Supporting information

A novel Albumin-binding macrocyclic Gd-HPDO3A complex bearing a deoxycholic acid residue. The role of hydration state, water exchange and local dynamics on the observed relaxivity

Ferdeze Hasallari, ^{a,b} Carla Carrera, ^a Eleonora Cavallari,^a Eliana Gianolio ^{a*} and Silvio Aime

a. Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Centre, University of Torino Via Nizza 52, 10126 Torino, Italy

b. DiSIT - Department of Science and Technological Innovation, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121, Alessandria, Italy

c. IRCCS SDN SynLab, Via Gianturco 113, Naples, Italy.

Corresponding author:

Prof. Eliana Gianolio

Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Centre, University of Torino Via Nizza 52, 10126 Torino, Italy

e-mail: <u>eliana.gianolio@unito.it</u>

phone: +390116706475

Fitting models

- ¹⁷O water transversal relaxation rate vs temperature

The exchange lifetime ($\tau_{\rm M}$) of the metal bound water molecule in a paramagnetic chelate may be accurately assessed by measuring the temperature dependence of the paramagnetic contribution (R_{2p}^O) to the observed water ¹⁷O transverse relaxation rate (R_{2obs}^O).

 R_{2p}^{O} is related to τ_{M} through the values of $\Delta \omega_{M}^{O}$ (i.e. the ¹⁷O chemical shift difference between coordinated and bulk water molecule) and R_{2M}^{O} (which represents the transverse relaxation rate of the coordinated water oxygen) according to the Swift and Connick equation (eq. 2 and 3).¹ In the presence of two isomers/species (namely A and B) characterized by different water exchange dynamics, two contributions to R_{2p}^{O} can be defined:

$$R_{2p}^{O} = R_{2obs}^{O} - R_{2dia}^{O} = R_{2pA}^{O} + R_{2pB}^{O}$$
(1)

$$R_{2pA}^{O} = \frac{qC_{A}}{55.6} \tau_{MA}^{-1} \frac{R_{2MA}^{O^{-2}} + \tau_{MA}^{-1} R_{2MA}^{O} + \Delta \omega_{MA}^{O^{-2}}}{\left(R_{2MA}^{O} + \tau_{MA}^{-1}\right) + \Delta \omega_{MA}^{O^{-2}}}$$
(2)

$$R_{2pB}^{O} = \frac{qC_{B}}{55.6} \tau_{MB}^{-1} \frac{R_{2MB}^{O^{2}} + \tau_{MB}^{-1} R_{2MB}^{O} + \Delta \omega_{MB}^{O^{2}}}{\left(R_{2MB}^{O} + \tau_{MB}^{-1}\right)^{2} + \Delta \omega_{MB}^{O^{2}}}$$
(3)

where R_{2dia}^{O} is the contribution to R_{2obs}^{O} measured for a solution lacking the Gd(III) complex, q is the number of inner sphere water molecules, C_A and C_B are the concentrations of A and B isomers, respectively (with C_A+C_B=C_{tot}), τ_{MA} and τ_{MB} are the exchange lifetimes of coordinated water molecule in A and B.

For relatively small-sized Gd(III) chelates, R_{2M}^O is essentially dominated by the electronnucleus scalar interaction, thus for A and B we have:

$$R_{2MA}^{O} = \frac{1}{3} \left(\frac{A}{h}\right)^2 S(S+1) \left(\tau_{E1A} + \frac{\tau_{E2A}}{1 + \omega_s^2 \tau_{E2A}^2}\right)$$
(4)

$$R_{2MB}^{O} = \frac{1}{3} \left(\frac{A}{h}\right)^2 S(S+1) \left(\tau_{E1B} + \frac{\tau_{E2B}}{1 + \omega_s^2 \tau_{E2B}^2}\right)$$
(5)

Where S is the electronic spin quantum number (7/2 for Gd(III)), $\frac{A}{h}$ is the Gd-¹⁷O scalar coupling constant (we used a value of - 3.8×10⁶rad s⁻¹)² and τ_{EiA} and τ_{EiB} (with i=1, 2) represent the correlation times modulating the scalar interaction. This modulation may occur either through the longitudinal and transverse electronic relaxation times (T_{1E} and T_{2E}) or the mean residence lifetime τ_{M} of the water molecule at the paramagnetic site, i.e.

