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1. Instrumentation for material characterization

The material crystallinity, phase, atomic arrangements, and surface morphology 

analysis of the prepared electrocatalyst were examined via powder X-ray diffraction (XRD, 

X’pert-MRD, Pro Philips), 3D imaging Raman spectroscopy with NANO PHOTON, spherical 

aberration corrected scanning transmission microscopy (CS-TEM) and high-resolution 

transmission electron microscopy (HR-TEM, JEOL/ JEM-ARM 200F), and field emission 

scanning electron microscopy (FE-SEM, ZEISS Gemini SEM 500). The metal weight 

percentage were calculated through inductively coupled plasma- optical emission spectroscopy 

(ICP-OES) (THERMOF-KR4FB8O iCAP RQ) at the Center for University Wide Research 

Facilities (CURF) at Jeonbuk National University (JBNU), South Korea. The structural and 

elemental composition were analyzed via X-ray photoelectron spectroscopy (XPS AxisNova, 

Kratos, Inc.) at the Korea Basic Science Institute (KBSI) at Jeonbuk National University 

(JBNU), South Korea.  

2. Electrochemical analysis

The electrochemical experiments were performed with conventional three electrode system 

using Gamry instrument Reference 600 (potentiostat/Galvanostat/ZRA) in seawater and 1 M 

KOH electrolytes. The electrochemical cell is composed with reference electrode (Ag/AgCl, 

KCl saturated), counter electrode (graphitic rod), and our designed electrocatalysts in working 

electrode. Commercial Pt 20 wt.% used for comparison in working electrode. All the materials 

were coated on Ni-foam (3 mg catalyst in 1×1 cm2) and Fig. S3 shows the location of seawater 

collection for the analysis. Operando-EIS was evaluated from 0.1 Hz to 100kHz with different 

applied potential, and the observed results were fitted through ZSimpWin software.1-3 

Moreover, the experimental results were measured with help of Ag/AgCl reference electrode, 

the resulting data was converted to reversible hydrogen electrode (RHE) with the following 

Nernst equation: 



𝐸𝑅𝐻𝐸 = 𝐸𝐴𝑔/𝐴𝑔𝐶𝑙   +  0.059 × 𝑝𝐻   +  𝐸𝑜
𝐴𝑔/𝐴𝑔𝐶𝑙                   (1)                                                        



3. TOF calculation for HER  

The hydrogen TOF per site of the Cu@1T-N-W NSs catalyst was derived using the following 

formula (2): 

𝑇𝑂𝐹 𝑝𝑒𝑟 𝑠𝑖𝑡𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑜𝑥𝑦𝑔𝑒𝑛 𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑠/𝑐𝑚2  𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑎𝑟𝑒𝑎

 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠/𝑐𝑚2  𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑎𝑟𝑒𝑎
                                         (2)

The total number of hydrogen turnovers was calculated according to the formula (3)
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Then, Cu and W content of the Cu@1T-N-W NSs electrocatalyst was quantified by ICP-OES 

analysis at about 37.8 wt.% and 10 wt.%, respectively. Accordingly, the W content of the 1T-

N-W NSs electrocatalyst is 65 wt.%. Hence, the active site density based on the Cu and W in 

Cu@1T-N-W NSs is:

( 10  
63.5 

+
37.8 

183.84 )1 𝑚𝑚𝑜𝑙
100 𝑚𝑔

 3
𝑚𝑔

  𝑐𝑚2 6.022  1020 
𝑠𝑖𝑡𝑒𝑠

1 𝑚𝑚𝑜𝑙
 = 6.56 1018𝑠𝑖𝑡𝑒𝑠 𝑐𝑚 ‒ 2

Similarly, the 1T-N-W NSs active sites were calculated. Then, the evaluated active sites were 

substituted in equation (2) to find the TOF of the prepared electrocatalysts.

