Supporting Information

Designing CoS₂-Mo₂C and CoS₂-W₂C hybrids for high-performance supercapacitors and hydrogen evolution reactions

Sajjad Hussain^{a,b}, Sikandar Aftab^c, Zeesham Abbas^{a,b}, Iftikhar Hussain^d, Shoyebmohamad F. Shaikh^e, K. Karuppasamy^{f,g}, Hyun-Seok Kim^h, Jongwan Jung^{a,b}, Dhanasekaran Vikraman^{h*}

^a Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Republic of Korea.

^b Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea.

^c Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, South Korea

^d Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue,

Kowloon, Hong Kong

^e Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

^f Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates

^g Emirates Nuclear Technology Center (ENTC), Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates

^h Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.

* Corresponding author's Email: v.j.dhanasekaran@gmail.com

S1. Characterization

Field emission scanning electron microscopy (FESEM) images and energy-dispersive X-ray spectroscopy (EDX) mapping images were obtained using (HITACHI S-4700), 5 kV. The Raman spectroscopy measurements were accomplished using Renishaw Invia RE04, Ar laser - 512 nm at room temperature. The structural properties were characterized by Rigaku X-ray diffractometer with Cu-K_{α} radiation (0.154 nm) at 40 kV and 40 mA in the scanning range of 10-80° (20). X-ray powder diffraction (XRD) was conducted with Cu-K α radiation (0.154 nm) at 40 kV and 40 mA in the scanning range of 5-80° (20). The XPS measurements were performed using an Ulvac PHI X-tool spectrometer with Al K $_{\alpha}$ X-ray radiation (1486.6 eV). The atomic structures were characterized by a JEOL-2010F transmission electron microscopy with an accelerating voltage of 200 keV. 3Flex surface characterization analyzer for nitrogen adsorption and desorption measurement at 77 K (Micromeritics, USA).

The HER potential values were converted for reversible hydrogen electrode (RHE) by the given formula: $E(RHE)_{Ag/AgCl} = E$ (vs Ag/AgCl) + $E^{0}_{(Ag/AgCl)}$ + 0.0592 × pH for acidic medium and $E(RHE)_{HgO} = E(vs Hg/HgO) + E^{0}_{(Hg/HgO)}$ + 0.0592 × pH for KOH medium.

Figure S1. (a) FESEM elemental mapping and (b) W, (c) C, (d) Co and (e) S elements, (f) EDS profile for the CoS_2 -W₂C hybrids.

Figure S2. XPS survey spectra for (a) CoS_2 -Mo₂C and (b) CoS_2 -W₂C hybrids.

Figure S3. (a-c) BET isotherms curves for (c) CoS₂, (d) CoS₂-Mo₂C and (e) CoS₂-W₂C hybrid nanocomposites (Inset: BJH profiles).

Figure S4. CVs at 100 mV/s for CoS_2 , CoS_2 - W_2C and CoS_2 -Mo₂C electrodes

Figure S5. (a) Logarithmic relationship between peak current and scan rates for the hybrid electrodes; (b) Capacitive and diffusive process contribution percentage at different scan rates for hybrid electrodes; (c) Capacitive and diffusion contribution curves for CoS_2 -W₂C hybrid electrode at 100 mV/s.

Figure S6. GCDs at 2 A/g for CoS_2 , CoS_2 -W₂C and CoS_2 -Mo₂C electrodes

Figure S7. Cycling stability of CoS_2 , CoS_2 - W_2C and CoS_2 - Mo_2C by half-cell

Figure S8. Coulombic efficiency of CoS₂-W₂C and CoS₂-Mo₂C hybrid

Figure S9. FESEM images (a-b) before and (c-d) after cycling of CoS₂-W₂C coated NF supercapacitor electrode

Figure S10. EIS profiles CoS_2 - W_2C and CoS_2 - Mo_2C ASC devices

Figure S11. LSV profiles (a,c) CoS₂-W₂C and (b,d) CoS₂-Mo₂C under acid and KOH environment.

