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Reagents

The chemical reagents used in the experiments are of analytical grade without 

further purification. The deionized water used in this experiment has a resistivity 

greater than 18 MΩ cm−1. ZrCl4, 2,2′-bipyridine-5,5′-dicarboxylic acid and P-

phenylenediamine were purchased from Sinopharm Chemical Reagent (Shanghai) Co. 

TMB, potassium periodate was obtained from Guangfu Reagent (Tianjin) Co., Ltd. 

Hydrogen peroxide (H2O2), N,N-dimethylformamide (DMF), sodium acetate (NaAc), 

acetic acid (HAc) and Methanol were obtained from Beijing Chemical Works 

(Beijing). NaCl, ZnCl2, KIO4, MgSO4 and KBr were purchased from Tianjin Guangfu 

Institute of Fine chemicals. Threonine, glycine, lysine, tyrosine, arginine, proline, 

histidine, asparagine, glucose, urea were purchased from Sangon Biotech (Shanghai). 

Inorganic salt, and Sox were purchased from Beijing Chemical Works (Beijing). And 

the configured solutions were all stored at 4℃.

Instrumentation

Fluorescence spectra were collected with a Shimadzu RF-5301 PC 

spectrofluorophotometer (Shimadzu Co. Ltd, Kyoto, Japan). UV–vis absorption 

spectra were collected on a Varian GBC Cintra 10e UV–visible Spectrophotometer 

(Shimadzu Co.Ltd, Kyoto, Japan). Powder X-ray diffraction (XRD) patterns were 

obtained using a D/max 2550 VB/PC diffractometer with Cu Kα radiation 

(λ = 1.5406 Å) (Rigaku Corporation, Japan). X-ray photoelectron spectroscopy (XPS) 

spectra were obtained by a Thermo ESCALAB 250 electron energy spectrometer with 
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standard Al K alpha excitation (Shanghai, China). Analyser Mode: CAE (Constant 

analyzer energy) mode; Spot size: 500μm; Pass energy: 100.0 eV (survey scan)/30.0 

eV (narrow scan); Energy Step Size: 1.00 eV (survey scan)/0.05 eV (narrow scan). 

All pH measurements throughout the study were performed with a PHS-3C pH meter 

(INESA Scientific Instrument Co. Ltd, Shanghai, China). Transmission Electron 

Microscopy (TEM) was obtained by Hitachi H-800 electron microscope using an 

accelerating voltage of 300 KeV (http://www.hitachi.com.cn/). Fluorescent tags of co-

immobilized SOX and HRP were performed on a FV1200 laser scanning confocal 

microscope (Olympus, China), by using fluorescein isothiocyanate (FITC) and 

rhodamine B (RhB) as fluorescent markers. Fourier transform infrared (FT-IR) 

spectra were recorded through a Thermo Nicolet 360 FTIR spectrometer.

Synthesis of CDs

Typically, 40 mg KIO4 was dissolved in a 10 mL experimental ethanol solution 

containing 10 mg of p-phenylenediamine. Subsequently, the resulting mixture was 

moved to a Teflon-lined autoclave and heated to 180 °C for 120 minutes. The 

obtained solution was processed by a dialysis bag (MWCO 10000 Da) in ethanol for 

10 h.
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Fig. S1 The Effect of different equivalent ratio of HRP/SOX on Zr-

MOFs@SOX@HRP.
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Fig. S2 The Effect of synthesis temperature on Zr-MOFs@SOX@HRP.
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Fig. S3 The Effect of synthesis time on Zr-MOFs@SOX@HRP.
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Fig. S4 The Effect of concentration of Zr-MOFs on Zr-MOFs@SOX@HRP.
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2 Fig. S5 The relative activity of Zr-MOFs@SOX@HRP stored at different 

3 temperatures.
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6 Fig. S6 The relative catalytic activity of Zr-MOFs@SOX@HRP stored at different 

7 pH.
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3 Fig. S7 The relative activity of Zr-MOFs@SOX@HRP stored at different 

4 concentration of NaCl.
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6

7 Fig. S8 The FTIR spectra of CDs.
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2 Fig. S9 The fluorescence intensity of CDs stored at different temperatures.
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6 Fig. S10 The fluorescence intensity of CDs stored at different concentration of NaCl.
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2 Fig. S11 The fluorescence intensity of CDs stored at different pH.
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6 Fig. S12 The photobleaching property on the fluorescence intensity variation of CDs
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1

2 Fig. S13 The figure of PPD (left) and oxPPD (right) solution under daylight.
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7 Fig. S14UV-vis absorption spectra of CDs, oxPPD and CDs+oxPPD.
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2 Fig. S15 The effect of reaction time on the absorption intensity of the Zr-

3 MOFs@SOX@HRP/SO/PPD system.
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6 Fig. S16 The effect of reaction pH on the absorption intensity of the Zr-

7 MOFs@SOX@HRP/SO/PPD system.
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2 Fig. S17 The effect of reaction temperature on the absorption intensity of the Zr-

3 MOFs@SOX@HRP/SO/PPD system.
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6 Fig. S18 The effect of adding CDs to Zr-MOFs@SOX@HRP/SO/PPD system on 

7 reaction time.

8

9



13

1 Table S1 Comparison of analytical performances of various methods for sarcosine 

2 detection.

Material Method Linear range(μM) LOD(μM) Ref.

CNT/Pt Electrochemical 6–750 6 [1]

Fe-doped g-C3N4 Colorimetry 10-500 3.6 [2]

SiO2@TiO2/PDI-OH Colorimetry 0.3–1000 0.12 [3]

CuInS2 Photoelectrochemical 10-1000 8 [4]

MIP monolithic fibre Gas Chromatograph 11.2-1120 4.1 [5]

Ag NCs Fluorescence 200-1600 10.33 [6]

CuT@N NS Fluorescence 7.5–1100 4.69 [7]

BCDs+MnO2 NSs Fluorescence 1–80 0.36 [8]

Colorimetry 0.5-150 0.44Zr-

MOFs@SOX@HRP/C

Ds

Fluorescence 0.5-200 0.21

Our work
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