4. Electrochemically active surface area (ECSA):



The non-faradaic region from the cyclic voltammetry (CV) curve was used to calculate 

the ECSA value of the developed electrocatalyst with the help of double layer capacitance (Cdl) 

at a scan rate of 10 to 50 mV s-1. The capacitive current was taken from the difference between 

the anodic current and cathodic current (Δj = j anode – j cathode). ECSA values are directly 

proportional to the Cdl value (the Cdl value is double in the slope calculation) as below:4

          
𝐸𝐶𝑆𝐴 =

𝐶𝑑𝑙

𝐶𝑠
               (4)

ECSA = Electrochemical active surface area (ECSA)

Cdl = Double layer capacitance 

Cs = Specific capacitance (0.040 mF cm−2) 

5. Tafel slope mechanism

According to the Tafel slope, the alkaline and seawater medium hydrogen evolution reaction 

(HER) process catalyzed by Cu@1T-N-W NSs material proceeds through Volmer-Heyrovsky 

mechanism. The HER reaction mechanism can be expressed as: 

            𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛: 2𝐻2𝑂 + 2𝑒 ‒  → 𝐻2 + 2𝑂𝐻 ‒                        (5)

           𝑉𝑜𝑙𝑚𝑒𝑟 𝑠𝑡𝑒𝑝: ∗  +  𝐻2𝑂 +  𝑒 ‒ → 𝐻 ∗ +  𝑂𝐻 ‒                        (6)

  Heyrovsky step:         𝐻 ∗ + 𝐻2𝑂 +  𝑒 ‒  → 𝐻2 +  𝑂𝐻 ‒                (7)

6. ECSA normalized LSV:

The current density normalized to the electrochemically active surface area (ECSA) was 

calculated according to the following equation (8), 

                                                                                              
𝐽𝐸𝐶𝑆𝐴  =

𝐼
𝑆𝐸𝐶𝑆𝐴

                 (8)



where JECSA = current density normalized by ECSA,

I = current density (mA),

SECSA = Cdl/Cs



7.Faradaic efficiency calculation using Water Displacement Method (WDM):

The Faradic efficiency of Cu@1T-N-W NSs from the overall water splitting was 

evaluated from the total charge passed through the system at corresponding time intervals using 

Faraday’s law.  Here, RuO2 electrode was used in the anode compartment (for OER).

Using the following equation, 

    𝑉𝑇ℎ𝑒𝑜 =  𝐼 ∗  𝑡 ∗  𝑉𝑚 / 𝑛 ∗ 𝐹                                        (9)

where                                                                                 

V Theo = Theoretical evolved gas volume, 

I = current measured in the experiment (A),

t = measured time (s).

Vm = volumetric molar mass of H2 in l/mol,

n = number of electrons, 

F = Faraday constant = 96485 s A/mol.

Faradaic efficiency (ηF) was determined by ratio of measured gas volume (Vmeas) and 

theoretically calculated volumes (VTheo) as given in equation (9), 

𝐹𝑎𝑟𝑎𝑑𝑖𝑐 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦  (𝜂𝐹) =
𝑉𝑚𝑒𝑎𝑠

𝑉𝑇ℎ𝑒𝑜

VMeas = Measured evolved gas volume. 



Fig. S1. Schematic representation of ammonium ions intercalation in 1T-N-W NSs.

Initially, the interlayer distance of 1T-WS2 is 0.27 nm (Fig. S1). This distance was 

enlarged to 0.96 nm due to the ammonium ions intercalation (NH4
+), which is higher compared 

to 2H-WS2 (0.62 nm).5 According to Qin Liu, et al.,6 the WS2 was considered as four types of 

structural model. This consideration was established by deriving the fundamental calculations 

on the structural stability and the electrical properties. Here, the hydrogen atoms from NH4
+ 

ions directly contact the neighboring sulfur atoms in the WS2 through hydrogen bonding. As a 

result, the interlayer distance of the 1T-WS2 nanosheets were increased with phase 

stabilization.6  



Fig. S2. FE-SEM images of 1T-N-W NSs: (a and b) electron images at different 

magnifications, (c) EDAX overlapping image, and (d-g) EDAX elemental mapping of W, S, 

O, and N, respectively.