Figure S12. FESEM images (a-b) before HER and after HER in (c-d) KOH and (e-f) acid environment for CoS₂-W₂C electrocatalyst coated NF.

Electrode materials	Electrolyte	Specific capacitance / capacity	Energy density	Power density	Capacitance retention (%)/cycles	Ref.
CoS_2-W_2C	3 М КОН	720 C/g at 2 A/g	-	-	97/5000	This work
3Dgraphene/ MoS ₂ composite	1.0 M Na ₂ SO ₄	$\begin{array}{c} 410 \ F \cdot g^{-1} @ 1 \\ A \cdot g^{-1} \end{array}$	-	-	80.3/10000	1
Mo ₂ C/MoS ₂ hybrid	1 M KOH	$\begin{array}{c} 1040 \ F \cdot g^{-1} @ \\ 0.5 \ A \cdot g^{-1} \end{array}$	-	-	94/5000	2
W ₂ C/MoS ₂ hybrid	1 M KOH	$\begin{array}{c} 681 \ F \cdot g^{-1} @ \ 0.5 \\ A \cdot g^{-1} \end{array}$	-	-	90/5000	2
WS ₂ /RGO hybrids	1.0 M Na ₂ SO ₄	350 F/g@ 2mV/s	~49 Wh/kg	-	-	3
WS ₂ @MXene/GO	1 KOH	$\begin{array}{c} 11111 \text{ F} \cdot \text{g}^{-1} \textcircled{@} 2\\ \text{A} \cdot \text{g}^{-1} \end{array}$	-	-	97.15/5000	4
3D graphene-MoS ₂ hybrid	1.0 M KOH	169.3 F/g	28.43 Wh/Kg	10.18 W/kg	-	5
MoSe ₂ -Mo ₂ C hybrid nanoarrays	1 M KOH	$\begin{array}{c} 850 \ F \cdot g^{-1} @ 2.5 \\ A \cdot g^{-1} \end{array}$	-	-	98/10000	6
Mo ₂ C/NCF	6.0 M KOH	$\begin{array}{c} 1250 \ \mathrm{F} \cdot \mathrm{g}^{-1} \textcircled{@} 1 \\ \mathrm{A} \cdot \mathrm{g}^{-1} \end{array}$	-	-	100/500	7
MXene-NiCo ₂ S ₄ @ NF	3 М КОН	1147.47 F·g ⁻¹ @ 1 A·g ⁻¹	-	-	80.4/3000	8
MoS ₂ /CNS	1 M Na ₂ SO ₄	108 F g ⁻¹ @ 1 A g ⁻¹	74 Wh/kg	3700 W/Kg	-	9
MoS ₂ /MXene nanohybrid	3 М КОН	583 F·g ⁻¹ @ 1 A·g ⁻¹	-	-	82.5/3000	10
MoS ₂ /MWCNT	1 M Na ₂ SO ₄	452.7 F g ⁻¹ @ 1 A g ⁻¹	-	-	95.8/ 1000	11
NiCo ₂ S ₄ -g-MoS ₂	1.0 M KOH	1270 F g ⁻¹ @1 A g ⁻¹	-	-	94.8/4000	12
MoS ₂ -graphene	1.0 M KOH	$\begin{array}{c} 7\overline{56} F \cdot g^{-1} @ \\ 0.5 A \cdot g^{-1} \end{array}$	6 Wh/Kg	125 W/kg	88/10000	13

Table S1. Half-cell supercapacitor performances of TMDs and TMCs based electrodes