$$\tau_{EiA}^{-1} = T_{iEA}^{-1} + \tau_{MA}^{-1}$$
(6)

$$\tau_{EiB}^{-1} = T_{iEB}^{-1} + \tau_{MB}^{-1}$$
(7)

The temperature dependence of R_{2M}^O is then expressed by the temperature effect on τ_M and $\Delta \omega_M^O$ according to the following equations:

$$\Delta \omega_{MA}^{O} = \frac{g_e \mu_B S(S+1) B_0}{3k_B T} \frac{A}{h}$$
(8)

$$\Delta \omega_{MB}^{O} = \frac{g_e \mu_B S(S+1) B_0}{3k_B T} \frac{A}{h}$$
(9)

where B_0 is the magnetic field strength, k_B is the Boltzmann constant, g_e is the g factor for the free electron, μ_B is the Bohr magneton.

$$(\tau_J)_T = \left(\tau_j\right)^{298,15} \exp\left[\frac{E_j}{R}\left(\frac{1}{T} - \frac{1}{298.15}\right)\right]$$
 (10)

where j refers to the two different dynamic processes involved (j = v, M).

-¹H water longitudinal relaxation rate as a function of magnetic field

The relaxivity of a Gd(III) complex results from contributions arising mainly from water molecules in the inner- and the outer-coordination spheres:

$$r_1 = r_1^{His} + r_1^{Hos}$$
 (11)

 r_l^{His} refers to the contribution from the exchange of the water protons in the first coordination sphere of the paramagnetic metal ion:

$$r_{1}^{His} = \frac{q[GdL]}{55.56 \times (T_{1M}^{H} + \tau_{M})}$$
(12)

where *q* is the inner sphere hydration number, [GdL] is the molar concentration of the Gdcomplex, T_{IM}^H is the longitudinal relaxation time of the inner-sphere water protons and τ_M is their residence lifetime. The classical Solomon-Bloembergen theory ^{3,4} provides the magnetic field dependence of T_{IM}^H and was applied to fit NMRD profiles of **Gd-HIBDO3A-DCA**, **Gd-HPDO3A-DCA and Gd-HIBDO3A in PBS**:

$$\frac{1}{T_{1M}^{H}} = \frac{2}{15} \frac{\gamma_{\rm H}^2 g_e^2 \mu_B^2 S(S+1)}{r_{\rm H}^6} \left[\frac{3\tau_{\rm c1}}{1+\omega_{\rm H}^2 \tau_{\rm c1}^2} + \frac{7\tau_{\rm c2}}{1+\omega_{\rm S}^2 \tau_{\rm c2}^2} \right]$$
(13)

where *S* is the electron spin quantum number (7/2 for Gd(III), γ_H is the proton nuclear gyromagnetic ratio, μ_B is the Bohr magneton, g_e is the Landè factor for the free electron, r_H is the distance between the metal ion and the inner-sphere water protons; ω_H and ω_s are the proton and electron Larmor frequencies ($\omega_s = 658.21^{\times} \omega_H$), respectively and τ_{ci} (*i* =1,2) are the correlation times related to the modulation of the dipolar electron-proton coupling. Such an interaction may be modulated by the reorientation of the paramagnetic species, τ_R , by the residence lifetime, τ_M and by the electronic relaxation times, T_{iE} .

$$\tau_{ci}^{-1} = \tau_R^{-1} + \tau_M^{-1} + T_{iE}^{-1}$$
 (14)

Experimental data relative of the NMRD profile of **Gd-HIBDO3A-DCA in human serum** were fitted with the Solomon-Bloembergen-Morgan equations modified according to the Lipari– Szabo model-free approach.⁵ This model considers both a local internal rotation, characterized by a correlation time τ_{RL} , and a global motion described by τ_{RG} . The correlation between these two motions is quantified by the order parameter K², which varies in the range 0-1, where a value of zero indicates complete independence between the motions, and a value of 1 suggests immobilization in the absence of local fluctuations. Equations 13-14 were modified as follows:

$$\frac{1}{T_{1M}^{H}} = \frac{2}{15} \frac{\gamma_{\rm H}^2 g_e^2 \mu_B^2 S(S+1)}{r_{\rm H}^6} \left[\frac{3K^2 \tau_{\rm clg}}{1+\omega_{\rm H}^2 \tau_{\rm clg}^2} + \frac{3(1-K^2)\tau_{\rm cl}}{1+\omega_{\rm H}^2 \tau_{\rm cl}^2} + \frac{7K^2 \tau_{\rm c2g}}{1+\omega_{\rm S}^2 \tau_{\rm c2g}^2} + \frac{7(1-K^2)\tau_{\rm c2}}{1+\omega_{\rm S}^2 \tau_{\rm c2}^2} \right]$$
(15)
$$\tau_R^{-1} = \tau_{RG}^{-1} + \tau_{RL}^{-1}$$
(16)

