Supporting Information

Unveiling the unique mechanism of the UV-sensitive phosphonate-based metalorganic frameworks

Wenzhuo Tan,^{ab} Li Xu,^{ab} Ziwei Liu,^{ab} Jihu Su,^c and Tao Zheng *^{ab}

^{b.} Institute of Clean Energy, Yangtze River Delta Research Institute, Northwestern Polytechnical University, Suzhou 215400, P. R. China.

^{a.} School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China. E-mail: zhengtao@nwpu.edu.cn

^c Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, P. R. China

Contents

1. Results and Discussion
1.1 The Phosphonate Ligand and the Guest Molecules
1.2 Crystal Data and Structures
1.3 Analysis of Weak Interaction
1.4 Powder X-ray Diffraction
1.5 IR and Raman Spectra
1.6 Thermal Gravimetric Analysis
1.7 UV-vis Absorption Spectra
1.8 Photoluminescence Spectra and Fluorescence Quenching Curves
1.9 Determination of detection limit
1.10 EPR Spectra Before and After UV Irradiation
2. References

1. Results and Discussion

1.1 The Phosphonate Ligand and the Guest Molecules

Figure S1. The TppmH $_8$ ligand and guest molecules.

1.2 Crystal Data and Structures

	UPF-112	UPF-113	UPF-114
Formula	$C_{40}H_{40}O_{17}P_4N_3U$	$C_{35}H_{32}O_{18}P_4U_2N_2$	$C_{74}H_{58}O_{30}P_8U_3N_4$
Μ	1196.68	1368.58	2445.14
CCDC No.	2295557	2295555	2295556
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	$P2_{1}/n$	$P\bar{\iota}$	C2/c
a / Å	13.0819(13)	10.7280(12)	21.053(6)
b / Å	24.404(2)	15.0760(16)	14.058(4)
c / Å	13.3433(12)	15.4046(18)	28.441(8)
α / deg	90	61.166(5)	90.000
β / deg	109.386(3)	71.045(5)	111.043(8)
γ / deg	90	80.722(5)	90.000
V /Å3	4018.3(6)	2064.2(4)	7856(4)
Ζ	4	2	4
ρ_{calcd} / g cm ⁻³	1.908	2.168	2.062
F (000)	2252	1258	4640
μ (Mo K α) /mm ⁻¹	4.277	8.068	6.421
GOF on F ²	1.030	1.092	1.021
R_1^a , wR_2^b [I>2 σ (I)]	0.0315, 0.0896	0.1013, 0.2887	0.0374, 0.0870
$(\Delta \rho)_{\max}, (\Delta \rho)_{\min} / e {\rm \AA}^{-3}$	2.33, -0.9	11.78, -5.58	2.22, -1.12
porosity	36%	30%	27%

 Table S1. Crystal data and refinement details for UPF-112, UPF-113 and UPF-114.

 ${}^{a.}\ R_1 = \Sigma ||F_o| \text{ - } |F_c|| \ / \ \Sigma |F_o|. \ {}^{b.}\ wR_2 = [\Sigma w(Fo^2 \text{ - } Fc^2)^2 \ / \ \Sigma w(Fo^2)^2]^{1/2}$

Bond	Lengths [Å]	Bond	Lengths [Å]
U1=O13	1.771(3)	P2-O4 ^{HP}	1.541(3)
U1=O14	1.773(3)	P2-O5 ^{HP}	1.546(4)
U1-O1	2.354(3)	P2=O6	1.484(3)
U1-012A	2.354(3)	P3-O7 ^{HP}	1.556(3)
U1-O6B	2.361(3)	P3-O8 ^{HP}	1.516(3)
U1-09C	2.371(3)	P3-O9	1.506(3)
U1-O1w	2.594(4)	P4-O10	1.549(4)
P1-O1	1.501(3)	P4-O11	1.519(4)
P1=O2	1.496(3)	P4-O12	1.515(3)
P1-O3 ^P	1.582(4)		

Table S2. Bond lengths of UPF-112.