Fig. S3. FE-SEM images of Cu@1T-N-W NSs: (a and b) electron images at different 

magnifications, (c) EDAX overlapping image, and (d-h) EDAX elemental mapping of Cu, W, 

S, O, and N, respectively.



Fig. S4. TEM analysis of Cu@1T-N-W NSs: (a and b) CS-TEM images, (c) HR-TEM analysis. 



Fig. S5. Evidence of calculated IFFT plane distance for Cu@1T-N-W NSs and 1T-N-W NSs.



Fig. S6. Raman analysis of Cu@1T-N-W NSs and 1T-N-W NSs.



Fig. S7. Photographic image of the place where seawater water was collected for the 

experiment (Byeonsan Beach, Republic of Korea).



Table S1: HER overpotential at various current densities in 1 M KOH.

Table S2: HER overpotential at various current densities in natural seawater + 1 M KOH.

Overpotentials
Electrocatalysts

10 mA cm-2 100 mA cm-2 200 mA cm-2

Pt/C 20 wt.% 98.9 200.7 286.6

Cu@1T-N-W NSs 158.2 336.1 434.3

1T-N-W NSs 234.7 402.5 508.1

Overpotentials
Electrocatalysts

10 mA cm-2 100 mA cm-2 200 mA cm-2

Pt/C 20 wt.% 90.5 151.1 201.8

Cu@1T-N-W NSs 121.8 259.4 336.2

1T-N-W NSs 180.9 363.9 444.5



Fig. S8. Contact angle measurements, (a-c) water contact angle measurements of Cu@1T-N-

W NSs (d-f) water contact angle measurements of Cu@1T-N-W NSs.



Fig. S9. Cdl and ECSA measurements in 1 M KOH solution: (a-c) CV curves at different scan 

rates (10 to 50 mV s-1) of 1T-N-W NSs, Cu@1T-N-W NSs, and commercial Pt 20 wt.%, 

respectively. (d-f) respective Cdl measurements.



 
Fig. S10. Cdl and ECSA measurements in natural seawater + 1 M KOH: (a-c) CV curves at 

different scan rates (10 to 50 mV s-1) of 1T-N-W NSs, Cu@1T-N-W NSs, and commercial Pt 

20 wt.%, respectively. (d-f) respective Cdl measurements.



Fig. S11. (a and b) ECSA bar chart in 1 M KOH and natural seawater + 1 M KOH, respectively. 

(c-d) TOF normalized LSV curves in 1 M KOH and natural seawater + 1 M KOH, respectively. 

 



Fig. S12. (a and b) CV stability (1000 cycles) studies of Cu@1T-N-W NS in 1 M KOH and 

natural seawater + 1 M KOH electrolytes, respectively. (c and d) respective LSV curves of 

before and after stability.  



Fig. S13. Post-FE-SEM images of Cu@1T-N-W NSs in natural seawater + 1 M KOH: (a and 

b) electron images at different magnifications, (c) EDAX overlapping image, and (d-h) EDAX 

elemental mapping of Cu, W, S, O, and N, respectively.



Fig. S14. Post-TEM images of Cu@1T-N-W NSs in natural seawater + 1 M KOH: (a) electron 

image, (b) HAADF-STEM overlapping image, and (c-g) HAADF-STEM elemental mapping 

of Cu, W, S, O, and N, respectively.



Fig. S15. The real-time picture of FE evaluation



Fig. S16. The derived FE at different time intervals



Fig. S17. The Nyquist spectrum of Cu@1T-N-W NSs at different potential (0.46 V is catalyst 

activation region and -0.23 V is HER region).



Fig. S18. Equivalent circuit diagram of the electrocatalysts.



Fig. S19. Fitting of the Rct values of Cu@1T-N-W NSs and 1T-N-W NSs in 1 M KOH and 

natural seawater + 1 M KOH (in different applied potentials)



Table S3. HER overpotentials and Tafel values of recently reported 1T-WS2 based 
electrocatalysts.

Electrocatalysts Electrolyte
Overpotential 
@10 mA cm-2 

(mV)

Tafel values 
(mV dec−1) Ref.

