Supporting Information

Uniformly anchoring Sb₂O₅ nanoparticles on graphene sheets via Co²⁺-induced

deposition for enhanced lithium/sodium-ion storage

Xiaozhong Zhou, *a Aixia Wang, a Xiaoyan Zheng, a Dongfei Sun, a Yaoxia Yanga

^{*a} Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and*</sup>

Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China.

* Corresponding author, E-mail: zxz20004@163.com.

Figure S1 XRD patterns of Co-Sb₂O₅/rGO electrodes with different (a) Sb/Co molar ratios for 12-h solvothermal treatment and (b) solvothermal time at a certain Sb/Co molar ratio of 1:0.3.

Figure S2 Cycling stability of Co-Sb $_2O_5$ /rGO electrodes with different (a) Sb/Co molar ratios for 12-h solvothermal treatment and (b) solvothermal time at a certain Sb/Co molar ratio of 1:0.3.

Materials	Initial reversible capacity (mAh g ⁻¹ /A g ⁻¹)	Capacity after (x) cycles (mAh g ⁻¹ / cycles)	Capacity at high rate (mAh g ⁻¹ /A g ⁻¹)	Long-term cycling capacity after (x) cycles (mAh g ⁻¹ / A g ⁻¹ / cycles)	Potential (V)	Ref.
Sb ₂ O ₃ thin films	LIB: 794 / -	LIB: ~750 / 70	-	-	0.01-3	1
Sb ₂ O ₃ /rGO	LIB: 899 / 0.05	LIB: 562 / 100	LIB: 155 / 0.3	-	0.01-3	2
Sb ₂ O ₃ /rGO	LIB: 855 / 0.2	LIB: 513 /300	LIB: 397 / 2	-	0.01-3	3
Sb ₂ O ₃ /rGO	LIB: 1355 / 0.1	LIB: 808 / 120	LIB: 188 / 5	LIB: 525 / 0.6 / 700	0.01-3	4
Sb ₂ O ₄ /rGO	LIB: 1170 / 0.1	LIB: 798 / 200	LIB: 320 / 3	LIB: 428 / 0.55 / 500	0.01-3	5
Sb ₂ O ₄ @PPy	LIB: 989.4 / 0.1	LIB: 932 / 100	LIB: 552.8 / 2	LIB: 542.8 / 1.0 /250	0.01-3	6
hollow Sb ₂ O ₄	LIB: 727.1 / 0.1	LIB: 700 / 50	LIB: 370.9 / 2	LIB: 415 / 1 / 100	0.01-3	7
Sb ₆ O ₁₃ /rGO	LIB: 1271 / 0.1	LIB: 1109 / 140	LIB: 201 / 3	LIB: 430 / 0.5 / 300	0.01-3	8
Sb ₆ O ₁₃ @C	SIB: 337 / 0.1	SIB: 375 / 125	SIB: 239 / 1	-	0.005-2.5	9
Mn-polyantimoni acide (PAA)	с _	LIB: 544 / 100	LIB: 271 / 5	LIB: 700 / 800	0.01-3	10
V-PAA	LIB: 934/0.1	-	LIB: 560 / 5	LIB: 731 / 1 / 1200	0.01-3	11
PAA/rGO	LIB: 847 / 0.1	-	LIB: 258 / 10	LIB: 509 / 1 / 800	0.01-3	12
Sb ₂ O ₃ -Fe-C	LIB: 770 / 0.5 SIB: 319 / 0.1	LIB: 658 / 100	LIB: 680.3 / 10 SIB: 182 / 10	LIB: 546.6 / 1 / 1000 SIB: 226.8 / 1 / 300	0.01-3	13
Sb ₂ O ₅ /Co-C	LIB: 1102 / 0.1	LIB: 1009 / 100	LIB: 647.2 / 1	LIB: 462.8 / 1 / 700	0.01-3	14
Co-Sb ₂ O ₅ /rGO	LIB: 916.8 / 0.2 SIB: 441.1 / 0.1	LIB: 1027 / 200 SIB: 352.3 / 100	LIB: 507.3 / 3 SIB: 252.3 / 1	LIB: 648.1 / 0.5 / 500	0.01-3.0	This work

Table S1. Comparison on electrochemical performance of Sb_xO_y -based electrodes for LIB and SIB applications.