Symmetric codes for **UPF-112**: A: 1/2+x, 3/2-y, 1/2+z; B: 3/2-x, 1/2+y, 3/2-z; C: x, y, 1+z. ^P: the oxygen atom is protonated. ^{HP}: the oxygen atom is half protonated.

Figure S2. Asymmetric building unit of **UPF-112** with atomic labeling scheme at 50% probability. All hydrogen atoms and 4,4'-bpy molecules are omitted for clarity.

Figure S3. Crystal framework structures of **UPF-112** (a, b, and c), viewed along *a*, *b*, and *c* axis, respectively. UO_7 is represented by the yellow pentagonal bipyramid, while -CPO₃ is represented as a purple tetrahedron, and the guest molecules are omitted for clarity.

UPF-112 crystallizes in the monoclinic space group $P2_1/n$. The asymmetric unit contains one UO_2^{2+} cation, one TppmH₈, one and a half 4,4'-bpy, one coordinated water molecule, and two lattice water molecules (Fig. S2). UO_2^{2+} cation adopts a pentagonal bipyramid coordination geometry, forming UO_7 units. O1, O1w, O12A, O6B, and O9C are in the equatorial plane (Figs. S3a-S3c). The bond lengths of U=O and U-O are in the range of 1.771(3)-1.773(3) Å and 2.354(3)-2.371(3) Å, respectively. The bond length of U1-O1w is 2.594(4) Å, which is longer than other bonds between uranium atoms and coordinated water molecules. UO_7 units act as zero-dimensional secondary building units (OD-SBU) connecting four TppmH₈ ligands to give porous 3D frameworks with 4,4'-bpy molecules filled inside (Figs. S3a and S3b). 4,4'-bpy molecules are part or fully protonated to balance the charge, forming hydrogen bonds with the phosphonate groups in the framework structure. The P-O bond lengths in the range of 1.496(3)-1.516(3) Å (1.496(3) Å of P1-O2, 1.484(3) Å of P2-O6, 1.506(3) Å of P3-O9, 1.515(3) Å of P4-O12) are assigned to P=O groups. The bond length of P1-O3, P2-O4, P2-O5, P3-O7, and P4-O10 is 1.582(4) Å, 1.541(3) Å, 1.546(4) Å, 1.556(3) Å, and 1.549(4) Å, respectively, showing that O3 is fully protonated and the other oxygen atoms are half protonated (Table S2).

Bond	Lengths [Å]	Bond	Lengths [Å]
U1=O13	1.783(15)	U3-07E	2.338(18)
U1=O13J	1.783(16)	U3-O10	2.40(2)
U1-O1	2.242(17)	U3-O1w	2.54(2)
U1-O1J	2.242(17)	P1-O1	1.502(18)
U1-06A	2.308(17)	P1-O2	1.534(19)
U1-06K	2.308(17)	P1-O3	1.527(17)
U2=O14	1.797(19)	P2-O4	1.50(2)
U2=O14I	1.797(19)	P2-O5 ^P	1.56(2)
U2-O2B	2.180(18)	P2-O6	1.51(2)
U2-O2G	2.180(18)	P3-O7	1.485(18)
U2-O4	2.24(2)	P3-O9	1.517(16)
U2-O4I	2.24(2)	P3-O8 ^P	1.590(18)
U3=O15	1.77(2)	P4-O10	1.508(17)
U3=O16	1.79(2)	P4-O11 HP	1.541(18)
U3-O3C	2.312(16)	P4-O12 HP	1.518(17)
U3-09D	2.32(2)		

Table S3. Bond lengths of UPF-113.

Symmetric codes for **UPF-113**: A: 2-x, 1-y, 1-z; B: x, 1+y, z; C: x, y, 1+z; D: 1-x, 1-y, 2-z; E: 1+x, y, z; G: 1-x, 1-y, 1-z; I: 1-x, 2-y, 1-z; J: 2-x, -y, 1-z; K: x, -1+y, z. ^P: the oxygen atom is protonated. ^{HP}: the oxygen atom is half protonated.