Electrode materials	Specific capacitance	Energy density	Power density	Capacitance retention (%)/cycles	Ref.	
CoS_2-W_2C	423 F/g at 2 A/g	150 Wh/Kg	4.5 kW/Kg	94.1/5000	This work	
MXene/MoSe ₂	$\begin{array}{c} 350 \ \mathrm{F} \cdot \mathrm{g}^{-1} \textcircled{@} 1 \\ \mathrm{A} \cdot \mathrm{g}^{-1} \end{array}$	48 Wh/Kg	500 W/kg	93/5000	14	
MXene- NiCo ₂ S ₄ @NF	-	27.24 Wh/Kg	0.48 kW/kg	-	8	
MXene/CuS	$\begin{array}{c} 49.3 \ F \cdot g^{-1} @ \\ 0.5 \ A \cdot g^{-1} \end{array}$	15.4 Wh/Kg	750.2 W/kg	82.4/5000	15	
1T-MoS ₂ / MXene	$\begin{array}{c} 386.7 F \cdot g^{-1} \textcircled{0}{1} \\ A \cdot g^{-1} \end{array}$	-	-	91.1/20000	16	
MXene/NiCo ₂ S ₄	$\begin{array}{c} 621 F \cdot g^{-1} @ 1 \\ A \cdot g^{-1} \end{array}$	72.82 Wh/Kg	0.635k W/Kg	90.88/20000	17	
1T-VS ₂ /MXene Hybrid	$\begin{array}{c} 115.7 \text{ F} \cdot \text{g}^{-1} @ \\ 0.8 \text{ A} \cdot \text{g}^{-1} \end{array}$	41.13 Wh/Kg	793.50 W/kg	85/5000	18	
Cu _{0.5} Co _{0.5} Se ₂ // MXene	$\begin{array}{c} 321 \ F \cdot g^{-1} @ 1 \\ A \cdot g^{-1} \end{array}$	84.19 Wh/Kg	715.12 W/kg	91.1/10000	19	
MXene-MoO ₂	3 F cm ⁻³ @ 2 mV s ⁻¹	9.7 mW h cm-3	0.198 W cm ⁻³	88/10000	20	
NiMoO ₄ /Ti ₃ C ₂ T _x	$\begin{array}{c} 137.3 \text{ F} \cdot \text{g}^{-1} @ \\ 0.5 \text{ A} \cdot \text{g}^{-1} \end{array}$	33.36 Wh/Kg	400.08 W/kg	72.6/10000	21	
Ti ₃ C ₂ /Ni-Co-Al- LDH	$\begin{array}{c} 128.89 \text{ F} \cdot \text{g}^{-1} @ \\ 0.5 \text{ A} \cdot \text{g}^{-1} \end{array}$	23.6 Wh/Kg	6.93 kW/kg	97.8/10000	22	
NiCoS/d-Ti ₃ C ₂	$\begin{array}{c} 95.2 \ \mathrm{F} \cdot \mathrm{g}^{-1} @ \\ 0.5 \ \mathrm{A} \cdot \mathrm{g}^{-1} \end{array}$	22.6 Wh/Kg	0.4 kW/kg	91.2/10000	23	
graphene/MXene hydrogel	$\begin{array}{c} 226.7 \ \mathrm{F} \cdot \mathrm{g}^{-1} @ 1 \\ \mathrm{A} \cdot \mathrm{g}^{-1} \end{array}$	9.3 Wh/Kg	500 W/kg	-	24	
NiCo ₂ - LDHs@MXene/rGO	$\begin{array}{c} 240 \ F \cdot g^{-1} @ \ 0.5 \\ A \cdot g^{-1} \end{array}$	65.3 Wh/Kg	700 W/kg	92.8/10000	25	
MXene/MoSe ₂ /ASC	$\begin{array}{c} 156.3 \ \mathrm{F} \cdot \mathrm{g}^{-1} @ \\ 0.5 \ \mathrm{A} \cdot \mathrm{g}^{-1} \end{array}$	55.6 Wh/Kg	800.3 W/kg	94.1/5000	26	
V ₂ NT _x MXene	112.8 F.g ⁻¹ @1.85 mA/cm ²	15.66 Wh/Kg	3748.4 W/kg	96/10000	27	
MXene@Ni-Mn LDH	$ \overline{ 56 \operatorname{F} \cdot \operatorname{g}^{-1} \textcircled{@} 1 } \\ $	44.7 Wh/Kg	800 W/kg	90.3/5000	28	
Ni–S/d- Ti ₃ C ₂ nanohybrid	$\begin{array}{c} 69.4 \text{ c} \cdot \text{g}^{-1} @ 0.5 \\ \text{A} \cdot \text{g}^{-1} \end{array}$	5.1 Wh/Kg	10k W/kg	71.4/10000	29	

