supplementary information

Radiochromic Semiconductive MOF with High Sensitivity and Fast Photochromic Response for Dual-mode X-ray Direct Detection

Xu-Ying Yu,^{a,b} Jia-Rong Mi,^a Qiu-Pei Qin,^{a,c} Xin-Ping Fang,^{a,c} Yong-Fang Han,^d Li-Zhen Cai,^a

Ming-Sheng Wang*a and Guo-Cong Guo*a

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of

Matter, Chinese Academy of Sciences, Fuzhou, Fujian 3500608, P. R. China.

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

^c College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P.
 R. China.

^d College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, P. R. China.

*Corresponding authors. E-mail addresses: mswang@fjirsm.ac.cn (M.-S. Wang), gcguo@fjirsm.ac.cn (G.-C. Guo)

Experimental section:

	RCS-2		
Formula	$C_{39}H_{21}Dy_2NNa_2O_{30}S_4$		
$M_{ m r}$	1482.79		
Crystal system	monoclinic		
Space group	C2/c		
<i>a</i> (Å)	22.2834(2)		
<i>b</i> (Å)	30.0518(3)		
<i>c</i> (Å)	22.9729(3)		
α (deg)	90		
β (deg)	93.3340(10)		
γ (deg)	90		
$V(Å^3)$	15357.9(2)		
D_{calcd} (g/cm ³)	1.283		
Ζ	8		
<i>F</i> (000)	5760.0		
Abs coeff	12.000		
$R_{\rm int}$	0.0345		
R_1^{α}	0.0696		
$\omega R_2{}^b$	0.1918		
GOF on F^2	1.058		
$\Delta \rho_{max}$ and $\Delta \rho_{min}$ (e/Å ³)	1.695 and -2.030		

 Table S1. Crystal and structure refinement data for RCS-2 (as-synthesized).

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, \ {}^{b}\omega R_{2} = \{ \Sigma \omega [(F_{o})^{2} - (F_{c})^{2}]^{2} / \Sigma \omega [(F_{o})_{2}]^{2} \}^{1/2}$

Fig. S1 Crystal structures for **RCS-2**: (a) One-dimensional pore structure formed by ligands and metals. (b) The distance of N and O atoms.

Fig. S2 PXRD for the as-synthesized sample and irradiated sample of RCS-2.

Fig. S3 TG curve for the as-synthesized sample of RCS-2.

Fig. S4 The photocurrent of **RCS-2** versus time under different X-ray dose rates from 0.26 mGy/s to 1.52 mGy/s (a) and 3.12 mGy/s to 16.07 mGy/s (b).

Fig. S5 Temporal response of RCS-2 with a bias voltage of 30 V.

Fig. S6 X-ray induced photocurrent response of the RCS-2 detector under different bias voltage with the dose rate of 16.07 mGy_{air} s⁻¹.

Fig. S7 Time-dependent color changes of crystalline samples upon irradiation of $Al-K_a$ X-rays.

Fig. S8 Electronic absorption spectra of after irradiated and naturally faded sample for RCS-2.

Fig. S9 SEM image of single-crystal detector for RCS-2.

Materials	Sensitivity (S, μ CGy ⁻¹ cm ⁻²)	Bias voltage (V)	Mobility- lifetime product $(\mu\tau, \text{ cm}^2\text{V}^{-1})$	Ref.
RCS-2 (SC.)	6385	30	1.61 × 10 ⁻⁴	This work
RCS-1	98.58	30	5.32 × 10 ⁻⁴	2
1-SC-a (SC.)	2697	30	3.44×10^{-4}	3
MOF-2-film	137.31	30	3.03×10^{-3}	4
Ni-MOF-film	98.6	10	3.26 × 10 ⁻⁴	5
EV-MOF (SC.)	3216	30	8.27×10^{-6}	6
SCU-12	23.80	30	1.30×10^{-4}	7
SCU-13 (film)	65.86	100	4.31× 10 ⁻⁴	8
SCU-14	54.93	100	6.30 × 10 ⁻⁴	9
RhB ⁺ @TbTATAB	51.90	100	1.12×10^{-3}	10
Cu-DABDT	78.70	1	6.49 × 10 ⁻⁴	11
α-Se	20	5.50	10-7	12

Table S2. Summary and comparison of the direct X-ray detection performances for MOF and α -Se detectors.