1T′-D WS2 0.5 M H2SO4 200 50.4 7

1T-WS2 0.5 M H2SO4 350@5 mA cm-2 95 8

1T-WS2 0.5 M H2SO4 316 110 9

1T/1T-MWH 0.5 M H2SO4 294 99 9

V SACs@1T-WS2 0.5 M H2SO4 185 61 10

1T-WS2 0.5 M H2SO4 118 43 11

1T-CoWS/HMCS 0.5 M H2SO4 25 43 12

1T-WS2NDs 0.5 M H2SO4 180 51 13

1T-WSx_1000 BuLi 0.5 M H2SO4 242 ± 7 mV 114 ± 7 14

SLHS-1T-WS2 0.5 M H2SO4 102 46 15

1 T-WS2|P-5 1 M KOH 190 92.11 16

1 T-WS2|P-5 0.5 M H2SO4 125 73.73 16

1T′-WS2–CoCp2-
14% 0.5 M H2SO4 170 40 17

1T′-Sn0.3W0.7S2+CB 0.5 M H2SO4 ∼ 240 81 18

1T-WS2 0.5 M H2SO4 232 63 19

1T-Fe/P-WS2@CC 1 M KOH 116 65 20

Cu@1T-N-W NSs 1 M KOH 121.8 46.3 This 
work



Table S4. HER overpotentials and Tafel values of recently reported electrocatalysts in 1M 
KOH.

Electrocatalysts Electrolyte
Overpotential 
@10 mA cm-2 

(mV)

Tafel values 
(mV dec−1) Ref.

Ni/NiO 1.0 M KOH 226 135 21

Ni-Mo/NG 1.0 M KOH 159 45 22

Ni-Cu 1.0 M KOH 128 mV 57.2 mV/dec-1 23

Co3O4–CuO 1.0 M KOH 288 65 24

CoP nanoparticles 1.0 M KOH 87 105 25

NiMoSe/Ti3C2Tx@CC 1.0 M KOH 203 45 26

Ni-Ti3C2Tx 1.0 M KOH 181.15 56.15 27

FeCoMnNiSe2 1.0 M KOH 142 60.3 28

ZnCoS-1 1.0 M KOH 227 72.39 29

NiWO4-NiO 1.0 M KOH 68 155 30

Co2P2O7@NC/CF-700 1.0 M KOH 145.7 92.6 31

Ni–Ce–Pr–Ho 1.0 M KOH 78 121.6 32

Co2P/CoP@NF 1.0 M KOH 61 55.1 33

MoS2|NiS|MoO3 1.0 M KOH 91 54.5 34

NiSe2-A 1.0 M KOH 157 76 35

Cu3P–Ni2P/NF 1.0 M KOH 103 80 36

Cu@1T-N-W NSs 1 M KOH 121.8 46.3 This 
work



Table S5. HER overpotentials and Tafel values of recently reported electrocatalysts in 
seawater.

Electrocatalysts Electrolyte
Overpotential 
@10 mA cm-2 

(mV)

Tafel values 
(mV dec−1) Ref.

Ru/FeTeO 1 M KOH + 
Seawater 311 @ 3 mA cm-2 61.8 37

(Rh)-WO3 1 M KOH + 
Seawater 98 84 38

NAU9-500 Artificial 
seawater 330.2 29.3 39

CoSe/MoSe2 Artificial 
seawater 164 - 40

CoSe/MoSe2 Alkaline 
seawater 189 - 40

CoMnTe2-1 1 M KOH + 
Seawater 136 - 41

Mo3Se4-NiSe 1 M KOH + 
Seawater 166 90.12 42

Co3(PO4)2-MoO3–

x/CoMoO4/NF
1 M KOH + 

Seawater 93 23.69 43

S–
Fe(OH)3/NiSe/NF

1 M KOH + 
Seawater 349@100 mA cm-2 - 44

Ni2P–MoO2 1 M KOH + 
Seawater 248 - 45

Cu@1T-N-W NSs
1 M KOH + 

natural 
seawater

158.2 58.5 This 
work
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