$$\tau_{ci}^{-1} = \tau_R^{-1} + \tau_M^{-1} + T_{iE}^{-1}$$
(17)
$$\tau_{cig}^{-1} = \tau_{RG}^{-1} + \tau_M^{-1} + T_{iE}^{-1}$$
(18)

Analogously to the nuclear relaxation time, the electronic relaxation times depend on the magnetic field strength. For Gd(III) complexes T_{iE} is determined by the modulation of the transient zero field splitting (ZFS) of the electronic spin states caused by the dynamic distortions of the ligand field and, according to the Blombergen-Morgan theory, their magnetic field dependence is given by the following equations:

$$T_{1E}^{-1} = \frac{1}{25} \Delta^2 \tau_v \Big[4S(S+1) - 3 \Big(\frac{1}{1+\omega_s^2 \tau_v^2} + \frac{4}{1+4\omega_s^2 \tau_v^2} \Big)$$
(19)
$$T_{2E}^{-1} = \frac{1}{50} \Delta^2 \tau_v \Big[4S(S+1) - 3 \Big(3 + \frac{5}{1+\omega_s^2 \tau_v^2} + \frac{2}{1+4\omega_s^2 \tau_v^2} \Big)$$
(20)

where Δ^2 is the square of the transient ZFS energy and τ_v is the correlation time related to its modulation.

The outer sphere term, r_1^{Hos} , describes the contribution from water molecules which diffuses around the paramagnetic complex and, according to the model developed by Hwang and Freed,³ may be related to the minimum distance between the metal and the outer-sphere water protons, *a*, the relative solute-solvent diffusion coefficient, *D*, and, again, the electronic relaxation times, T_{iE} :

$$r_1^{Hos} = C^{os} \left(\frac{1}{aD}\right) \left[7J(\omega_s) + 3J(\omega_H)\right]$$
(21)

where C^{os} is a constant (5.8·10⁻¹³ s⁻²M⁻¹) and the dependence on the electronic relaxation times is expressed in the non-Lorentzian spectral density functions $J(\omega_i)$.

-Proton Relaxation Enhancement (PRE) for the determination of binding affinity to macromolecules

The binding parameters involved in the non-covalent interaction between a paramagnetic chelate and a macromolecular system may be conveniently performed through the well-consolidated PRE technique.

When a paramagnetic complex interacts with a macromolecule the following equilibrium is established:

$$GdL + M \leftrightarrow GdL/M$$

The affinity constant K_A is the equilibrium constant and is given by the equation:

$$K_{A} = \frac{\left[GdL/M\right]}{\left[GdL\left[nM\right]\right]} \tag{22}$$

in which [nM] indicates the concentration of the equivalent and independent binding sites and GdL represents the Gd^{III} chelate.

The measured longitudinal proton relaxation rate (R_{1obs}) is given by the sum of the contributions arising from the unbound and the bound species as well as the diamagnetic contribution of the host (R_{1M}):

$$R_{1obs} = (r_1[GdL] + r_1^b[GdL/M])000 + R_{1M}$$
(23)

Where r_1 and r_1^{b} are the millimolar relaxivity values of the unbound and bound GdL respectively.

Combination of the equations 22 and 23, allows to correlate the measured R_{1obs} to the binding parameters K_A and n, as follows:

$$R_{1obs} = \frac{(K_A G dL_T + nK_A M_T + 1) - \sqrt{(K_A G dL_T + nK_A M_T + 1)^2 - 4K_A^2 G dL_T nM_T}}{2K_A} - (r_1^b - r_1 + r_1 G dL_T) 1000 + R_{1M}$$
(24)

Where GdL_T and M_T are the total molar concentrations of the **GdL** and the host macromolecule, respectively.

