\alpha) (0,0), H_{-15}(\alpha) \rightarrow L^{+2}(\alpha) (2,0)$
				$H^{-15}(\alpha) \rightarrow L^{+2}(\alpha) (2\%)$, $H^{-16}(\alpha) \rightarrow L^{+2}(\alpha) (2\%)$, $H^{-15}(\alpha) \rightarrow L^{+2}(\alpha) (2\%)$
61	329	30398	0.0239	$H^{-17}(\alpha) \rightarrow L(\alpha) (26\%), H(B) \rightarrow L^{+2}(B) (14\%),$
-				$H-5(\beta) \rightarrow L+1(\beta) (5\%), H-17(\beta) \rightarrow L(\beta) (5\%),$
				$H-1(\alpha) \rightarrow L+3(\alpha)$ (4%), $H-19(\beta) \rightarrow L(\beta)$ (4%),
				H-8(β) \rightarrow L+1(β) (3%), H(α) \rightarrow L+3(α) (2%),
				H-18(α) \rightarrow L(α) (2%), H(β) \rightarrow L+4(β) (2%),
				$\text{H-5}(\alpha) \rightarrow \text{L+1}(\alpha) \ (2\%), \text{H-6}(\alpha) \rightarrow \text{L+1}(\alpha) \ (2\%)$
66	314	31798	0.0354	$\text{H-6}(\beta) \rightarrow \text{L+1}(\beta) \text{ (33\%)},$
				H-7(α)→L+1(α) (29%),
				$\text{H-7}(\beta) \rightarrow \text{L+1}(\beta) \text{ (14\%), H-1}(\alpha) \rightarrow \text{L+2}(\alpha) \text{ (3\%),}$
				$H-3(\alpha) \rightarrow L+2(\alpha) (2\%)$

References

- (1) Tamgho, I.-S.; Engle, J. T.; Ziegler, C. J. The Syntheses and Structures of Bis(Alkylimino)Isoindolines. *Tetrahedron Lett.* **2013**, *54* (45), 6114–6117.
- (2) Sheldrick, G. M. A Short History of SHELX. *Acta Crystallogr. Sect. A Found. Crystallogr.* **2008**, *64* (1), 112–122.
- (3) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98 (45), 11623–11627.
- (4) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. *Chem. Rev.* **2005**, *105* (8), 2999–3093.
- (5) Pritchard, B. P.; Altarawy, D.; Didier, B.; Gibson, T. D.; Windus, T. L. New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019, 59 (11), 4814–4820.
- McLean, A. D.; Chandler, G. S. Contracted Gaussian Basis Sets for Molecular Calculations. I. Second Row Atoms, Z = 11-18. J. Chem. Phys. 1980, 72 (10), 5639– 5648.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, Ma.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. Gaussian 09, Revision D. 01, Gaussian. Inc. Wallingford, CT 2009.
- (8) Tenderholt, A. QMForge. Stanford University: Stanford, CA, USA.
- (9) Spek, A. L. PLATON SQUEEZE: A Tool for the Calculation of the Disordered Solvent Contribution to the Calculated Structure Factors, *Acta Cryst.* **2015**. *C71*, 9–18.