Figure S4. Asymmetric building unit of UPF-113 with atomic labelling scheme at 50% probability. All hydrogen atoms and 2,2'-bpy molecules are omitted for clarity.

Figure S5. Crystal framework structures of **UPF-113** (a, b, and c), viewed along a, b, and c axis, respectively. UO₆ and UO₇ are represented by the yellow tetragonal bipyramid and pentagonal bipyramid, while -CPO₃ is represented as a purple tetrahedron, and the guest molecules are omitted for clarity.

UPF-113 crystallizes in the triclinic space group $P\overline{I}$. The asymmetric unit contains one and two half UO_2^{2+} cations, which are crystallography different, one TppmH₈ ligand, two half 2,2'-bpy molecules, one coordinated water molecule, and one lattice water molecule (Fig. S4†). As presented in Figure 1d-1f, UO_2^{2+} cations adopt tetragonal and pentagonal bipyramid coordination geometry, respectively. The bond lengths of U=O and U-O are in the range of 1.77(2)-1.797(2) Å and 2.18(2)-2.40(2) Å, respectively. And the bond length of U3-O1w is 2.54(2) Å. For U1 and U2 in UO₆ units, four oxygen atoms located at the equatorial plane are provided by four TppmH₈ ligands and 1D- SBUs are achieved along the *a* axis consisting of U1 and U2 in UO₆ units arranged alternatively. For U3, O3C, O9D, O7E, O1O, and O1w are located in the equatorial plane, forming the UO₇ cluster. UO₇ units are connected by TppmH₈ ligands, giving porous layers, which are further linked by 1D-SBUs to construct the final 3D structure. The bond lengths of P2-O5, P3-O8, P4-O11, and P4-O12 are in the range of 1.52(2)-1.59(2) Å, showing that O5 is protonated and the other oxygen atoms are half protonated (Table S3†).

Bond	Lengths [Å]	Bond	Lengths [Å]
U1=O13	1.760(4)	P1-O2	1.497(4)
U1=O13E	1.761(4)	P1-O3 ^P	1.549(4)
U1-O2	2.278(4)	P2-O4	1.515(4)
U1-O2E	2.278(4)	P2-O5 ^P	1.567(4)
U1-O10A	2.294(4)	P2-O6	1.502(4)
U1-O10F	2.294(4)	P3-O7	1.494(4)
U2=O15	1.777(4)	P3-O8	1.511(4)
U2=O14	1.788(4)	P3-O9 ^P	1.551(4)
U2-O4B	2.243(4)	P4-O10	1.503(4)
U2-07C	2.256(4)	P4-O11	1.496(4)
U2-O8D	2.295(4)	P4-O12 ^P	1.578(4)
P1-O1	1.498(4)		

Table S4. Bond lengths of UPF-114.

Symmetric codes for **UPF-114** : A: x, -1+y, z; B: 1/2-x, -1/2-y, -z; C: 1/2-x, -1/2+y, -1/2-z; D: x, -1-y, 1/2+z; E: -x, y, -1/2-z; F: -x, -1+y, -1/2-z; P: the oxygen atom is protonated. ^{HP}: the oxygen atom is half protonated.

Figure S6. Asymmetric building unit of UPF-114 with atomic labeling scheme at 50% probability. All hydrogen atoms and phen molecules are omitted for clarity.

Figure S7. Crystal framework structures of **UPF-114** (a, b, and c), viewed along *a*, *b*, and *c* axis, respectively. UO_6 is represented by the yellow tetragonal bipyramid, while -CPO₃ is represented as a purple tetrahedron, and the guest molecules are omitted for clarity.