Single-crystal (SC.)

References:

- 1. G.M. Sheldrick, Crystal structure refinement with SHELXL, Acta Cryst. 2015, C71, 3-8.
- 2. Yu, X.; Mi, J.; Han, Y.; Sun, C.; Wang, M.; Guo, G., A stable radiochromic semiconductive viologenbased metal–organic framework for dual-mode direct X-ray detection. *Chin. Chem. Lett.* **2023**, 109233.
- Li, B.-Y.; Xie, M.-J.; Lu, J.; Wang, W.-F.; Li, R.; Mi, J.-R.; Wang, S.-H.; Zheng, F.-K.; Guo, G.-C., Highly Sensitive Direct X-Ray Detector Based on Copper(II) Coordination Polymer Single Crystal with Anisotropic Charge Transport. *Small* 2023, 19 (42). DOI:10.1002/smll.202302492.
- Xie, M.-J.; Lu, J.; Li, B.-Y.; Wang, W.-F.; Wang, S.-H.; Zheng, F.-K.; Guo, G.-C., Barium(II)-based semiconductive coordination polymers for high-performance direct X-ray detection and imaging: Reducing the exciton binding energy via enhancing π-π interactions. *Chem. Eng. J.* 2023, 466, 143272.

supplementary information

- 5. Li, Z.; Chang, S.; Zhang, H.; Hu, Y.; Huang, Y.; Au, L.; Ren, S., Flexible Lead-Free X-ray Detector from Metal–Organic Frameworks. *Nano Lett.* **2021**, 21 (16), 6983-6989.
- Han, Y.-F.; Xu, X.-M.; Wang, S.-H.; Wang, W.-F.; Wang, M.-S.; Guo, G.-C., Reusable radiochromic semiconductive MOF for dual-mode X-ray detection using color change and electric signal. *Chem. Eng. J.* 2022, 437, 135468.
- Wang, Y.; Liu, X.; Li, X.; Zhai, F.; Yan, S.; Liu, N.; Chai, Z.; Xu, Y.; Ouyang, X.; Wang, S., Direct Radiation Detection by a Semiconductive Metal–Organic Framework. *J. Am. Chem. Soc.* 2019, 141 (20), 8030-8034.
- Liang, C.; Zhang, S.; Cheng, L.; Xie, J.; Zhai, F.; He, Y.; Wang, Y.; Chai, Z.; Wang, S., Thermoplastic Membranes Incorporating Semiconductive Metal-Organic Frameworks: An Advance on Flexible X-ray Detectors. *Angew. Chem. Int. Ed.* 2020, *59* (29), 11856-11860.
- Cheng, L.; Liang, C.; Liu, W.; Wang, Y.; Chen, B.; Zhang, H.; Wang, Y.; Chai, Z.; Wang, S., Three-Dimensional Polycatenation of a Uranium-Based Metal-Organic Cage: Structural Complexity and Radiation Detection. J. Am. Chem. Soc. 2020, 142 (38), 16218-16222.
- Liang, C.; Cheng, L.; Zhang, S.; Yang, S.; Liu, W.; Xie, J.; Li, M. D.; Chai, Z.; Wang, Y.; Wang, S., Boosting the Optoelectronic Performance by Regulating Exciton Behaviors in a Porous Semiconductive Metal-Organic Framework. J. Am. Chem. Soc. 2022, 144 (5), 2189-2196.
- 11. Li, Z.; Chang, S.; Zhang, H.; Hu, Y.; Huang, Y.; An, L.; Ren, S., Cu-based metal–organic frameworks for highly sensitive X-ray detectors. *Chem. Commun.* **2021**, *57* (69), 8612-8615.
- 12. Huang, H.; Abbaszadeh, S., Recent Developments of Amorphous Selenium-Based X-Ray Detectors: A Review. *IEEE Sens. J.* **2020**, 20 (4), 1694-1704.