Figure S3 Top-view surface and cross-sectional SEM images of Co-Sb₂O₅@rGO electrodes before cycling (a, b, c) and after 200 cycles (d, e, f).

Reference

- 1. M.-Z. Xue and Z.-W. Fu, Electrochemical reaction of lithium with nanostructured thin film of antimony trioxide, *Electrochem. Commun.*, 2006, **8**, 1250-1256.
- J. Zhou, C. Zheng, H. Wang, J. Yang, P. Hu and L. Guo, 3D nest-shaped Sb₂O₃/RGO composite based high-performance lithium-ion batteries, *Nanoscale*, 2016, 8, 17131-17135.
- X. Chen, T. Yao, H. Dong, Q. Ge, S. Chen and Z. Ma, Ultrafine Sb₂O₃ nanoparticle-decorated reduced graphene oxide as an anode material for lithium-ion batteries, *Energy Fuels*, 2023, **37**, 5586-5594.
- X. Zhou, Z. Zhang, X. Lu, X. Lv, G. Ma, Q. Wang and Z. Lei, Sb₂O₃ Nanoparticles Anchored on Graphene Sheets via Alcohol Dissolution-Reprecipitation Method for Excellent Lithium-Storage Properties, ACS Appl. Mater. Interfaces, 2017, 9, 34927-34936.
- X. Zhou, Z. Zhang, J. Wang, Q. Wang, G. Ma and Z. Lei, Sb₂O₄/reduced graphene oxide composite as high-performance anode material for lithium ion batteries, *J. Alloy. Compd.*, 2017, 699, 611-618.
- L. Jiang, W. Yin, C. He, T. Luo, Y. Rui and B. Tang, Sb₂O₄@PPy core-shell nanospheres as anode materials for lithium-ion storage, *Colloid. Surfaces A*, 2022, 644, 128843.
- 7. Z. Yi, Q. Han, X. Li, Y. Wu, Y. Cheng and L. Wang, Two-step oxidation of bulk Sb to one-dimensional Sb₂O₄ submicron-tubes as advanced anode materials for lithium-ion and sodium-ion batteries, *Chem. Eng. J.*, 2017, **315**, 101-107.
- X. Zhou, Z. Zhang, X. Xu, J. Yan, G. Ma and Z. Lei, Anchoring Sb₆O₁₃ Nanocrystals on Graphene Sheets for Enhanced Lithium Storage, ACS Appl. Mater. Interfaces, 2016, 8, 35398-35406.
- S. Liao, X. Wang, H. Hu, D. Chen, M. Zhang and J. Luo, Carbon-encapsulated Sb₆O₁₃ nanoparticles for an efficient and durable sodium-ion battery anode, *J. Alloy. Compd.*, 2021, 852, 156939.
- 10. K. Yong, H. Fang, B. Wang, X. Qiu, K. Wu, Q. Wang, Y. Zhang and H. Wu, Synergistic structural engineering of tunnel-type polyantimonic acid enables dual-boosted volumetric and areal lithium energy storage, *Adv. Energy Mater.*, 2022, **12**, 2200653.
- 11. H. Fang, K. Yong, B. Wang, K. Wu, Y. Zhang and H. Wu, V-substituted pyrochlore-type polyantimonic acid for highly enhanced lithium-ion storage, *Chin. Chem. Lett.*, 2023, **34**, 107545.
- 12. B. Wang, Z. Deng, Y. Xia, J. Hu, H. Li, H. Wu, Q. Zhang, Y. Zhang, H. Liu and S. Dou, Realizing reversible conversion-alloying of Sb(V) in polyantimonic acid for fast and durable lithium- and potassium-ion storage, *Adv. Energy Mater.*, 2020, **10**, 1903119.
- X. Shi, W. Liu, H. Xue, B. Chen, C. Wang, L. Sun, L. Chang, Y. Cheng and L. Wang, An exploration on the improvement of reversible conversion and capacity retention of Sb₂O₃-based anode materials for alkali metal-ion storage by Fe-C co-hybridization, *J. Power Sources*, 2021, **506**, 230074.
- J. Li, L. Han, X. Zhang, G. Zhu, T. Chen, T. Lu and L. Pan, Sb₂O₅/Co-containing carbon polyhedra as anode material for high-performance lithium-ion batteries, *Chem. Eng. J.*, 2019, **370**, 800-809.