UPF-114 crystallizes in the monoclinic space group C2/c. The asymmetric unit contains one and a half UO_2^{2+} cations, one TppmH₈ ligand, and one phen molecule (Fig. S6). U1O₆ and U2O₆ units adopt tetragonal bipyramid coordination geometry, and four different TppmH₈ ligands provide four oxygen atoms in the equatorial plane. The bond lengths of U=O and U-O are in the range of 1.760(4)-1.788(4) Å and 2.243(4)-2.295(4) Å, respectively. One U1O₆ and two U2O₆ units are connected to give a trimer by corner-sharing of phosphonate groups, acting as 0D-node, further linked by TppmH₈, forming a porous 3D-MOF structure. To balance the charge, the protonated phen cations are filled in the space of the structure. **UPF-114** has two kinds of channels that are not crosslinked (Figs. S7a-S7c). The bond lengths of P-O are in the range of 1.494(4)-1.578(4) Å. The bond lengths of P1-O3, P2-O5, P3-O9, and P4-O12 are 1.549(4), 1.567(4), 1.551(4), and 1.578(4) Å, respectively, which belong to P-O-H (Table S4).

1.3 Analysis of Weak Interaction

Figure S8. π - π interaction between guest molecules in the framework of UPF-114.

Figure S9. C-H··· π interactions (blue dash line) between guest and framework. UO₆ and UO₇ are represented by the yellow tetragonal bipyramid and pentagonal bipyramid, and the hydrogen atoms are omitted for clarity.

Figure S10. Hydrogen bonding interactions (green dash line) between guest and framework. UO₆ and UO₇ are represented by the yellow tetragonal bipyramid and pentagonal bipyramid, and the hydrogen atoms are omitted for clarity.

Species	π - π interaction	C-H $\cdots \pi$ interactions	hydrogen bonding inter	action
Species	bond length	bond length	bond length	bond angle
			d(P1-O2····H36) = 2.6170Å	131°
			$d(P1-O3\cdots H29) = 2.9000\text{\AA}$	131°
		A(1114 -) = 2.1706	$d(P2-O4\cdots H30) = 2.3305\text{\AA}$	141°
LIDE 112		$d(H14-\pi) = 3.1/96A$	$d(P4-O11\cdots H1-N1) = 1.9397\text{\AA}$	133°
UPF-112		$d(H18-\pi) = 3.1021A$ $d(H24-\pi) = 2.8241$ Å	$d(U1-O1w\cdots H26) = 2.7369\text{\AA}$	129°
		$d(H24-\pi) = 2.8341A$	$d(U1-O13\cdots H34) = 2.5025\text{\AA}$	131°
			$d(U1-O12\cdots H3) = 2.8213\text{\AA}$	114°
			$d(U1-O14\cdots H32) = 2.8293\text{\AA}$	123°
			$d(P4-O12\cdots H27) = 3.7923\text{\AA}$	135°
		$d(H15-\pi) = 2.8274$ Å	$d(P1-O3\cdots H33) = 3.4168\text{\AA}$	106°
			$d(U2-O14\cdots H28) = 2.4705\text{\AA}$	156°
UPF-113		$d(H13-\pi) = 2.8274A$ $d(H20,\pi) = 2.6250$ Å	$d(U3-O10\cdots H30) = 2.7621\text{\AA}$	97°
		$u(H20-\pi) = 5.0250A$	$d(U3-O16\cdots H32) = 1.9388\text{\AA}$	144°
			$d(U3-O14\cdots H33) = 2.7233\text{\AA}$	123°
			d(U3-O15···H35) = 3.0838Å	100°
	1-2 2660 Å	$d(H26-\pi) = 2.9604$ Å	$d(N2-H2\cdots O8-P) = 3.3631\text{\AA}$	130°
UPF-114	$a_1 = 3.3009 \text{A}$	$d(H31-\pi) = 3.0568$ Å	$d(U2-O14\cdots H37) = 2.3336\text{\AA}$	130°
	u2=3.9313A	$d(H35-\pi) = 3.2510$ Å	d(U2-O15···H28) = 3.6199Å	100°

Table S5. Bond lengths and bond angles for weak interaction forces between guest molecules and frameworks in UPF-112, UPF-113, and UPF-114.

