Supporting Information

Enhanced photocatalytic CO_2 reduction to CH_4 via restorable surface plasmon and Pd_n -W^{$\delta+$} synergetic sites

Weisheng Hu,^{a,‡} Zehua Liu,^{c,‡} Liang Chen,*^b Ting Wang,^a Yangguang Hu,^c Ran

Long,^c Dong Liu,*^{c,d} Benxia Li*^a

^a School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China. *E-mail address: libx@zstu.edu.cn (B.X. Li)

^b College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China. *E-mail address: liang_chen@hznu.edu.cn (L. Chen)

^c Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China. *E-mail address: dongliu@ustc.edu.cn (D. Liu)

^d Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China. Author Contributions. [‡]Weisheng Hu and Zehua Liu. contributed equally to this work.

1. Supplementary Experiments

1.1 Characterization

X-ray diffraction (XRD) patterns of the catalysts were measured on an X-ray diffractometer (XRD, DX-2700) with monochromatized Cu K α radiation ($\lambda = 1.5406$ Å). Scanning electron microscopy (SEM) imaging was performed on a ZEISS Ultra-55 field-emission scanning electron microscope at an acceleration voltage of 3 kV. Transmission electron microscopy (TEM) imaging and energy dispersive X-ray (EDX) element mapping were performed on a JEOL-2100 transmission electron microscope at an acceleration voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) analysis was performed on an X-ray photoelectron spectrometer (Thermo Fisher Scientific K-Alpha) by using monochromated Al Ka radiation (1486.6 eV) and a high-resolution pass energy of 30 eV with a spot size of 400 µm. The spectra were calibrated according to the C 1s peak of adventitious carbon species at 284.8 eV. The electron spin resonance (ESR) was measured on a Bruker model JEOL JES-FA200 spectrometer. UV-vis-NIR diffused reflectance absorption spectra (DRS) were recorded on a Hitachi UH4150 spectrophotometer. Both CO₂ adsorption (273 K) and N₂ adsorption-desorption isotherms (77 K) were measured on a physisorption apparatus of Micromeritics ASAP 2020. Inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis was conducted on the Agilent 5800 instrument.

1.2 Computational method

Density functional theory (DFT) calculations were carried out using Vienna abinitio Simulation Package (VASP). The interaction between core and valence electrons was described employing the Projected Augmented Wave (PAW) method. The electron exchange and correlation effects were addressed using the Perdew-Burke-Ernzerhof (PBE) functional form based on the generalized-gradient approximation (GGA). A $2 \times 2 \times 1$ Monkhorst-Pack grid of size was employed for the calculations. An energy cutoff of 400 eV for the plane-wave basis was set to ensure the precision. All slab models were applied with 20 Å vacuum layer to avoid the vertical interactions. DFT-D3 method was applied to consider the long-range van der Waals interaction for the adsorption over substrate. The atomic positions were extensively relaxed until the remaining force of each atom is less than 0.05 eV/Å. The binding energy between the adsorbate (ad) and the substrate (sub) is defined by $E_{binding} = E_{ad@,Sub} - E_{sub} - E_{ad}$, where $E_{ad @sub}$ is the total energy of substrate with an adsorbed intermediate, E_{sub} and $E_{ad}\,are$ the energy of substrate and a single adsorbate in vacuum. DFT calculated energies were corrected into free energies (G) according to G=E_{DFT}+E_{ZPE}-TS (298.15K). E_{DFT} is the electronic energy of each step, E_{ZPE} is the zero-point energy and S is the entropy. Meanwhile, the proton-coupled electron (H⁺+e⁻) transfer during alkyne reduction was simulated with the computational hydrogen electrode (CHE) model. The transition states were searched by means of the climbing image nudged elastic band (CI-NEB) method by relaxing the remaining force below 0.05 eV/Å. The barrier energy (E_a) was calculated according to $E_a=E_{TS}-E_{IS}$, where E_{TS} and E_{IS} are the total energy of the corresponding initial state (IS) and transition state (TS), respectively. The optimized

configurations, adsorption energies, and differential charge densities of CO_2 and H_2O on $W_{18}O_{49}$ and $Pd/W_{18}O_{49}$, where the isosurface value was set as 0.0005 e Å⁻³ for CO_2 adsorption and 0.001 e Å⁻³ for H_2O adsorption.

