
1

Supporting information

Boosting the bifunctional electrocatalytic performance of nanowire 

NiCo2O4@ultrathin porous carbon via modulating d-band center

Huiqin Yu a, Fang Li a*, Jing Cao a, Shifu Chen a, Haili Lin a*

a Key Laboratory of Green and Precise Synthetic Chemistry and Applications, 

Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal 

University, Huaibei, Anhui 235000, P. R. China

∗Corresponding author.

E-mail address: lifang14@mails.ucas.ac.cn (Fang Li); linhaili@mail.ipc.ac.cn (Haili 

Lin)

Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers.
This journal is © the Partner Organisations 2024

mailto:lifang14@mails.ucas.ac.cn


2

Figure S1. N2 adsorption-desorption isotherms of NiCo2O4 and NiCo2O4/C.       3

Figure S2. XPS full survey spectrum of NiCo2O4/C sample.                   3

Figure S3. Energy Dispersive Spectrometer of the NiCo2O4/C.                 4

Figure S4. High-resolution C 1s XPS spectra of the NiCo2O4/C/NF.             4

Figure S5. High-resolution O 1s XPS spectra of the NiCo2O4/C/NF.             5

Figure S6. The EIS of the NiCo2O4/C/NF, NiCo2O4/NF, C/NF, and NF.          5

Figure S7. The CV of the NiCo2O4/C/NF, NiCo2O4/NF, and C/NF.              6

Figure S8. The HPLC result of the NiCo2O4/C/NF, NiCo2O4/NF, and C/NF.       6

Figure S9 The comparison of whole reaction in BA electrolyte and overall water 

splitting reaction                                            7

Figure S10. The LSV curve before and after long term whole reaction.           8

Figure S11. The SEM after long-term HER and BA oxidation.                  8

Figure S12. The TEM after long-term HER and BA oxidation.                  9

Table S1 The comparison of HER property.                                 10

Detail calculation method                                              13



3

0

300

600

900

1200

0.0 0.2 0.4 0.6 0.8 1.0

 

 

Vo
lu

m
e 

(c
m

3 ·g
1

)
 NiCo2O4/C

Relative pressure (P/P0)

 NiCo2O4

Figure S1. N2 adsorption-desorption isotherms of NiCo2O4 and NiCo2O4/C.
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Figure S2. XPS full survey spectrum of NiCo2O4/C sample.
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Figure S3. Energy Dispersive Spectrometer of the NiCo2O4/C.
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Figure S4. High-resolution C 1s XPS spectra of the NiCo2O4/C/NF.
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Figure S5. High-resolution O 1s XPS spectra of the NiCo2O4/C/NF. 
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Figure S6. The EIS of the NiCo2O4/C/NF, NiCo2O4/NF, C/NF, and NF.
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Figure S7. The CV of the NiCo2O4/C/NF, NiCo2O4/NF, and C/NF.
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Figure S8. The HPLC result of the NiCo2O4/C/NF, NiCo2O4/NF, and C/NF.
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Figure S9 The comparison of whole reaction in BA electrolyte and overall water-

splitting reaction in electrolyte free of BA.
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Figure S10. The SEM after long-term HER (a and b) and BA oxidation (c and d).
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Figure S11 The LSV curve before and after long term whole reaction.
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Figure S12 The TEM for the long-term HER (a, b, and c) and BA oxidation (d, e, and 

f)
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Table S1 Comparison of HER property 

Catalyst Electrolyte Overpotential 

(10 mA cm-2)

Ref.

Vc-FeP 1 M KOH 108 1

CoSe2/a-CoP 1 M KOH 151 2

NiCo-LDH@Cu(OH)2/CF 1 M KOH 263 3

Co-Co2C/CC 1 M KOH 96 4

Co2P 1 M KOH 190 5

NiFe alloy 1 M KOH 236 6

Co2FeO4@PdO 1 M KOH 269 7

Ni@NCS-800 1 M KOH 330 8

Cu–Ni (1:1) @NRG 1 M KOH 107 9

Fe-Ni3S2/Ni2P 1 M KOH 112 10

C@NiCo12 1 M KOH 105 11

MoS2 1 M KOH 248 12

Co-Mo2C-0.020 1 M KOH 140 13

W2N/WC 1 M KOH 148.5 14

CoP-NC@NFP 1 M KOH 162 15

Ni5P4/Ni2P/Fe2P-2 1 M KOH 190 16
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All the DFT calculations were conducted based on the Vienna Ab-inito Simulation 

Package (VASP) [1-2]. The exchange-correlation effects were described by the Perdew-

Burke-Ernzerhof (PBE) functional within the generalized gradient approximation 

(GGA) method [3-4]. The core-valence interactions were accounted by the projected 

augmented wave (PAW) method [5]. The energy cutoff for plane wave expansions was 

set to 500 eV, and the 3×3×1 Monkhorst-Pack grid k-points were selected to sample 

the Brillouin zone integration. The vacuum space is adopted 15 Å above the surfaces to 

avoid periodic interactions. The structural optimization was completed for energy and 

force convergence set at 1.0×10-4 eV and 0.02 eV Å-1, respectively.

The Gibbs free energy change (ΔG) of each step is calculated using the following 

formula:

        ∆G = ∆E + ∆ZPE - T∆S

where ΔE is the electronic energy difference directly obtained from DFT calculations, 

ΔZPE is the zero point energy difference, T is the room temperature (298.15 K) and ΔS 

is the entropy change. ZPE could be obtained after frequency calculation by [6]:

ZPE = 
1
2

 ∑ℎ𝑣𝑖

And the TS values of adsorbed species are calculated according to the vibrational 

frequencies [7]: 

𝑇𝑆 =  𝑘𝐵𝑇 [ ∑
𝑘

𝑙𝑛(
1

1 ‒ 𝑒
‒ ℎ𝑣/𝑘𝐵𝑇

) +  ∑
𝑘

ℎ𝑣
𝑘𝐵𝑇

 
1

(𝑒
ℎ𝑣/𝑘𝐵𝑇

‒ 1)
+ 1 ]
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