1.4 Powder X-ray Diffraction

Figure S11. Powder X-ray diffraction (PXRD) patterns of calculated (black), experimental (red) and UV irradiated (violet) for UPF-112, UPF-113 and UPF-114.

Figure S12. Ex-situ variable temperature powder X-ray diffraction (VT-PXRD) patterns of (a) **UPF-112**, (b) **UPF-113**, and (c) **UPF-114** taken with a Cu Kα radiation source.

1.5 IR and Raman Spectra

Figure S13. IR and Raman spectra of (a) UPF-112, (b) UPF-113, (c)UPF-114.

1.6 Thermal Gravimetric Analysis

Figure S14. TG patterns of UPF-112 (red), UPF-113 (yellow), and UPF-114 (violet).

UPF-112 started to lose two lattice water molecules and one coordinated water molecule above 120 °C, demonstrating a platform during 200-300 °C. The average weight loss is 4.44 %, similar to a calculated weight loss of 4.52 %. The lattice water molecules of **UPF-113** started to lose with the temperature increase and lost 1.35 % of total weight at 80 °C, similar to the 1.32% calculated by the formula. The aqua ligands of **UPF-113** are removed completely at 135 °C, and the weight loss is 2.72 %, similar to the calculated 2.63 %.

1.7 UV-vis Absorption Spectra

Figure S15. UV-vis absorption spectrum of UPF-112 (red line), UPF-113 (yellow line), and UPF-114 (violet line).

1.8 Photoluminescence Spectra and Fluorescence Quenching Curves

Figure S16. Photoluminescence spectra of UPF-112, UPF-113 and UPF-114 measured at room temperature.

Time (min)	Time (s)	Dosage (mJ)	(I ₀ -I)/I ₀ %
0	0	0	0
1	60	2.252×10-6	12.44
3	180	6.755×10 ⁻⁶	24.51
5	300	1.126×10 ⁻⁵	31.80
10	600	2.252×10-5	42.01
20	1200	4.503×10 ⁻⁵	51.76
30	1800	6.755×10 ⁻⁵	57.82
45	2700	1.013×10 ⁻⁴	62.34
60	3600	1.351×10 ⁻⁴	65.67
90	5400	2.026×10 ⁻⁴	69.82
150	9000	3.39×10 ⁻⁴	73.93
180	10800	4.053×10 ⁻⁴	75.42

Tuble 30 . Quenching of OTT TIE at a peak of +37.05 min measured at room temperature.

Table S7. Quenching of UPF-112 at a peak of 519.07 nm measured at room temperature.

Time (min)	Time (s)	Dosage (mJ)	(I ₀ -I)/I ₀ %
0	0	0	0
1	60	2.252×10-6	13.799
3	180	6.755×10 ⁻⁶	26.83
5	300	1.126×10 ⁻⁵	34.24
10	600	2.252×10 ⁻⁵	44.78
20	1200	4.503×10 ⁻⁵	54.69
30	1800	6.755×10 ⁻⁵	60.72
45	2700	1.013×10 ⁻⁴	65.34
60	3600	1.351×10 ⁻⁴	68.42
90	5400	2.026×10 ⁻⁴	72.37
150	9000	3.39×10 ⁻⁴	76.15
180	10800	4.053×10 ⁻⁴	77.46

Figure S17. (a) Normalized intensity of UPF-112 at the peak of 519.07 nm measured at room temperature. (b) Relative fluorescence quenching of UPF-112 at a peak of 519.07 nm.

Table S8. Quenching of UPF-112 at a peak of 542.84 nm measured at room temperature.