1.3 Electrochemical measurements

Electrochemical tests were performed using a three-electrode system on an electrochemical workstation (CHI660E, China). The catalyst-coated fluorine-tin-oxide (FTO) glass, platinum wire and Ag/AgCl electrode served as the photoelectrode, counter electrode, and reference electrode, respectively. The linear sweep voltammetry (LSV) profiles of H₂O oxidation were measured at a scan rate of 10 mV s⁻¹ in the Arsaturated 0.1 M KHCO₃ aqueous solution, and the applied bias voltage was set in the range of 0 - 2.3 V (vs. Ag/AgCl). The LSV profiles of CO₂ reduction were measured at a scan rate of 10 mV s⁻¹ in the CO₂-saturated 0.1 M KHCO₃ aqueous solution, with the applied bias voltage ranging from -2.3 to 0 V (vs. Ag/AgCl). The Mott-Schottky plots were recorded at the frequencies of 500, 1000, and 1500 Hz, respectively, with the potential ranging from -2.0 to 2.0 V. The tests were conducted in a 0.1 M Na₂SO₄ solution electrolyte, using a three-electrode system.

1.4 Detection of H_2O_2 generated in photocatalytic CO_2 reduction system

Hydrogen peroxide (H_2O_2) generated in the photocatalytic CO_2 reduction process was analyzed by an iodimetry method. After the photocatalytic reaction, the catalyst was dispersed into 2 mL of deionized water, followed by centrifugation and filtration through a syringe filter. The filtrate was added into a mixture of potassium hydrogen phthalate ($C_8H_5KO_4$) aqueous solution (1 mL, 0.1 M) and potassium iodide (KI) aqueous solution (1 mL, 0.4 M), where H_2O_2 could react with I^- ions to produce I^{3-} that has a characteristic absorption peak at 350 nm. The UV-vis absorption spectra of the solution were recorded in the wavelength range of 300-500 nm by a Shimadzu UV-2600 spectrophotometer, to quantify the generated H_2O_2 .

2. Supplementary Figures

Fig. S1. (a) XRD patterns of $W_{18}O_{49}$ and Pd/ $W_{18}O_{49}$, (b) SEM image of $W_{18}O_{49}$, (c) SEM

image of Pd/W₁₈O₄₉, (d) energy dispersive spectrum of Pd/W₁₈O₄₉.

Fig. S2. (a) N₂ adsorption-desorption isotherms and (b) pore size distribution plots of

W18O49 and Pd/W18O49.

Fig. S3. XPS spectra of W₁₈O₄₉ and pristine Pd/W₁₈O₄₉. (a) Survey spectra, (b) Pd 3d spectrum of Pd/W₁₈O₄₉, (c) O 1s and (d) W 4f spectra.

Fig. S4. Results of the UV-vis driven photocatalytic CO₂ reduction using the

x%Pd/W₁₈O₄₉ catalysts with different Pd contents: (a) without the preactivation process, (b) after the Ar+H₂O preactivation process; (c) TCD-detected GC spectra and (d) FID-detected GC spectra of 1 mL reaction gas extracted from photocatalytic CO₂ reduction system with the Pd/W₁₈O₄₉ catalyst after 5 h irradiation.

Fig. S5. The color evolutions of H_2O_2 -oxidized $W_{18}O_{49}$ and $Pd/W_{18}O_{49}$ in the photoinduced preactivation (Ar + H_2O) process.

Fig. S6. (a, b) *In situ* NAP-XPS spectra of O 1s and W 4f, and (c, d) the calculated atomic proportions of different O and W species in the $Pd/W_{18}O_{49}$ catalyst during the

photoinduced preactivation process.

Fig. S7. ESR spectra of the $Pd/W_{18}O_{49}$ sample before and after light irradiation.

Fig. S8. Time-dependent infrared imagings of the Pd/W₁₈O₄₉ catalyst under different

light irradiations.