 Table S2. Asymmetric supercapacitors performances of TMDs and TMCs based electrodes

Ni _{1.5} Co _{1.5} S ₄ . 5@Ti ₃ C ₂	$\begin{array}{c} 140 \ \mathbf{A} \!\cdot\! \mathbf{g}^{\!-\!1} \underbrace{@}_{\mathbf{A} \!\cdot\! \mathbf{g}^{\!-\!1}} \\ \mathbf{A} \!\cdot\! \mathbf{g}^{\!-\!1} \end{array} \!$	49.8 Wh/Kg	800 W/kg	90/8000	30
--	--	------------	-------------	---------	----

Electrocatalyst	Electrolyte	η (mV)	Tafel Slope (mV·dec ⁻¹)	j ₀ (mA·cm ⁻²)	Ref	
CoS ₂ -W ₂ C	1 M KOH	42	27	1.35	_ This work	
CoS ₂ -W ₂ C	0.5 M H ₂ SO ₄	50	42	1.2		
Reduced GO-Mo ₂ C composites	0.5 M H ₂ SO ₄	206 @ 10 mA/cm ²	52	-	31	
MoSe ₂ /NiSe ₂ composite nanowires	0.5 M H ₂ SO ₄	249 @ 100 mA/cm ²	46.9	-	32	
MoO ₂ /α-Mo ₂ C heterojunction	0.5 M H ₂ SO ₄ & 1 M KOH	152 & - 100@ 10 mA/cm ²	65 & 50	4.42×10-2	33	
Mo ₂ C Nanoparticles	0.5 M H ₂ SO ₄ & 1 M KOH	180 & 210@ 10 mA/cm ²	49 & 48	3×10-3	34	
WS ₂ /W ₂ C heterostructure	0.5 M H ₂ SO ₄	126@ 10 mA/cm ²	68	0.501	35	
MoSe ₂ @MoS ₂	0.5 M H ₂ SO ₄	161 @ 10 mA/cm ²	60	-	36	
Mo ₂ C/mesoporous carbon	0.1 M KOH	165 @ 10 mA/cm ²	63.3	-	37	
Mo ₂ C/ N doped carbon nanotubes	0.5 M H ₂ SO ₄	147@ 10 mA/cm ²	71	72.7@200 mV	38	
MoC-Mo ₂ C Heteronanowires	0.5 M H ₂ SO ₄ & 1 M KOH	126 & 120@ 10 mA/cm ²	43 & 42	1.1×10-2	39	
CoSe ₂ /MoSe ₂ heterostructures	1 M KOH	218 @ 10 mA/cm ²	76	-	40	
Mo ₂ C/CNT	1.0 M HClO ₄	64@ 1 mA/cm ²	52.2	1.4×10 ⁻²	41	
MoSe ₂ /Bi ₂ Se ₃ hybrids	0.5 M H ₂ SO ₄	300 mV @ 85 mA/cm ²	44	-	42	
MoP/Mo ₂ C@C	0.5 M H ₂ SO ₄	89@ 10 mA/cm ²	45	0.215	43	
Mo ₂ C/MoS ₂	0.5 M H ₂ SO ₄ & 1 M KOH	93 & 98 @ 10 mA/cm ²	67 & 68	0.952 & 1.32	2	
MoSSe Nanoflake	0.5 M H ₂ SO ₄	164 @ 10 mA/cm ²	48	-	44	
MoSSe@rGO composite	0.5 M H ₂ SO ₄	135 @ 5mA/cm ²	51	-	45	
Mo ₂ C Nanoparticles/ N doped porous carbon nanofibers	0.5 M H ₂ SO ₄ & 1 M KOH	85 & 90@ 1 mA/cm ²	68 & 60.2	0.178	46	
Mo ₂ C/Graphene Nanoribbons	0.5 M H ₂ SO ₄ & 1 M KOH	167 & 217@ 10 mA/cm ²	63 & 64	-	47	