Time (min)	Time (s)	Dosage (mJ)	(I ₀ -I)/I ₀ %
0	0	0	0
1	60	2.252×10-6	14.80
3	180	6.755×10 ⁻⁶	28.39
5	300	1.126×10 ⁻⁵	35.87
10	600	2.252×10 ⁻⁵	46.20
20	1200	4.503×10 ⁻⁵	55.96
30	1800	6.755×10 ⁻⁵	61.74
45	2700	1.013×10 ⁻⁴	66.48
60	3600	1.351×10 ⁻⁴	69.01
90	5400	2.026×10 ⁻⁴	72.71
150	9000	3.39×10 ⁻⁴	76.11
180	10800	4.053×10 ⁻⁴	77.58

Figure S18. (a) Normalized intensity of UPF-112 at the peak of 542.84 nm measured at room temperature. (b) Relative fluorescence quenching of UPF-112 at a peak of 542.84 nm.

Time (min)	Time (s)	Dosage (mJ)	(I ₀ -I)/I ₀ %
0	0	0	0
1	60	2.252×10 ⁻⁶	18.49
3	180	6.755×10 ⁻⁶	30.93
5	300	1.126×10 ⁻⁵	39.27
10	600	2.252×10 ⁻⁵	50.93
20	1200	4.503×10 ⁻⁵	63.93
30	1800	6.755×10 ⁻⁵	70.80
45	2700	1.013×10 ⁻⁴	77.47
60	3600	1.351×10 ⁻⁴	80.93
90	5400	2.026×10 ⁻⁴	85.96
150	9000	3.39×10 ⁻⁴	88.09
180	10800	4.053×10 ⁻⁴	90.29

 Table S9. Quenching of UPF-113 at a peak of 499.96 nm measured at room temperature.

Time (min)	Time (s)	Dosage (mJ)	(I ₀ -I)/I ₀ %
0	0	0	0
1	60	2.252×10-6	16.65
3	180	6.755×10 ⁻⁶	29.01
5	300	1.126×10 ⁻⁵	39.57
10	600	2.252×10 ⁻⁵	49.05
20	1200	4.503×10 ⁻⁵	61.69
30	1800	6.755×10 ⁻⁵	67.76
45	2700	1.013×10 ⁻⁴	73.92
60	3600	1.351×10 ⁻⁴	77.96
90	5400	2.026×10 ⁻⁴	82.23
150	9000	3.39×10 ⁻⁴	86.05

87.34

 Table S10. Quenching of UPF-113 at a peak of 521.23 nm measured at room temperature.

180

Figure S19. (a) Normalized intensity of UPF-113 at the peak of 521.23 nm measured at room temperature. (b) Relative fluorescence quenching of UPF-113 at a peak of 544.72 nm.

 Table S11. Quenching of UPF-113 at a peak of 544.72 nm measured at room temperature.

Time (min)	Time (s)	Dosage (mJ)	(I0-I)/I0 %	
0	0	0	0	
1	60	2.252×10-6	16.08	
3	180	6.755×10 ⁻⁶	29.05	
5	300	1.126×10 ⁻⁵	38.16	
10	600	2.252×10 ⁻⁵	47.65	
20	1200	4.503×10 ⁻⁵	60.70	
30	1800	6.755×10 ⁻⁵	66.25	
45	2700	1.013×10 ⁻⁴	72.35	
60	3600	1.351×10 ⁻⁴	76.07	
90	5400	2.026×10 ⁻⁴	79.49	
150	9000	3.39×10 ⁻⁴	82.80	
180	10800	4.053×10 ⁻⁴	83.86	

Figure S20. (a) Normalized intensity of UPF-113 at the peak of 544.72 nm measured at room temperature. (b) Relative fluorescence quenching of UPF-113 at a peak of 544.72 nm.

Time (min)	Time (s)	Dosage (mJ)	(I0-I)/I0 %	
0	0	0	0	
1	60	2.252×10-6	33.99	
3	180	6.755×10 ⁻⁶	54.14	
5	300	1.126×10 ⁻⁵	64.01	
10	600	2.252×10 ⁻⁵	75.61	
20	1200	4.503×10 ⁻⁵	84.36	
30	1800	6.755×10 ⁻⁵	88.10	
45	2700	1.013×10 ⁻⁴	91.03	
60	3600	1.351×10 ⁻⁴	92.63	
90	5400	2.026×10 ⁻⁴	94.46	
120	7200	2.701×10 ⁻⁴	95.56	

 Table S12. Quenching of UPF-114 at a peak of 505.37 nm measured at room temperature.