Fig. S9. The temperature profiles of the $Pd/W_{18}O_{49}$ catalyst under different light

irradiations for photocatalytic CO2 reduction.

Fig. S10. GC-MS analysis of the CO₂ reduction products from photocatalytic

reduction of ${}^{13}\text{CO}_2$ in the presence of Pd/W₁₈O₄₉ catalyst.

Fig. S11. (a) XRD pattern, (b) TEM image of the Pd/W₁₈O₄₉ catalyst after the cyclic CO₂ reduction reaction; (c-f) XPS spectra of the Pd/W₁₈O₄₉ catalyst before and after the cyclic CO₂ reduction reaction.

Fig. S12. (a) XRD pattern, (b) UV-vis absorption spectra, and (c) photocatalytic CO₂ reduction performance of the WO₃, Pd/WO₃ samples under UV-vis-NIR illumination.

Fig. S13. (a) XRD pattern and (b) UV-vis absorption spectra of the pristine

 $Pd/W_{18}O_{49}(NaBH_4)$ catalyst, (c) photocatalytic CO_2 reduction performance of the $Pd/W_{18}O_{49}(NaBH_4)$ catalyst under UV-vis-NIR illumination without and with

preactivation.

Fig. S14. In situ NAP-XPS spectra of O 1s and W 4f of (a-b) the pristine Pd/W₁₈O₄₉ catalyst and (c-d) the preactivated Pd/W₁₈O₄₉ catalyst in photocatalytic CO₂ reduction process (1.0 mbar CO₂+H₂O).

Fig. S15. Atomic proportions of different O and W species calculated from the O 1s and W 4f XPS spectra of the pristine $Pd/W_{18}O_{49}$ catalyst in photocatalytic CO_2 reduction process (1.0 mbar CO_2 +H₂O).

Fig. S16. Atomic proportions of different O and W species calculated from O 1s and W 4f XPS spectra of the preactivated $Pd/W_{18}O_{49}$ catalyst in photocatalytic CO_2 reduction process (1.0 mbar CO_2 +H₂O).

Fig. S17. CO₂ adsorption isotherms of different catalysts measured at 273 K.

Fig. S18. Linear sweep voltammetry profiles of $W_{18}O_{49}$ and Pd/ $W_{18}O_{49}$ coated electrodes measured in (a) CO₂ and (b) Ar-saturated 0.1 M KHCO₃ electrolyte.

Fig. S19. In situ DRIFTS of CO₂ reduction reaction on Pd/W₁₈O₄₉ catalyst under different conditions: (a) UV-vis-NIR irradiation at the controlled temperature of 25 °C,

(b) without illumination at the controlled temperature of 202 °C.

Fig. S20. (a) The standard curve for the quantitative analysis of H₂O₂, (b) UV-vis absorption spectra of the iodometry-testing solutions for detecting H₂O₂ generation in photocatalytic CO₂ reduction with different catalysts. (c) H₂O₂ production rates during photocatalytic CO₂ reduction reaction with different catalysts.

Fig. S21. Optimized structures of the typical intermediates for CO₂ reduction to CH₄

on $W_{18}O_{49}$ with preadsorbed *H.

Fig. S22. Optimized structures of the typical intermediates for CO_2 reduction to CH_4

with pre-supplied *H on Pd/W₁₈O₄₉.

Fig. S23. (a) Tauc plot, and (b) Mott-Schottky plots of the $Pd/W_{18}O_{49}$ catalyst.

The optical bandgap of $W_{18}O_{49}$ in the catalyst can be determined as 2.63 eV. The positive slopes of Mott-Schottky plots indicate that $W_{18}O_{49}$ is an n-type semiconductor. The transverse intercept value of -0.20 V (vs Ag/AgCl, pH = 7) corresponds to the flatband potential of $W_{18}O_{49}$ in the catalyst, which can be converted to the normal hydrogen electrode (NHE) scale using the following equation: $E_{(NHE)} = E_{(Ag/AgCl)} + 0.197$ V.¹ It is generally considered that the conduction band (CB) position of an n-type semiconductor is approximately 0.1–0.3 eV below the flat band potential.¹⁻³ As a result, the CB position is approximate to -0.3 V (vs. NHE), and the VB position is estimated to be 2.33 V (vs. NHE) according to the relationship of $E_g = E_{VBM} - E_{CBM}$.