References

- 1) T. J. Swift, R. E. J. Connick, J. Chem. Phys. 1962, 37, 307
- 2) D. H. Powell, O. M. Ni Dhubhghaill, D. Pubanz, L. Helm, Y. S. Lebedev, W. Schlaepfer, A. E. Merbach, J. Am. Chem. Soc. 1996, 118, 93332 9346.
- 3) L. Banci, I. Bertini, C. Luchinat, Nuclear and Electronic Relaxation, VCH, Weinheim, 1991, p. 91.
- 4) N. Bloembergen, L. O. Morgan, J. Chem. Phys. 1961, 34, 8422 850.
- 5) Ref 45 of the main text

Figure S1: ¹H-NMR spectrum of product **2** in CDCI₃ at 600 MHz and 298 K.

Figure S2: ¹³C-NMR spectrum of product **2** in $CDCI_3$ at 600 MHz and 298 K.

Figure S3: ¹H-NMR spectrum of product **3** in CDCI₃ at 600 MHz and 298 K.

Figure S4: 13 C-NMR spectrum of product 3 in CDCl₃ at 600 MHz and 298 K.

Figure S5: ¹H-NMR spectrum of product 4 in $CDCI_3$ at 600 MHz and 298 K.

Figure S6: ¹³C-NMR spectrum of product 4 in $CDCI_3$ at 600 MHz and 298 K.

Figure S7: ¹H-NMR spectrum of product **5** in $CDCI_3$ at 600 MHz and 298 K.

Figure S8: ¹³C-NMR spectrum of product **5** in CDCl₃ at 600 MHz and 298 K.

b)

Figure S9: a) Chromatogram (210 nm and ESI+), purity >91% and b) Mass spectrum in ESI+ of peak at 4.6 min of product **6**.

Figure S10: ¹H-NMR spectrum of product 6 in DMSO d6 at 600 MHz and 298 K.

Figure S11: ¹³C-NMR spectrum of product **6** in DMSO d6 at 600 MHz and 298 K.

Figure S12: a) Chromatogram (210 nm and ESI+), purity >99% and b) Mass spectrum in ESI+ of peak at 4.61 min of the Gd complex.

Figure S13: 2D-EXSY 1H NMR of Eu-HIBDO3A-DCA (20 mM) in D_2O at pD 7.4, 298 K and 14.1 T with a mixing time of 5 ms. Box (A) indicates ring inversion and boxes (B) and (C) indicate arm rotation between SAP and TSAP isomers.

Figure S14: Linear dependence of the τ_R values obtained from fitting the NMRD profiles reported in figure 6A and the molecular weight of the corresponding Gd-complexes. Data relative to Gd-HIBDO3A, Gd-HPDO3A-DCA and Gd-HIBDO3A-DCA are compared to those obtained for other q=1 Gd-complexes reported in the literature.

Figure S15: A) Transmetalation of Gd-complexes with 1 eq. Zinc in 50 mM phosphate buffer at 310 K and pH 7.4, measured at 0.47 T; B) Evaluation of inertness of Gd-complexes in 1 M HCl solution at 298K, measured at 0.47T.

room temperature.

.

Figure S16: Representative T1-weighted MSME acquired at 1T for healthy tissues: kidneys (A, B – red line) and liver (C,D-blue line) obtained pre and after injection with Gd-HPDO3A (ProHance) and Gd-HIBDO3A-DCA. Images show left to right pre-contrast, and post-contrast at 10 and 50 min.

Figure S17: Representative T1-weighted MSME images acquired at 1T showing the enhancement of bile accumulated in the gallbladder (indicated by white arrows) obtained preand post-injection of Gd-HPDO3A (ProHance) and Gd-HIBDO3A-DCA. Images display, from left to right, pre-contrast and post-contrast at different time points.

Figure S18: Biodistribution of Gd-HIBDO3A-DCA and ProHance in healthy BALB/c mice 4 hours after the administration of 0.05 mmol/Kg of contrast agent as determined by ICP-MS analysis. The Gd³⁺ contents are presented as μ g per gram of tissue and given as mean \pm SD from 3 different mice.

Figure S19: Blood elimination curve of Gd-HIBDO3A-DCA upon the intravenous administration of 0.05 mmol/kg of contrast agent in healthy mice. Data are reported as mean± SD from 3 different mice.

Figure S20: Whole-body coronal maximum intensity projection (MIP) of 3D FLASH images obtained following intravenous administration of Gd-HIBDO3A-DCA to a mouse at a dose of 0.05 mmol Gd/kg. Post-contrast images at 2, 5, 10, 15, 30, 45, and 60 minutes are presented here after subtraction of the corresponding pre-contrast images.