 Table S13. Quenching of UPF-114 at a peak of 527.72 nm measured at room temperature.

Time (min)	Time (s)	Dosage (mJ)	(I ₀ -I)/I ₀ %	
0	0	0	0	
1	60	2.252×10-6	33.97	
3	180	6.755×10 ⁻⁶	53.85	
5	300	1.126×10 ⁻⁵	64.02	
10	600	2.252×10 ⁻⁵	75.53	
20	1200	4.503×10 ⁻⁵	84.15	
30	1800	6.755×10 ⁻⁵	87.75	
45	2700	1.013×10 ⁻⁴	90.85	
60	3600	1.351×10 ⁻⁴	92.49	
90	5400	2.026×10 ⁻⁴	94.20	
120	7200	2.701×10 ⁻⁴	95.48	

Figure S21. (a) Normalized intensity of UPF-114 at the peak of 527.72 nm measured at room temperature. (b) Relative fluorescence quenching of UPF-114 at a peak of 527.72 nm.

Table S14. Quenching of UPF-12	4 at a peak of 552.31 n	m measured at room t	temperature
--------------------------------	-------------------------	----------------------	-------------

Time (min)	Time (s)	Dosage (mJ)	(I ₀ -I)/I ₀ %	
0	0	0	0	
1	60	2.252×10-6	33.66	
3	180	6.755×10 ⁻⁶	53.65	
5	300	1.126×10 ⁻⁵	63.67	
10	600	2.252×10 ⁻⁵	75.35	
20	1200	4.503×10 ⁻⁵	83.97	
30	1800	6.755×10 ⁻⁵	87.58	
45	2700	1.013×10 ⁻⁴	90.33	
60	3600	1.351×10 ⁻⁴	92.10	
90	5400	2.026×10 ⁻⁴	93.87	
120	7200	2.701×10 ⁻⁴	95.26	

Figure S22. (a) Normalized intensity of UPF-114 at the peak of 552.31 nm measured at room temperature. (b) Relative fluorescence quenching of UPF-114 at a peak of 552.31 nm.

1.9 Determination of detection limit

Figure S23. Linear fitting from data points in the low dose range (0 - 1.2×10^{-5} mJ).

Based on the fluorescence measurement shown in Figure S23, the limit of the detection can be determined by the following equations:

$$DT = \frac{3\sigma}{k}$$
(1)

$$\sigma = 100 \times \frac{I_{SE}}{I_0} \tag{2}$$

where the detection limit is noted as **DT**; I_{SE} is the standard error of the luminescence intensity (as determined by the baseline measurement of blank samples); I_0 is the measured luminescence intensity; k is the slope obtained from the linear fit in the lower dosage range of the dosage-dependent luminescence intensity calibration curve.¹

On the basis of the acquired data, the detection limit of **UPF-112** was determined to be 9.54×10^{-12} J; the detection limit of **UPF-113** was determined to be 5.98×10^{-12} J; the detection limit of **UPF-114** was determined to be 2.96×10^{-12} J.