3. Supplementary Tables

Sample	BET surface area	Pore volume	Average pore size	
	(m ² /g)	(cm ³ /g)	(nm)	
W ₁₈ O ₄₉	141.694	0.161	4.552	
Pd/W ₁₈ O ₄₉	126.612	0.135	4.261	

Table S1. BET surface areas and pore size distributions of $W_{18}O_{49}$ and $Pd/W_{18}O_{49}$.

Table S2. Atomic proportions of different O and W species from the deconvolution ofO 1s and W 4f XPS spectra of the pristine samples.

Sample	O _{lat}	O _{def}	W^{6+}	W ⁵⁺	W^{4+}
W ₁₈ O ₄₉	86.24	13.76	39.28	47.03	13.69
Pd/W ₁₈ O ₄₉	92.43	7.57	50.21	40.87	8.92

Table S3. Results of photocatalytic CO_2 reduction reactions under UV-vis illumination in the presence of $W_{18}O_{49}$ and $x\%Pd/W_{18}O_{49}$ catalysts before and after the preactivation, respectively.

Catalyst	State	CH ₄ yield	CO yield	CH ₄ yield
		$(\mu mol g_{cat}^{-1} h^{-1})$	$(\mu mol g_{cat}^{-1} h^{-1})$	selectivity (%)
W ₁₈ O ₄₉	Pristine	0.57	0.32	64.0
	Preactivated	1.18	0.47	71.5
0.3%Pd/W ₁₈ O ₄₉	Pristine	1.78	1.33	57.2
	Preactivated	3.28	1.02	76.3
0.5%Pd/W ₁₈ O ₄₉	Pristine	3.26	2.18	59.9
	Preactivated	10.83	1.13	90.6
0.8%Pd/W ₁₈ O ₄₉	Pristine	4.39	3.51	55.6
	Preactivated	12.22	1.55	88.7
1.0%Pd/W ₁₈ O ₄₉	Pristine	2.62	2.15	54.9
	Preactivated	4.72	1.80	72.4

Entry	Light	Temperature	CH ₄	СО	CH ₄
		(°C)	(µmol g _{cat} ⁻¹ h ⁻¹)	(µmol g _{cat} ⁻¹ h ⁻¹)	selectivity (%)
1	UV-vis-NIR	202.7	27.27	1.72	94.1
2	UV-vis	59.9	12.22	1.55	88.7
3	Vis-NIR	180.2	7.28	1.13	86.6
4	Vis	55.0	3.40	0.84	80.2
5	NIR	110.0	3.18	0.89	78.1

Table S4. Results of photocatalytic CO_2 reduction reactions under different illuminations in the presence of preactivated Pd/W₁₈O₄₉ catalyst.

Table S5. Cyclic tests of photocatalytic CO_2 reduction on the preactivated Pd/W18O49catalyst under UV-vis-NIR illumination, 5 h for each cycle.

Cycle times	$CH_4(\mu mol g_{cat}^{-1} h^{-1})$	CO (µmol g _{cat} ⁻¹ h ⁻¹)
1	27.31	1.48
2	26.51	1.43
3	25.51	1.52
4	26.11	1.67