Table S3. HER catalytic performances TMDs and TMCs-based electrocatalysts

Mo ₂ C/CNT-graphene	0.5 M H ₂ SO ₄	130@ 10 mA/cm ²	58	6.20×10 ⁻²	48
MoCx nano- octahedrons	$\begin{array}{c} 0.5 \text{ M} \text{ H}_2 \text{SO}_4 \\ \text{and } 1\text{M} \\ \text{KOH} \end{array}$	142 & 151@ 10 mA/cm ²	53 & 59	0.023 & 0.029	49

References

- T. Sun, Z. Li, X. Liu, L. Ma, J. Wang and S. Yang, Facile construction of 3D graphene/MoS₂ composites as advanced electrode materials for supercapacitors, *J. Power Sources*, 2016, **331**, 180-188.
- S. Hussain, I. Rabani, D. Vikraman, A. Feroze, M. Ali, Y.-S. Seo, W. Song, K.-S. An, H.-S. Kim and S.-H. Chun, MoS2@ X2C (X= Mo or W) hybrids for enhanced supercapacitor and hydrogen evolution performances, *Chemical Engineering Journal*, 2021, 421, 127843.
- 3. S. Ratha and C. S. Rout, Supercapacitor electrodes based on layered tungsten disulfidereduced graphene oxide hybrids synthesized by a facile hydrothermal method, *ACS applied materials & interfaces*, 2013, **5**, 11427-11433.
- S. Hussain, D. Vikraman, Z. A. Sheikh, M. T. Mehran, F. Shahzad, K. M. Batoo, H.-S. Kim, D.-K. Kim, M. Ali and J. Jung, WS2-embedded MXene/GO hybrid nanosheets as electrodes for asymmetric supercapacitors and hydrogen evolution reactions, *Chemical Engineering Journal*, 2023, 452, 139523.
- K. Singh, S. Kumar, K. Agarwal, K. Soni, V. R. Gedela and K. Ghosh, Three-dimensional Graphene with MoS 2 Nanohybrid as Potential Energy Storage/Transfer Device, *Scientific reports*, 2017, 7, 9458.
- D. Vikraman, S. Hussain, K. Karuppasamy, A. Feroze, A. Kathalingam, A. Sanmugam, S.-H. Chun, J. Jung and H.-S. Kim, Engineering the novel MoSe2-Mo2C hybrid nanoarray electrodes for energy storage and water splitting applications, *Applied Catalysis B: Environmental*, 2020, 264, 118531.
- K. J. Samdani, D. W. Joh and K. T. Lee, Molybdenum carbide nanoparticle-decorated 3D nitrogen-doped carbon flowers as an efficient electrode for high-performance, all-solidstate symmetric supercapacitors, *J. Alloys Compd.*, 2018, 748, 134-144.