UV-detector	ionizing radiation	intensity decay to half (T _{1/2})	limit of detection (LOD)	Reference
4,4'-di(1H-phenanthro[9,10-d]imidazol-2-yl)-biphenyl (DPI-BP)	γ-radiation	\	$7 \times 10^{-3} \text{ Gy}$	1
	γ-radiation	\	1.64×10 ⁻⁴ Gy	
(TMA) ₂ [(UO ₂) ₄ (ox) ₄ L]	X-radiation	\	5.2×10 ⁻⁴ Gy	2
	UV radiation	20 min	\	
[UO ₂ (L)(DMF)]	UV radiation	/	2.4×10 ⁻⁷ J	3
[Hphen] ₂ [(UO ₂) ₂ (ox) ₃	UV radiation	~ 5 s	$6.9\times10^{-9}J$	4
	X-radiation	/	1.18×10 ⁻⁵ Gy	
UO2(ox)(H2O)·2H2O	γ-radiation	\	1.42×10 ⁻⁵ Gy	5
	UV radiation	~112 s	/	
Ln-DBTPA	UV radiation	\	$9.1\times10^{-9}J$	6
[4,4-bpyH] _{1.5} (UO ₂)(TppmH _{4.5})(H ₂ O)·2H ₂ O (UPF-112)	UV radiation	19 min	$9.54\times10^{\text{-12}}J$	
$[2,2-bpyH](UO_2)_2(TppmH_3)(H_2O) \cdot H_2O (UPF-113)$	UV radiation	12 min	$5.98\times10^{\text{-12}}J$	This work
[phenH](UO ₂) _{1.5} (TppmH ₄) (UPF-114)	UV radiation	3 min	$2.96\times 10^{\text{-12}}~J$	

Table S15. Comparison of detection limits of ionizing radiation detectors.

1.10 EPR Spectra Before and After UV Irradiation

Figure S24. EPR spectra of UPF-112 (a, b), UPF-113 (c, d), and UPF-114 (e, f) before and after UV irradiation for 3 hours and storied in the dark for 4 days.

2. References

- J.-M. Han, M. Xu, B. Wang, N. Wu, X. Yang, H. Yang, B. J. Salter and L. Zang, Low Dose Detection of γ Radiation via Solvent Assisted Fluorescence Quenching, *J. Am. Chem. Soc.*, 2014, **136**, 5090-5096. J. Xie, Y. Wang, W. Liu, X. Yin, L. Chen, Y. Zou, J. Diwu, Z. Chai, T. E. Albrecht-Schmitt, G. Liu and S. Wang, Highly Sensitive Detection of Ionizing 1.
- 2.
- З.
- J. Xie, Y. Wang, W. Liu, X. Yin, L. Chen, Y. Zou, J. Diwu, Z. Chai, T. E. Albrecht-Schmitt, G. Liu and S. Wang, Highly Sensitive Detection of Ionizing Radiations by a Photoluminescent Uranyl Organic Framework, *Angew. Chem. Int. Ed.*, 2017, **56**, 7500-7504.
 W. Liu, X. Dai, J. Xie, M. A. Silver, D. Zhang, Y. Wang, Y. Cai, J. Diwu, J. Wang, R. Zhou, Z. Chai and S. Wang, Highly Sensitive Detection of UV Radiation Using a Uranium Coordination Polymer, *ACS Appl. Mater. Interfaces*, 2018, **10**, 4844-4850.
 J. Xie, Y. Wang, D. Zhang, C. Liang, W. Liu, Y. Chong, X. Yin, Y. Zhang, D. Gui, L. Chen, W. Tong, Z. Liu, J. Diwu, Z. Chai and S. Wang, Photoexfoliation of a highly photo-responsive two-dimensional metal–organic framework, *Chem. Commun.*, 2019, **55**, 11715-11718.
 J. Xie, Y. Wang, W. Liu, C. Liang, Y. Zhang, L. Chen, D. Sheng, Z. Chai and S. Wang, A uranyl based coordination polymer showing response to low-dosage ionizing radiations down to 10–5 Gy, *Sci. China: Chem.*, 2020, **63**, 1608-1612.
 S. Zhang, L. Chen, J. Xie, Y. Zhang, F. Huang, X. Wang, K. Li, F. Zhai, Q. Yang, L. Chen, Y. Wang, X. Dai, Z. Chai and S. Wang, Turn-up Luminescent Sensing of Ultraviolet Padition by Interface Metal–Metal 4.
- 5.
- 6. Sensing of Ultraviolet Radiation by Lanthanide Metal-Organic Frameworks, Inorg. Chem., 2022, 61, 4561-4565.