	Reaction system	Photosensitizer &	Yield rate	D.C
Catalyst		sacrificial agent	(µmol h ⁻¹ g ⁻¹)	Ket.
Pd/W ₁₈ O ₄₉	H_2O vapor + CO_2 gas	1	CH ₄ : 27.27	This
			CO: 1.72	work
W ₁₈ O ₄₉	$H_2O + CO_2$	/	CH ₄ : 2.2	4
Cu-W ₁₈ O ₄₉	H ₂ O vapor + CO ₂ gas	/	CH4: 0.67	5
W ₁₈ O ₄₉ @Co	gas-liquid system	[Ru(bpy) ₃]Cl ₂ ·6H ₂ O	CO: 21.18	2
		TEOA	H ₂ : 6.49	2
Ni ₁ /WO _{2.72}	gas-liquid system	[Ru(bpy) ₃]Cl ₂ ·6H ₂ O	CO 90 5	3
		TEOA	CO: 80.5	5
Au/TiO ₂ /W ₁₈ O ₄		/	CH ₄ : 35.55	6
9	H_2O vapor + CO_2 gas	1	CO: 2.57	v
W ₁₈ O ₄₉ /Cu ₂ O	H ₂ O vapor + CO ₂ gas	/	CH ₄ : 17.2	7
			CH ₄ : 6.62	
SiC-W ₁₈ O ₄₉	H ₂ O vapor + CO ₂ gas	/	CO: 11.96	8
			CH ₃ OH: 3.29	
C-In ₂ O ₃ /W ₁₈ O ₄₉	H ₂ O+NaHCO ₃ +H ₂ SO ₄	/	CO: 135.82	9

Table S6. The comparison of photocatalytic CO_2 conversion performance between the present Pd/W₁₈O₄₉ catalyst and the previously reported W₁₈O₄₉-based catalysts.

4. References

- W. Hou, H. Guo, M. Wu and L. Wang, Amide covalent bonding engineering in heterojunction for efficient solar-driven CO₂ reduction, ACS Nano, 2023, 17, 20560-20569.
- 2 H. Zhang, Y. Wang, S. Zuo, W. Zhou, J. Zhang and X. W. D. Lou, Isolated cobalt centers on W₁₈O₄₉ nanowires perform as a reaction switch for efficient CO₂ photoreduction, *J. Am. Chem. Soc.*, 2021, **143**, 2173-2177.
- 3 Y. Mao, M. Zhang, S. Si, G. Zhai, X. Bao, K. Song, L. Zheng, Y. Liu, Z. Wang, Z. Zheng, P. Wang, Y. Dai, H. Cheng and B. Huang, Electronic structure manipulation via site-selective atomically dispersed Ni for efficient photocatalytic CO₂ reduction, *ACS Catal.*, 2023, **13**, 8362-8371.
- G. Xi, S. Ouyang, P. Li, J. Ye, Q. Ma, N. Su, H. Bai and C. Wang, Ultrathin W₁₈O₄₉ nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide, *Angew. Chem. Int. Ed.*, 2012, **51**, 2395-2399.
- M. Zhang, G. Cheng, Y. Wei, Z. Wen, R. Chen, J. Xiong, W. Li, C. Han and Z. Li, Cuprous ion (Cu⁺) doping induced surface/interface engineering for enhancing the CO₂ photoreduction capability of W₁₈O₄₉ nanowires, *J. Colloid Interface Sci.*, 2020, 572, 306-317.
- 6 X. Jiang, J. Huang, Z. Bi, W. Ni, G. Gurzadyan, Y. Zhu and Z. Zhang, Plasmonic active "hot spots"-confined photocatalytic CO₂ reduction with high selectivity for CH₄ production, *Adv. Mater.*, 2022, **34**, e2109330.

- M. Jiang, C. Li, K. Huang, Y. Wang, J. H. Liu, Z. Geng, X. Hou, J. Shi and S. Feng, Tuning W₁₈O₄₉/Cu₂O{111}interfaces for the highly selective CO₂ photocatalytic conversion to CH₄, ACS Appl. Mater. Interfaces, 2020, **12**, 35113-35119.
- 8 M. Lin, M. Luo, Y. Liu, J. Shen, J. Long and Z. Zhang, 1D S-scheme heterojunction of urchin-like SiC-W₁₈O₄₉ for enhancing photocatalytic CO₂ reduction, *Chin. J. Catal.*, 2023, **50**, 239-248.
- 9 H. He, Z. Wang, K. Dai, S. Li and J. Zhang, LSPR-enhanced carbon-coated In₂O₃/W₁₈O₄₉ S-scheme heterojunction for efficient CO₂ photoreduction, *Chin. J. Catal.*, 2023, 48, 267-278.