- 8. H. Li, X. Chen, E. Zalnezhad, K. Hui, K. Hui and M. J. Ko, 3D hierarchical transitionmetal sulfides deposited on MXene as binder-free electrode for high-performance supercapacitors, *Journal of Industrial and Engineering Chemistry*, 2020, **82**, 309-316.
- T. N. Khawula, K. Raju, P. J. Franklyn, I. Sigalas and K. I. Ozoemena, Symmetric pseudocapacitors based on molybdenum disulfide (MoS 2)-modified carbon nanospheres: correlating physicochemistry and synergistic interaction on energy storage, *Journal of Materials Chemistry A*, 2016, 4, 6411-6425.
- B. Kirubasankar, M. Narayanasamy, J. Yang, M. Han, W. Zhu, Y. Su, S. Angaiah and C. Yan, Construction of heterogeneous 2D layered MoS2/MXene nanohybrid anode material via interstratification process and its synergetic effect for asymmetric supercapacitors, *Applied Surface Science*, 2020, **534**, 147644.
- K.-J. Huang, L. Wang, J.-Z. Zhang, L.-L. Wang and Y.-P. Mo, One-step preparation of layered molybdenum disulfide/multi-walled carbon nanotube composites for enhanced performance supercapacitor, *Energy*, 2014, 67, 234-240.
- J. Shen, P. Dong, R. Baines, X. Xu, Z. Zhang, P. M. Ajayan and M. Ye, Controlled synthesis and comparison of NiCo 2 S 4/graphene/2D TMD ternary nanocomposites for high-performance supercapacitors, *Chemical Communications*, 2016, **52**, 9251-9254.
- D. Vikraman, K. Karuppasamy, S. Hussain, A. Kathalingam, A. Sanmugam, J. Jung and H. S. Kim, One-pot facile methodology to synthesize MoS₂-graphene hybrid nanocomposites for supercapacitors with improved electrochemical capacitance, *Compos. Part B-Eng.*, 2019, 161, 555-563.
- S. Hussain, I. Rabani, D. Vikraman, T. Mehran, F. Shahzad, Y. S. Seo, H. S. Kim and J. Jung, Designing the MXene/molybdenum diselenide hybrid nanostructures for high-performance symmetric supercapacitor and hydrogen evolution applications, *International Journal of Energy Research*, 2021, 45, 18770-18785.
- Z. Pan, F. Cao, X. Hu and X. Ji, A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors, *Journal of Materials Chemistry A*, 2019, 7, 8984-8992.

- X. Wang, H. Li, H. Li, S. Lin, W. Ding, X. Zhu, Z. Sheng, H. Wang, X. Zhu and Y. Sun, 2D/2D 1T-MoS2/Ti3C2 MXene Heterostructure with Excellent Supercapacitor Performance, *Advanced Functional Materials*, 2020, **30**, 0190302.
- Y. Li, K. Donatien-Pascal and X. Jin, In situ growth of Chrysanthemum-like NiCo2S4 on MXene for High-performance Supercapacitors and Non-enzymatic H2O2 Sensor, *Dalton Transactions*, 2020.
- A. Sharma, P. Mane, B. Chakraborty and C. S. Rout, 1T-VS2/MXene Hybrid as a Superior Electrode Material for Asymmetric Supercapacitors: Experimental and Theoretical Investigations, ACS Applied Energy Materials, 2021, 4, 14198-14209.
- Y. A. Dakka, J. Balamurugan, R. Balaji, N. H. Kim and J. H. Lee, Advanced Cu0. 5Co0.
 5Se2 nanosheets and MXene electrodes for high-performance asymmetric supercapacitors, *Chemical Engineering Journal*, 2020, **385**, 123455.
- L. Zhang, G. Yang, Z. Chen, D. Liu, J. Wang, Y. Qian, C. Chen, Y. Liu, L. Wang and J. Razal, MXene coupled with molybdenum dioxide nanoparticles as 2D-0D pseudocapacitive electrode for high performance flexible asymmetric micro-supercapacitors, *Journal of Materiomics*, 2020, 6, 138-144.
- Y. Wang, J. Sun, X. Qian, Y. Zhang, L. Yu, R. Niu, H. Zhao and J. Zhu, 2D/2D heterostructures of nickel molybdate and MXene with strong coupled synergistic effect towards enhanced supercapacitor performance, *Journal of Power Sources*, 2019, 414, 540-546.
- 22. R. Zhao, M. Wang, D. Zhao, H. Li, C. Wang and L. Yin, Molecular-level heterostructures assembled from titanium carbide MXene and Ni–Co–Al layered double-hydroxide nanosheets for all-solid-state flexible asymmetric high-energy supercapacitors, *ACS Energy Letters*, 2017, **3**, 132-140.
- Y. Luo, Y. Tian, Y. Tang, X. Yin and W. Que, 2D hierarchical nickel cobalt sulfides coupled with ultrathin titanium carbide (MXene) nanosheets for hybrid supercapacitors, *Journal of Power Sources*, 482, 228961.
- 24. L. Zhang and S. W. Or, Self-assembled three-dimensional macroscopic graphene/MXenebased hydrogel as electrode for supercapacitor, *APL Materials*, 2020, **8**, 091101.

- 25. J. Zheng, X. Pan, X. Huang, D. Xiong, Y. Shang, X. Li, N. Wang, W.-M. Lau and H. Y. Yang, Integrated MXene-based Aerogel Composite: Componential and Structural Engineering towards Enhanced Performance Stability of Hybrid Supercapacitor, *Chemical Engineering Journal*, 2020, 125197.
- X. Chen, J. Zhu, J. Cai, Y. Zhang and X. Wang, Nanosheets assembled layered MXene/MoSe2 nanohybrid positive electrode materials for high-performance asymmetric supercapacitors, *Journal of Energy Storage*, 2021, 40, 102721.
- S. Venkateshalu, J. Cherusseri, M. Karnan, K. S. Kumar, P. Kollu, M. Sathish, J. Thomas,
 S. K. Jeong and A. N. Grace, New Method for the Synthesis of 2D Vanadium Nitride (MXene) and Its Application as a Supercapacitor Electrode, *ACS omega*, 2020, 5, 17983-17992.
- W. Wang, D. Jiang, X. Chen, K. Xie, Y. Jiang and Y. Wang, A sandwich-like nano-micro LDH-MXene-LDH for high-performance supercapacitors, *Applied Surface Science*, 2020, 145982.
- 29. Y. Luo, C. Yang, Y. Tian, Y. Tang, X. Yin and W. Que, A long cycle life asymmetric supercapacitor based on advanced nickel-sulfide/titanium carbide (MXene) nanohybrid and MXene electrodes, *Journal of Power Sources*, 2020, **450**, 227694.
- X. He, T. Bi, X. Zheng, W. Zhu and J. Jiang, Nickel cobalt sulfide nanoparticles grown on titanium carbide MXenes for high-performance supercapacitor, *Electrochimica Acta*, 2020, 332, 135514.
- K. Ojha, S. Saha, H. Kolev, B. Kumar and A. K. Ganguli, Composites of graphene-Mo2C rods: highly active and stable electrocatalyst for hydrogen evolution reaction, *Electrochimica Acta*, 2016, **193**, 268-274.
- L. Zhang, T. Wang, L. Sun, Y. Sun, T. Hu, K. Xu and F. Ma, Hydrothermal synthesis of 3D hierarchical MoSe₂/NiSe₂ composite nanowires on carbon fiber paper and their enhanced electrocatalytic activity for the hydrogen evolution reaction, *J. Mater. Chem. A*, 2017, 5, 19752-19759.
- Y. Liu, B. Huang and Z. Xie, Hydrothermal synthesis of core-shell MoO2/α-Mo2C heterojunction as high performance electrocatalyst for hydrogen evolution reaction, *Applied Surface Science*, 2018, 427, 693-701.

- 34. D. Wang, J. Wang, X. Luo, Z. Wu and L. Ye, In situ preparation of Mo2C nanoparticles embedded in ketjenblack carbon as highly efficient electrocatalysts for hydrogen evolution, ACS Sustainable Chemistry & Engineering, 2017, 6, 983-990.
- 35. Y. Li, X. Wu, H. Zhang and J. Zhang, Interface Designing over WS2/W2C for Enhanced Hydrogen Evolution Catalysis, *ACS Applied Energy Materials*, 2018, **1**, 3377-3384.
- X. Ren, Q. Wei, P. Ren, Y. Wang and R. Chen, Synthesis of flower-like MoSe₂@MoS₂ nanocomposites as the high efficient water splitting electrocatalyst, *Mater. Lett.*, 2018, 231, 213-216.
- 37. M. Qamar, A. Adam, B. Merzougui, A. Helal, O. Abdulhamid and M. Siddiqui, Metalorganic framework-guided growth of Mo 2 C embedded in mesoporous carbon as a highperformance and stable electrocatalyst for the hydrogen evolution reaction, *Journal of Materials Chemistry A*, 2016, 4, 16225-16232.
- K. Zhang, Y. Zhao, D. Fu and Y. Chen, Molybdenum carbide nanocrystal embedded Ndoped carbon nanotubes as electrocatalysts for hydrogen generation, *Journal of Materials Chemistry A*, 2015, **3**, 5783-5788.
- 39. H. Lin, Z. Shi, S. He, X. Yu, S. Wang, Q. Gao and Y. Tang, Heteronanowires of MoC–Mo
 2 C as efficient electrocatalysts for hydrogen evolution reaction, *Chemical science*, 2016, 7, 3399-3405.
- G. Zhao, P. Li, K. Rui, Y. Chen, S. X. Dou and W. Sun, CoSe₂/MoSe₂ Heterostructures with Enriched Water Adsorption/Dissociation Sites towards Enhanced Alkaline Hydrogen Evolution Reaction, *Chem. Eur. J.*, 2018, 24, 11158-11165.
- W.-F. Chen, C.-H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. Muckerman, Y. Zhu and R. Adzic, Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production, *Energy & Environmental Science*, 2013, 6, 943-951.
- J. Yang, C. Wang, H. Ju, Y. Sun, S. Xing, J. Zhu and Q. Yang, Integrated Quasiplane Heteronanostructures of MoSe₂/Bi₂Se₃ Hexagonal Nanosheets: Synergetic Electrocatalytic Water Splitting and Enhanced Supercapacitor Performance, *Adv. Funct. Mater.*, 2017, 27, 1703864.
- L.-N. Zhang, S.-H. Li, H.-Q. Tan, S. U. Khan, Y.-Y. Ma, H.-Y. Zang, Y.-H. Wang and Y.-G. Li, MoP/Mo2C@ C: a new combination of electrocatalysts for highly efficient hydrogen

evolution over the entire pH range, ACS applied materials & interfaces, 2017, 9, 16270-16279.

- Q. Gong, L. Cheng, C. Liu, M. Zhang, Q. Feng, H. Ye, M. Zeng, L. Xie, Z. Liu and Y. Li, Ultrathin MoS2 (1-x) Se2 x alloy nanoflakes for electrocatalytic hydrogen evolution reaction, *Acs Catalysis*, 2015, 5, 2213-2219.
- 45. B. Konkena, J. Masa, W. Xia, M. Muhler and W. Schuhmann, MoSSe@ reduced graphene oxide nanocomposite heterostructures as efficient and stable electrocatalysts for the hydrogen evolution reaction, *Nano Energy*, 2016, **29**, 46-53.
- H. Wang, C. Sun, Y. Cao, J. Zhu, Y. Chen, J. Guo, J. Zhao, Y. Sun and G. Zou, Molybdenum carbide nanoparticles embedded in nitrogen-doped porous carbon nanofibers as a dual catalyst for hydrogen evolution and oxygen reduction reactions, *Carbon*, 2017, 114, 628-634.
- 47. W. Gao, Y. Shi, Y. Zhang, L. Zuo, H. Lu, Y. Huang, W. Fan and T. Liu, Molybdenum carbide anchored on graphene nanoribbons as highly efficient all-pH hydrogen evolution reaction electrocatalyst, *ACS Sustainable Chemistry & Engineering*, 2016, **4**, 6313-6321.
- 48. D. H. Youn, S. Han, J. Y. Kim, J. Y. Kim, H. Park, S. H. Choi and J. S. Lee, Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube–graphene hybrid support, *ACS nano*, 2014, **8**, 5164-5173.
- 49. H. B. Wu, B. Y. Xia, L. Yu, X.-Y. Yu and X. W. D. Lou, Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production, *Nature communications*, 2015, 6, 6512.